# basic finance
#library(xts) # to manipulate time series of stock data
#library(pob) # book package with financial data
# data
#library(RcppRoll) # rolling methods
#library(TTR) # exponentially moving average
#library(rugarch) # time series models
#library(MARSS) # Kalman
#library(stochvol) # to compute volatility envelope
# graphs
library(clusterSim) # graph datasets
library(igraph) # for graph related functions
library(dbscan) # for kNN computation
library(glasso) # GLASSO implementation
library(spectralGraphTopology) # implementation of many graph learning functions
# plotting
#library(ggplot2) # for nice plots
library(cowplot)
#library(patchwork) # for combining plots
#library(scales)
R Code for Portfolio Optimization
Chapter 4 – Financial Data: Graphs
Daniel P. Palomar (2025). Portfolio Optimization: Theory and Application. Cambridge University Press.
Last update: March 13, 2025
Loading packages
The following packages are used in the examples:
For convenience, we define the following wrapper function (based on the package igraph
) to plot graphs:
library(igraph)
# define function to plot nice graphs
<- function(W, L = NULL, main = "", layout = NULL, clusters, edges = TRUE, labels = FALSE) {
plot_graph # if the Laplacian is passed instead, then use it to get W
if (!is.null(L)) {
<- abs(L)
W diag(W) <- 0
}# default layout
if(is.null(layout)) layout <- layout_with_fr
# build graph
<- graph_from_adjacency_matrix(W, mode = "undirected", weighted = TRUE)
graph
# colorify nodes and edges
V(graph)$cluster <- clusters
<- c("#706FD3", "#FF5252", "#33D9B2")
colors V(graph)$color <- colors[clusters] #V(graph)$color <- clusters
if (edges)
E(graph)$color <- apply(as.data.frame(get.edgelist(graph)), 1,
function(x) {
<- as.numeric(x)
x ifelse(V(graph)$cluster[x[1]] == V(graph)$cluster[x[2]],
V(graph)$cluster[x[1]]], "grey")
colors[
})else
E(graph)$color <- NA
E(graph)$weight <- E(graph)$weight / max(E(graph)$weight)
E(graph)$width <- 2*E(graph)$weight
plot(graph, layout = layout,
edge.width = E(graph)$width,
vertex.size = 3,
vertex.label = NA, #vertex.label.cex = 0.8, vertex.label.dist = 0.7, vertex.label.color = "black",
edge.curved = 0.25,
main = main)
}
Learning graphs from similarity measures
First load some toy data:
library(clusterSim)
set.seed(42)
<- shapes.two.moon(100)
data2moons <- shapes.circles3(100) data3circles
Let’s define the functions to learn the following graphs (in the form of the adjacency matrix \bm{W}
) based on similarity measures:
- thresholded distance graph
- Gaussian graph
- thresholded Gaussian graph
- kNN graph
- feature correlation graph
- selftuned Gaussian graph
library(dbscan)
<- function(X, threshold = NULL) {
W_thresholded # compute Euclidean distance matrix
<- as.matrix(dist(X, method = "euclidean", diag = FALSE, upper = FALSE))
euclid_dist # choose threshold automatically if needed
if (is.null(threshold)) {
<- max(euclid_dist)
max_dist <- min(euclid_dist[euclid_dist != 0])
min_dist <- min_dist + 0.15*(max_dist-min_dist)
threshold
}# generate W
<- ifelse(euclid_dist <= threshold, 1, 0)
W diag(W) <- 0
return(W)
}
<- function(X, sigma2 = 0.1) {
W_Gaussian # compute Euclidean distance matrix
<- as.matrix(dist(X, method = "euclidean", diag = FALSE, upper = FALSE))
euclid_dist # choose sigma2 automatically if needed
if (is.null(sigma2))
<- mean(euclid_dist^2)/10
sigma2 # generate W
<- exp(-(euclid_dist^2)/(2*sigma2))
W diag(W) <- 0
return(W)
}
<- function(X, sigma2 = 0.1, threshold = NULL) {
W_thresholded_Gaussian # compute Euclidean distance matrix
<- as.matrix(dist(X, method = "euclidean", diag = FALSE, upper = FALSE))
euclid_dist # choose sigma2 automatically?
if (is.null(sigma2))
<- mean(euclid_dist^2)/10
sigma2 # choose threshold automatically if needed
if (is.null(threshold)) {
<- max(euclid_dist)
max_dist <- min(euclid_dist[euclid_dist != 0])
min_dist <- min_dist + 0.15*(max_dist-min_dist)
threshold
} # generate W
<- exp(-(euclid_dist^2)/(2*sigma2))
W > threshold] <- 0 # threshold
W[euclid_dist diag(W) <- 0
return(W)
}
<- function(X, k = NULL) {
W_knn <- nrow(X)
p # choose k automatically if needed
if (is.null(k))
<- 1 + floor(log2(p))
k # compute the knn distances and so
<- dbscan::kNN(X, k, sort = FALSE)$id
knn_nodes # generate W
<- matrix(0, p, p)
W for (i in 1:p)
<- W[i, knn_nodes[i, ]] <- 1
W[knn_nodes[i, ], i] colnames(W) <- rownames(W) <- rownames(X)
return(W)
}
<- function(X, threshold = 0.5) {
W_feature_correlation <- X %*% t(X)
W abs(W) < threshold*mean(diag(W))] <- 0
W[diag(W) <- 0
return(W)
}
<- function(X, k = NULL) {
W_selftuned_Gaussian <- nrow(X)
p # choose k automatically if needed
if (is.null(k))
<- floor(1 + log2(p)) #0.5*log2(p)
k # compute Euclidean distance matrix and knn distances
<- dbscan::kNN(X, k, sort = TRUE)$dist[, k]
knn_dist <- as.matrix(dist(X, method = "euclidean", diag = FALSE, upper = FALSE))^2
euclid_dist2 #euclid_dist2 <- diag(1/knn_dist) %*% euclid_dist2 %*% diag(1/knn_dist)
<- t((1/knn_dist) * t((1/knn_dist) * euclid_dist2))
euclid_dist2 # generate W
<- exp(-euclid_dist2/2)
W diag(W) <- 0
return(W)
}
Graphs learned based on similarity measures for the two-moon dataset:
<- par(mfcol = c(2, 3), mar = c(0.6, 0, 0.8, 0)) # b-l-t-r
old_par # thresholded distance graph
plot_graph(W = W_thresholded(data2moons$data),
layout = data2moons$data, clusters = data2moons$clusters,
main = "Thresholded distance 0-1 graph")
# Gaussian graph
plot_graph(W = W_Gaussian(data2moons$data),
layout = data2moons$data, clusters = data2moons$clusters,
main = "Gaussian graph")
# thresholded Gaussian graph
plot_graph(W = W_thresholded_Gaussian(data2moons$data),
layout = data2moons$data, clusters = data2moons$clusters,
main = "Thresholded Gaussian graph")
# k-NN graph
plot_graph(W = W_knn(data2moons$data),
layout = data2moons$data, clusters = data2moons$clusters,
main = "k-NN 0-1 graph")
# feature correlation graph
plot_graph(W = W_feature_correlation(data2moons$data),
layout = data2moons$data, clusters = data2moons$clusters,
main = "Feature correlation graph")
# self-tuned Gaussian graph
plot_graph(W = W_selftuned_Gaussian(data2moons$data, k = 4),
layout = data2moons$data, clusters = data2moons$clusters,
main = "Self-tuned Gaussian graph")
par(old_par)
Graphs learned based on similarity measures for the three-circle dataset:
<- par(mfcol = c(2, 3), mar = c(0.6, 0, 0.8, 0)) # b-l-t-r
old_par # thresholded distance graph
plot_graph(W = W_thresholded(data3circles$data),
layout = data3circles$data, clusters = data3circles$clusters,
main = "Thresholded distance 0-1 graph")
# Gaussian graph
plot_graph(W = W_Gaussian(data3circles$data),
layout = data3circles$data, clusters = data3circles$clusters,
main = "Gaussian graph")
# thresholded Gaussian graph
plot_graph(W = W_thresholded_Gaussian(data3circles$data),
layout = data3circles$data, clusters = data3circles$clusters,
main = "Thresholded Gaussian graph")
# k-NN graph
plot_graph(W = W_knn(data3circles$data),
layout = data3circles$data, clusters = data3circles$clusters,
main = "k-NN 0-1 graph")
# feature correlation graph
plot_graph(W = W_feature_correlation(data3circles$data),
layout = data3circles$data, clusters = data3circles$clusters,
main = "Feature correlation graph")
# self-tuned Gaussian graph
plot_graph(W = W_selftuned_Gaussian(data3circles$data, k = 4),
layout = data3circles$data, clusters = data3circles$clusters,
main = "Self-tuned Gaussian graph")
par(old_par)
Learning graphs from smooth signals
We now learn the following graphs in the form of the adjacency matrix \bm{W}
based on similarity measures:
Graph with fixed degrees (Nie et al., 2016): \[ \begin{array}{ll} \underset{\bm{W}}{\textm{minimize}} & \textm{Tr}(\bm{W}\bm{Z}) + \gamma\|\bm{W}\|_\textm{F}^2\\ \textm{subject to} & \textm{diag}(\bm{W})=\bm{0}, \quad \bm{W}=\bm{W}^\T \ge \bm{0}\\ & \bm{W}\bm{1} = \bm{1}. \end{array} \]
Graph with regularized degrees (Kalofolias, 2016): \[ \begin{array}{ll} \underset{\bm{W}}{\textm{minimize}} & \textm{Tr}(\bm{W}\bm{Z}) - \alpha\bm{1}^\T\textm{log}(\bm{W}\bm{1}) + \frac{\beta}{2}\|\bm{W}\|_\textm{F}^2\\ \textm{subject to} & \textm{diag}(\bm{W})=\bm{0}, \quad \bm{W}=\bm{W}^\T \ge \bm{0}, \end{array} \]
Clustered \(k\) component graph based on the rank-contrained Laplacian algorithm (Nie et al., 2016), which is implemented in the package
spectralGraphTopology
: \[ \begin{array}{ll} \underset{\bm{W}}{\textm{minimize}} & \|\bm{W} - \bm{W}_0\|_\textm{F}^2\\ \textm{subject to} & \bm{W}\bm{1} = \bm{1}, \quad \textm{diag}(\bm{W})=\bm{0}, \quad \bm{W}=\bm{W}^\T \ge \bm{0}\\ & \textm{rank}\left(\mathcal{L}(\bm{W})\right) = p - k, \end{array} \]
<- function(X, m = NULL) {
W_smooth <- nrow(X)
p # choose m automatically if needed
if (is.null(m))
<- ceiling(0.08*p)
m # compute squared Euclidean distance matrix
<- as.matrix(dist(X, method = "euclidean", diag = FALSE, upper = FALSE))^2
Z diag(Z) <- 10*max(Z)
# generate W
<- matrix(0, p, p)
W for (i in 1:p) {
<- Z[, i]
z <- sort(z)
z_sorted <- pmax(z_sorted[m+1] - z, 0)
w_ <- w_/sum(w_)
W[, i]
}<- 1/2*(W + t(W)) # symmetrize
W colnames(W) <- rownames(W) <- rownames(X)
return(W)
}
<- function(X, alpha = 1e-2, beta = 1e-4) {
W_kalofolias_cvx <- nrow(X)
p
# compute squared Euclidean distance matrix
<- as.matrix(dist(X, method = "euclidean", diag = FALSE, upper = FALSE))^2
Z
# optimize
<- Symmetric(p)
W <- .5 * sum_entries(W * Z) - alpha * sum_entries(log(sum_entries(W, axis = 1))) + .5 * beta * sum_squares(W)
objective #objective_value <- .5 * sum(W * Z) - alpha * sum(log(rowSums(W))) + .5 * beta * norm(W, "F")^2
<- list(W >= 0,
constraints diag(W) == 0,
sum_entries(W, axis = 1) >= 1e-3)
<- Problem(Minimize(objective), constraints)
problem <- solve(problem, solver = "SCS")
result if (result$status != "optimal") message("Warning: CVX status: ", result$status)
<- as.matrix(result$getValue(W))
W < 1e-7] <- 0
W[W return(W)
}
<- function(X, m = NULL, alpha_over_beta = 1e2) {
W_kalofolias <- nrow(X)
p # choose m automatically if needed
if (is.null(m))
<- ceiling(0.08*p)
m # compute squared Euclidean distance matrix
<- as.matrix(dist(X, method = "euclidean", diag = FALSE, upper = FALSE))^2
Z diag(Z) <- 10*max(Z)
# generate W
<- matrix(0, p, p)
W for (i in 1:p) {
<- Z[, i]
z <- sort(z)
z_sorted <- alpha_over_beta * pmax(1 - z/z_sorted[m+1], 0)
w_ <- w_/sqrt(sum(w_))
W[, i]
}<- 1/2*(W + t(W)) # symmetrize
W colnames(W) <- rownames(W) <- rownames(X)
return(W)
}
Graphs learned based on smooth signals for the two-moon dataset:
library(spectralGraphTopology)
<- par(mfcol = c(1, 3), mar = c(0, 0, 0.8, 0)) # b-l-t-r
old_par plot_graph(W = W_smooth(data2moons$data, m = 20),
layout = data2moons$data, clusters = data2moons$clusters,
main = "Graph with fixed degrees")
plot_graph(W = W_kalofolias(X = data2moons$data, m = 20),
layout = data2moons$data, clusters = data2moons$clusters,
main = "Graph with regularized degrees")
plot_graph(W = cluster_k_component_graph(data2moons$data, k = 2, m = 20)$adjacency,
layout = data2moons$data, clusters = data2moons$clusters,
main = "Low-rank graph")
par(old_par)
<- par(mfcol = c(1, 3), mar = c(0, 0, 0.8, 0)) # b-l-t-r
old_par plot_graph(W = W_smooth(data3circles$data, m = 20),
layout = data3circles$data, clusters = data3circles$clusters,
main = "Graph with fixed degrees")
plot_graph(W = W_kalofolias(X = data3circles$data, m = 20),
layout = data3circles$data, clusters = data3circles$clusters,
main = "Graph with regularized degrees")
plot_graph(W = cluster_k_component_graph(data3circles$data, k = 3, m = 20)$adjacency,
layout = data3circles$data, clusters = data3circles$clusters,
main = "Low-rank graph")
par(old_par)
Learning graphs from Gaussian graphical model networks
We start with learning the Laplacian matrix \bm{L}
for the following graphs:
directly from the precision matrix
sparse precision matrix from the graphical lasso (GLASSO) (Banerjee et al., 2008; Friedman et al., 2008) \[ \begin{array}{ll} \underset{\bm{\Theta}\succ\bm{0}}{\textm{maximize}} & \textm{log det}(\bm{\Theta}) - \textm{Tr}(\bm{\Theta}\bm{S}) - \rho\|\bm{\Theta}\|_{1,\textm{off}}, \end{array} \]
the Laplacian-structured GLASSO (Egilmez et al., 2017; Lake and Tenenbaum, 2010; Zhao et al., 2019), which is implemented in the package
spectralGraphTopology
\[ \begin{array}{ll} \underset{\bm{L}\succeq\bm{0}}{\textm{maximize}} & \textm{log gdet}(\bm{L}) - \textm{Tr}(\bm{L}\bm{S}) - \rho\|\bm{L}\|_{1,\textm{off}}\\ \textm{subject to} & \bm{L}\bm{1}=\bm{0}, \quad L_{ij} = L_{ji} \le 0, \quad \forall i\neq j, \end{array} \]
<- function(S, threshold = 0) {
L_precision <- ginv(S)
L <- diag(L) # safe diagonal elements
diag_L <- ifelse(abs(L) <= threshold*mean(diag_L), 0, L)
L diag(L) <- diag_L # recover diagonal elements
return(L)
}
<- function(S, rho = 1e-5) {
L_GLASSO <- glasso::glasso(S, rho)$wi
L colnames(L) <- rownames(L) <- rownames(S)
return(L)
}
Graphs learned based on Gaussian graphical models for the two-moon dataset:
<- par(mfcol = c(1, 3), mar = c(0, 0, 0.8, 0)) # b-l-t-r
old_par plot_graph(L = L_precision(S = data2moons$data %*% t(data2moons$data), threshold = 1e-2),
layout = data2moons$data, clusters = data2moons$clusters,
main = "Partial correlation (precision matrix) graph")
plot_graph(L = L_GLASSO(S = data2moons$data %*% t(data2moons$data), rho = 1e-4),
layout = data2moons$data, clusters = data2moons$clusters,
main = "GLASSO graph")
plot_graph(L = learn_laplacian_gle_admm(S = data2moons$data %*% t(data2moons$data), maxiter = 200)$laplacian,
layout = data2moons$data, clusters = data2moons$clusters,
main = "Laplacian-structured GLASSO graph")
par(old_par)
Graphs learned based on Gaussian graphical models for the three-circle dataset:
<- par(mfcol = c(1, 3), mar = c(0, 0, 0.8, 0)) # b-l-t-r
old_par plot_graph(L = L_precision(S = data3circles$data %*% t(data3circles$data), threshold = 1e-2),
layout = data3circles$data, clusters = data3circles$clusters,
main = "Partial correlation (precision matrix) graph")
plot_graph(L = L_GLASSO(S = data3circles$data %*% t(data3circles$data), rho = 1e-4),
layout = data3circles$data, clusters = data3circles$clusters,
main = "GLASSO graph")
plot_graph(L = learn_laplacian_gle_admm(S = data3circles$data %*% t(data3circles$data), maxiter = 200)$laplacian,
layout = data3circles$data, clusters = data3circles$clusters,
main = "Laplacian-structured GLASSO graph")
par(old_par)
Learning \(k\)-component graphs
We learn \(k\)-component graphs based on:
the smooth signal graph formulation (Nie et al., 2016): \[ \begin{array}{ll} \underset{\bm{W}}{\textm{minimize}} & \textm{Tr}(\bm{W}\bm{Z}) + \gamma\|\bm{W}\|_\textm{F}^2\\ \textm{subject to} & \textm{diag}(\bm{W})=\bm{0}, \quad \bm{W}=\bm{W}^\T \ge \bm{0}\\ & \bm{W}\bm{1} = \bm{1}. \end{array} \]
the same graph further approximated by a low-rank one (Nie et al., 2016): \[ \begin{array}{ll} \underset{\bm{W}}{\textm{minimize}} & \|\bm{W} - \bm{W}_0\|_\textm{F}^2\\ \textm{subject to} & \bm{W}\bm{1} = \bm{1}, \quad \textm{diag}(\bm{W})=\bm{0}, \quad \bm{W}=\bm{W}^\T \ge \bm{0}\\ & \textm{rank}\left(\mathcal{L}(\bm{W})\right) = p - k, \end{array} \]
the joint low-rank smooth signal graph formulation: \[ \begin{array}{ll} \underset{\bm{L}\succeq\bm{0}, \bm{F}}{\textm{minimize}} & \textm{Tr}\left(\bm{X}\bm{L}\bm{X}^\T\right) + \frac{\gamma}{2}\|\bm{L}\|_\textm{F,off}^2 + \gamma \textm{Tr}\left(\bm{F}^\T\bm{L}\bm{F}\right)\\ \textm{subject to} & \bm{L}\bm{1}=\bm{0}, \quad L_{ij} = L_{ji} \le 0, \quad \forall i\neq j\\ & \textm{diag}(\bm{L})=\bm{1}\\ & \bm{F}^\T\bm{F}=\bm{I}. \end{array} \]
Graphs learned based on smooth signals for the three-circle dataset:
library(spectralGraphTopology)
<- W_smooth(data3circles$data)
W_smooth_3circle <- cluster_k_component_graph(data3circles$data, k = 3, m = 7)$adjacency
W_approx_lowrank_3circle <- learn_k_component_graph(S = crossprod(t(data3circles$data)),
W_lowrank_3circle k = 3,
beta = 1,
fix_beta = FALSE,
verbose = TRUE,
abstol = 1e-3)$adjacency
<- par(mfcol = c(1, 3), mar = c(0, 0, 0.8, 0)) # b-l-t-r
old_par plot_graph(W = W_smooth_3circle,
layout = data3circles$data, clusters = data3circles$clusters,
main = "Smooth-signal graph")
plot_graph(W = W_approx_lowrank_3circle,
layout = data3circles$data, clusters = data3circles$clusters,
main = "Low-rank two-step approximation")
plot_graph(W = W_lowrank_3circle,
layout = data3circles$data, clusters = data3circles$clusters,
main = "Low-rank smooth-signal graph")
par(old_par)