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Exercise 10.1: Computing alternative measures of risk

Generate 10000 samples following a normal distribution, plot the histogram, and compute the
following measures:

e mean

o variance and standard deviation

o semi-variance and semi-deviation

o tail measures (VaR, CVaR, and EVaR) based on raw data

o tail measures (VaR, CVaR, and EVaR) based on a Gaussian approximation.

Exercise 10.2: CVaR in variational convex form
Consider the following expression for the CVaR:
CVaR, =E[¢ | & > VaR,].

Show that it can be rewritten in a convex variational form as:

CVaR, = irTlf{T + L g (€ —7)*] } :

l—«a

where the optimal 7 precisely equals VaR,,.
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Exercise 10.3: Sanity check for variational computation of CVaR

Generate 10000 samples of the random variable £ following a normal distribution and compute
the CVaR as
CVaR, =E[¢ ] & > VaR,].

Verify numerically that the variational expression for the CVaR gives the same result:

1

Exercise 10.4: CVaR vs. downside risk
Consider the following two measures of risk in terms of the loss random variable &:
o downside risk in the form of lower partial moment (LPM) with o = I:
LPM; = E [(§ - &)"];

e CVaR:
CVaR, =E[£| £ > VaR,].

Rewrite LPM; in the form of CVaR, and the other way around. Hint: use { = VaR,.

Exercise 10.5: Log-sum-exp function as exponential cone

Show that the following convex constraint involving the perspective operator on the log-sum-exp
function,

s >tlog (ewl/t + emz/t> ,
for t > 0, can be rewritten in terms of the exponential cone Kexp as

t 2 U + uz,
(ui, t, s — 8) € Kexps 1=1,2,

where
Kexp = {(a,b,c) | c¢> be®’ b > O} U{(a,b,c) |a<0,b=0,¢> O}.

Exercise 10.6: Drawdown and path-dependency

a. Generate 10000 samples of returns following a normal distribution.
b. Compute and plot the cumulative returns, and plot the drawdown.
c. Randomly reorder the original returns and plot again.

d. Repeat a few times to observe the path-dependency property of the drawdown.




Exercise 10.7: Semi-variance portfolios

a. Download market data corresponding to N assets (e.g., stocks or cryptocurrencies) during a
period with 7" observations, r1,...,rp € RV,
b. Solve the minimization of the semi-variance in a nonparametric way (reformulate it as a
quadratic program):
minimize * S (r- wTrt)+)2
subject to w >0, 1Tw=1.

c. Solve the parametric approximation based on the quadratic program:

minimize w'Mw

w
subject to w >0, 1Tw=1,

where
M=E [(ﬂ —r)t((r1— 7‘)+)T} .

d. Comment on the goodness of the approximation.

Exercise 10.8: CVaR portfolios

a. Download market data corresponding to N assets (e.g., stocks or cryptocurrencies) during a
period with T observations, r1,...,r7 € RV,
b. Solve the minimum CVaR portfolio as the following linear program for different values of
the parameter a:
minimize 7+ -+ Zle ut
w,T,u
subject to 0 <wuy > —w'r, — 7, t=1,...,T,
w >0, 1Tw=1.

c. Observe how many observations are actually used (u; > 0) for the different values of a.
d. Add some small perturbation or noise to the sequence of returns r1,...,rr and repeat the
experiment to observe the sensitivity of the solutions to data perturbation.

Exercise 10.9: Mean—Max-DD formulation as an LP

The mean-Max-DD formulation replaces the usual variance term w' Xw by the Max-DD as a
measure of risk, defined as

Max-DD(w) = lrgtzszDt (w),

where D;(w) is the drawdown at time ¢. This leads to the problem formulation

maximize w'p — A max { max w' P — T pfum
w 1<t<T |1<7<t

subject to w e W.



Show that it can be rewritten as the following problem (up = —o0):
maximize w'p —As
w,u,s
subject to  w'rfim <y <s+w'rfim t=1,...,T,
Up—1 < U,
wEeW,

which is a linear program (assuming WV only contains linear constraints).

Exercise 10.10: Mean—Ave-DD formulation as an LP

The mean-Ave-DD formulation replaces the usual variance term w'Xw by the Ave-DD as a
measure of risk, defined as

1
Ave-DD = T Z Dy (w),

1<t<T

where D;(w) is the drawdown at time ¢. This leads to the problem formulation

T
fnd T 1 T,.,cum T,,cum
maximize w p— A= E max w ry —w Ty
w T P 1<7<t

subject to w € W.

Show that it can be rewritten as the following problem (up = —o0):
maximize  w'p — s
w,u,s
subject to £ Zthl uy < 3 Zthl w're s
wTrfumgut, t=1,...,T,
Up—1 < Uy,
weW,

which is a linear program (assuming W only contains linear constraints).

Exercise 10.11: Mean—CVaR-DD formulation as an LP

The mean-CVaR-DD formulation replaces the usual variance term w' Xw by the CVaR-DD as a
measure of risk, expressed in a variational form as

T
1 1
CVaR-DD(w) = inf {T +—— = ) (Dy(w) — T)+} 7
T [0 1
where D;(w) is the drawdown at time ¢. This leads to the problem formulation

T +
C] T 1 1 T,..cum T,..cum
maximize w p— |7+ = g max w r; —wr, —T
w,T 1—aT et <7<t

subject to w € W.




Show that it can be rewritten as the following problem (up = —o0):

maximize w'p — As

w,T,S,2,u

subject to s> T+ ﬁ% Zil Zt,
ngtZut—wTrfgum—T, t=1,...,T,
wT,r,gum < U,
u—1 < Uy,
weW,

which is a linear program (assuming W only contains linear constraints).

Exercise 10.12: Mean-EVaR-DD formulation as a convex problem

The mean-EVaR-DD formulation replaces the usual variance term w'Xw by the EVaR-DD as a
measure of risk, defined as

z

T
1
EVaR-DD(w) = igg {zl log (a exp(th('w))> } )
t=1

where D;(w) is the drawdown at time ¢ defined as

Dy(w) = max w'rc™ — ',
1<r<t
a. Write down the mean—EVaR-DD portfolio formulation in convex form.
b. Further rewrite the problem in terms of the exponential cone.




