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Exercise 10.1: Computing alternative measures of risk

Generate 10 000 samples following a normal distribution, plot the histogram, and compute the
following measures:

• mean
• variance and standard deviation
• semi-variance and semi-deviation
• tail measures (VaR, CVaR, and EVaR) based on raw data
• tail measures (VaR, CVaR, and EVaR) based on a Gaussian approximation.

Exercise 10.2: CVaR in variational convex form

Consider the following expression for the CVaR:

CVaRα = E [ξ | ξ ≥ VaRα] .

Show that it can be rewritten in a convex variational form as:

CVaRα = inf
τ

{
τ + 1

1 − α
E
[
(ξ − τ)+]} ,

where the optimal τ precisely equals VaRα.
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Exercise 10.3: Sanity check for variational computation of CVaR

Generate 10 000 samples of the random variable ξ following a normal distribution and compute
the CVaR as

CVaRα = E [ξ | ξ ≥ VaRα] .

Verify numerically that the variational expression for the CVaR gives the same result:

CVaRα = inf
τ

{
τ + 1

1 − α
E
[
(ξ − τ)+]} .

Exercise 10.4: CVaR vs. downside risk

Consider the following two measures of risk in terms of the loss random variable ξ:

• downside risk in the form of lower partial moment (LPM) with α = 1:

LPM1 = E
[
(ξ − ξ0)+] ;

• CVaR:
CVaRα = E [ξ | ξ ≥ VaRα] .

Rewrite LPM1 in the form of CVaRα and the other way around. Hint: use ξ0 = VaRα.

Exercise 10.5: Log-sum-exp function as exponential cone

Show that the following convex constraint involving the perspective operator on the log-sum-exp
function,

s ≥ t log
(

ex1/t + ex2/t
)

,

for t > 0, can be rewritten in terms of the exponential cone Kexp as

t ≥ u1 + u2,

(ui, t, xi − s) ∈ Kexp, i = 1, 2,

where
Kexp ≜

{
(a, b, c) | c ≥ b ea/b, b > 0

}
∪
{

(a, b, c) | a ≤ 0, b = 0, c ≥ 0
}

.

Exercise 10.6: Drawdown and path-dependency

a. Generate 10 000 samples of returns following a normal distribution.
b. Compute and plot the cumulative returns, and plot the drawdown.
c. Randomly reorder the original returns and plot again.
d. Repeat a few times to observe the path-dependency property of the drawdown.
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Exercise 10.7: Semi-variance portfolios

a. Download market data corresponding to N assets (e.g., stocks or cryptocurrencies) during a
period with T observations, r1, . . . , rT ∈ RN .

b. Solve the minimization of the semi-variance in a nonparametric way (reformulate it as a
quadratic program):

minimize
w

1
T

∑T
t=1
(
(τ − wTrt)+)2

subject to w ≥ 0, 1Tw = 1.

c. Solve the parametric approximation based on the quadratic program:

minimize
w

wTMw

subject to w ≥ 0, 1Tw = 1,

where
M = E

[
(τ1 − r)+ ((τ1 − r)+)T] .

d. Comment on the goodness of the approximation.

Exercise 10.8: CVaR portfolios

a. Download market data corresponding to N assets (e.g., stocks or cryptocurrencies) during a
period with T observations, r1, . . . , rT ∈ RN .

b. Solve the minimum CVaR portfolio as the following linear program for different values of
the parameter α:

minimize
w,τ,u

τ + 1
1−α

1
T

∑T
t=1 ut

subject to 0 ≤ ut ≥ −wTrt − τ, t = 1, . . . , T,
w ≥ 0, 1Tw = 1.

c. Observe how many observations are actually used (ut > 0) for the different values of α.
d. Add some small perturbation or noise to the sequence of returns r1, . . . , rT and repeat the

experiment to observe the sensitivity of the solutions to data perturbation.

Exercise 10.9: Mean–Max-DD formulation as an LP

The mean–Max-DD formulation replaces the usual variance term wTΣw by the Max-DD as a
measure of risk, defined as

Max-DD(w) = max
1≤t≤T

Dt(w),

where Dt(w) is the drawdown at time t. This leads to the problem formulation

maximize
w

wTµ − λ max
1≤t≤T

{
max

1≤τ≤t
wTrcum

τ − wTrcum
t

}
subject to w ∈ W.
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Show that it can be rewritten as the following problem (u0 ≜ −∞):

maximize
w,u,s

wTµ − λ s

subject to wTrcum
t ≤ ut ≤ s + wTrcum

t , t = 1, . . . , T,
ut−1 ≤ ut,
w ∈ W,

which is a linear program (assuming W only contains linear constraints).

Exercise 10.10: Mean–Ave-DD formulation as an LP

The mean–Ave-DD formulation replaces the usual variance term wTΣw by the Ave-DD as a
measure of risk, defined as

Ave-DD = 1
T

∑
1≤t≤T

Dt(w),

where Dt(w) is the drawdown at time t. This leads to the problem formulation

maximize
w

wTµ − λ
1
T

T∑
t=1

(
max

1≤τ≤t
wTrcum

τ − wTrcum
t

)
subject to w ∈ W.

Show that it can be rewritten as the following problem (u0 ≜ −∞):

maximize
w,u,s

wTµ − λ s

subject to 1
T

∑T
t=1 ut ≤ 1

T

∑T
t=1 wTrcum

t + s,
wTrcum

t ≤ ut, t = 1, . . . , T,
ut−1 ≤ ut,
w ∈ W,

which is a linear program (assuming W only contains linear constraints).

Exercise 10.11: Mean–CVaR-DD formulation as an LP

The mean–CVaR-DD formulation replaces the usual variance term wTΣw by the CVaR-DD as a
measure of risk, expressed in a variational form as

CVaR-DD(w) = inf
τ

{
τ + 1

1 − α

1
T

T∑
t=1

(Dt(w) − τ)+

}
,

where Dt(w) is the drawdown at time t. This leads to the problem formulation

maximize
w,τ

wTµ − λ

(
τ + 1

1 − α

1
T

T∑
t=1

(
max

1≤τ≤t
wTrcum

τ − wTrcum
t − τ

)+
)

subject to w ∈ W.
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Show that it can be rewritten as the following problem (u0 ≜ −∞):

maximize
w,τ,s,z,u

wTµ − λ s

subject to s ≥ τ + 1
1−α

1
T

∑T
t=1 zt,

0 ≤ zt ≥ ut − wTrcum
t − τ, t = 1, . . . , T,

wTrcum
t ≤ ut,

ut−1 ≤ ut,
w ∈ W,

which is a linear program (assuming W only contains linear constraints).

Exercise 10.12: Mean–EVaR-DD formulation as a convex problem

The mean–EVaR-DD formulation replaces the usual variance term wTΣw by the EVaR-DD as a
measure of risk, defined as

EVaR-DD(w) = inf
z>0

{
z−1 log

(
1

1 − α

1
T

T∑
t=1

exp(zDt(w))
)}

,

where Dt(w) is the drawdown at time t defined as

Dt(w) = max
1≤τ≤t

wTrcum
τ − wTrcum

t .

a. Write down the mean–EVaR-DD portfolio formulation in convex form.
b. Further rewrite the problem in terms of the exponential cone.
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