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Exercise 5.1: Graph matrices

Consider a graph described by the following adjacency matrix:

W =


0 2 2 0 6 1
2 0 3 1 5 0
2 3 0 9 0 2
0 1 9 0 7 3
6 5 0 7 0 2
1 0 2 3 2 0

 .

a. Calculate the connectivity matrix.
b. Calculate the degree matrix.
c. Calculate the Laplacian matrix.
d. Plot the graph showing the nodes and indicating the connectivity weights.

Exercise 5.2: Laplacian matrix of a k-connected graph

Consider a graph described by the following adjacency matrix:

W =


0 2 0 0 2 0
2 0 0 9 3 2
0 0 0 7 0 2
0 9 7 0 0 3
2 3 0 0 0 0
0 2 2 3 0 0

 .

a. Calculate the Laplacian matrix.
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b. Plot the graph and describe the graph structure.
c. Compute the eigenvalue decomposition of the Laplacian matrix. What can be concluded

from its eigenvalues?

Exercise 5.3: Adjacency matrix of a bipartite graph

Consider a graph described by the following adjacency matrix:

W =


0 0 0 2 6 1
0 0 0 1 5 3
0 0 0 9 0 2
2 1 9 0 0 0
6 5 0 0 0 0
1 3 2 0 0 0

 .

a. Calculate the Laplacian matrix.
b. Plot the graph and describe the graph structure.
c. Compute the eigenvalue decomposition of the adjacency matrix. What can be concluded

from its eigenvalues?

Exercise 5.4: Learning graphs from similarity measures

Consider the following graph:

W =


0 2 2 0 0 0
2 0 3 0 0 0
2 3 0 0 9 2
0 0 0 0 7 2
0 0 9 7 0 3
0 0 2 2 3 0

 .

a. Calculate the Laplacian matrix L.

b. Generate T = 100 observations of a graph signal x(t), t = 1, . . . , T , by drawing each
realization from a zero-mean Gaussian distribution with covariance matrix equal to the
Moore–Penrose matrix inverse of the Laplacian matrix L† (which has inverse positive
eigenvalues but keeps the same zero eigenvalues as L), that is, x(t) ∼ N (0, L†).

c. Learn the following graphs based on similarity measures:

• thresholded distance graph
• Gaussian graph
• k-nearest neighbors (k-NN) graph
• feature correlation graph.

d. Compare the graphs in terms of Laplacian matrix error and with graph plots.
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Exercise 5.5: Learning graphs from smooth signals

Consider the following graph:

W =


0 2 2 0 0 0
2 0 3 0 0 0
2 3 0 0 9 2
0 0 0 0 7 2
0 0 9 7 0 3
0 0 2 2 3 0

 .

a. Calculate the Laplacian matrix L.

b. Generate T = 100 observations of a graph signal x(t), t = 1, . . . , T , by drawing each
realization from a zero-mean Gaussian distribution with covariance matrix equal to the
Moore–Penrose matrix inverse of the Laplacian matrix L† (which has inverse positive
eigenvalues but keeps the same zero eigenvalues as L), that is, x(t) ∼ N (0, L†).

c. Learn the following graphs:

• sparse smooth graph:

minimize
W

1
2 Tr(W Z) + γ∥W ∥2

F

subject to diag(W ) = 0, W = WT ≥ 0;

• sparse smooth graph with hard degree control: same formulation but including the
constraint W 1 = 1 to control the degrees of the nodes;

• sparse smooth graph with regularized degree control: same formulation again but now
including the regularization term −1Tlog(W 1) to control the degrees of the nodes.

d. Compare the graphs in terms of Laplacian matrix error and with graph plots.

Exercise 5.6: Learning k-component financial graphs from GRMF

a. Download market data corresponding to N assets (e.g., stocks or cryptocurrencies) during a
period with T observations, and form the data matrix X ∈ RT ×N .

b. Learn a sparse GMRF graph:

maximize
L⪰0

log gdet(L) − Tr(LS) − ρ∥L∥0,off

subject to L1 = 0, Lij = Lji ≤ 0, ∀i ̸= j.

c. Learn a k-component sparse GMRF graph:

maximize
L⪰0,F

log gdet(L) − Tr(LS) − ρ∥L∥0,off − γTr
(
FTLF

)
subject to L1 = 0, Lij = Lji ≤ 0, ∀i ̸= j,

diag(L) = 1,
FTF = I.

d. Plot the graphs and compare them.
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Exercise 5.7: Learning heavy-tailed financial graphs

a. Download market data corresponding to N assets (e.g., stocks or cryptocurrencies) during a
period with T observations, and form the data matrix X ∈ RT ×N .

b. Learn a sparse GMRF graph:

maximize
L⪰0

log gdet(L) − Tr(LS) − ρ∥L∥0,off

subject to L1 = 0, Lij = Lji ≤ 0, ∀i ̸= j.

c. Learn a heavy-tailed MRF graph by solving the following sequence of Gaussianized problems
for k = 1, 2, . . .:

maximize
L⪰0

log gdet(L) − Tr(LSk)
subject to L1 = 0, Lij = Lji ≤ 0, ∀i ̸= j,

where Sk is a weighted sample covariance matrix,

Sk = 1
T

T∑
t=1

wk
t × x(t)(x(t))T,

with weights wk
t = p + ν

ν + (x(t))TLkx(t) .

d. Plot the graphs and compare.
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