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Exercise 13.1: Indices and ETFs

Download price data corresponding to some financial indices (e.g., the S&P 500, Dow Jones
Industrial Average, Nasdaq) and some ETFs that track each of these indices (e.g., SPY for the
S&P 500 index). Plot each index along with the corresponding ETFs in a linear and a logarithmic
scale. Assess the tracking capabilities.

Exercise 13.2: Active vs. passive investments

Download price data corresponding to some mutual funds and compare with appropriate financial
indices. Plot the price time series and compute some performance measure, such as the Sharpe
ratio, to compare their performance. Do these results support the efficient-market hypothesis,
promoted by Fama, or the inefficient and irrational markets, promoted by Shiller?

Exercise 13.3: Sparse regression via ℓ1-norm

Generate an underdetermined system of linear equations Ax = b with A ∈ R5×10. Then, solve
the following sparse underdetermined system of linear equations via brute force (i.e., trying all
possible 210 patterns for the variable x):

minimize
x

∥x∥0

subject to Ax = b.

Finally, solve the following linear program and compare the solution with the previous one:

minimize
x

∥x∥1

subject to Ax = b.
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Exercise 13.4: Sparse least squares

Generate an overdetermined system of linear equations Ax = b with A ∈ R10×5. Consider the
resolution of the sparse regression problem

minimize
x

∥Ax − b∥2
2

subject to ∥x∥0 ≤ k

via the following list of methods and plot the trade-off curve of regression error vs. sparsity level
for each method:

a. Brute force (i.e., trying all possible 25 patterns for the variable x).

b. ℓ1-norm approximation:

minimize
x

∥Ax − b∥2
2 + λ∥x∥1.

c. Concave approximation using a general-purpose nonlinear solver:

minimize
x

∥Ax − b∥2
2 + λ

N∑
i=1

log
(

1 + |xi|
ε

)
.

d. Concave approximation again, but using the iterative reweighted ℓ1-norm method.

Exercise 13.5: Cap-weighted indices

The portfolio of a cap-weighted index is defined in terms of the market capitalization. Denoting
by pt the prices of the N assets at time t and by n the number of outstanding shares of the N
assets. The capital portfolio of the assets is defined to be proportional to the market capitalization
n ⊙ pt, which leads to the normalized portfolio

bt = n ⊙ pt

nTpt
.

Show that this normalized portfolio can also be expressed as

bt = bt−1 ⊙ (1 + rt)
bT

t−1 (1 + rt)
,

where the returns are defined as

rt = pt − pt−1

pt−1
= pt

pt−1
− 1.
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Exercise 13.6: Tracking error measures

Download price data corresponding to some financial index (e.g., the S&P 500, Dow Jones Industrial
Average, Nasdaq) and some ETFs that track the index (e.g., SPY for the S&P 500 index). Compute
different error tracking measures, namely the ℓ2-norm tracking error, the downside risk, the ℓ1-norm
tracking error, and the Huberized tracking error. Finally, plot a histogram of the tracking errors
as a more complete picture of the tracking performance (note that the previous error measures
are summarizations of the histogram).

Exercise 13.7: Two-stage index tracking methods

Download price data corresponding to some financial index, such as the S&P 500, and the
corresponding constituent N assets for some period of time. Then, construct the benchmark return
vector rb and the assets’ return matrix X, and formulate the sparse index tracking problem

minimize
w

1
T

∥∥rb − Xw
∥∥2

2
subject to 1Tw = 1, w ≥ 0,

∥w∥0 ≤ K.

a. Solve the problem via a naive two-stage approach: simply select the K active assets with
some heuristic and then renormalize so that 1Tw = 1.

b. Solve the problem via a two-stage approach with refitting of weights: select the K active
assets as before and then solve the convex regression problem with the selected assets.

Plot the trade-off curve of regression error vs. sparsity level K for each method.

Exercise 13.8: Sparse index tracking methods via concave sparsity approximation

Download price data corresponding to some financial index, such as the S&P 500, and the
corresponding constituent N assets for some period of time. Then, construct the benchmark return
vector rb and the assets’ return matrix X, and formulate the sparse index tracking problem

minimize
w

1
T

∥∥rb − Xw
∥∥2

2 + λ∥w∥0

subject to 1Tw = 1, w ≥ 0

for different values of the hyper-parameter λ.

a. Approximate the sparsity regularizer with the concave log-function:

minimize
w

1
T

∥∥rb − Xw
∥∥2

2 + λ

N∑
i=1

log
(

1 + |wi|
ε

)
subject to 1Tw = 1, w ≥ 0.

Then solve the problem with a general-purpose nonconvex solver.

b. Apply the majorization–minimization approach to get the iterative reweighted ℓ1-norm
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method that solves sequentially, k = 0, 1, 2, . . . , the following:

minimize
w

1
T

∥∥rb − Xw
∥∥2

2 + λ

N∑
i=1

αk
i |wi|

subject to 1Tw = 1, w ≥ 0,

where
αk

i = 1
ε +

∣∣wk
i

∣∣ .

Plot the trade-off curve of regression error vs. sparsity level for each method (by varying the
hyper-parameter λ).

Exercise 13.9: Sparse index tracking for downside risk

Download price data corresponding to some financial index, such as the S&P 500, and the
corresponding constituent N assets for some period of time. Then, construct the benchmark return
vector rb and the assets’ return matrix X, and formulate the sparse index tracking problem

minimize
w

1
T

∥∥∥(
rb − Xw

)+
∥∥∥2

2
+ λ∥w∥0

subject to 1Tw = 1, w ≥ 0

for different values of the hyper-parameter λ.

a. Approximate the sparsity regularizer with the concave log-function and solve the problem
with a general-purpose nonconvex solver.

b. Apply the majorization–minimization approach to get the iterative reweighted ℓ1-norm
method that solves sequentially the following convex problem:

minimize
w

1
T

∥∥∥(
rb − Xw

)+
∥∥∥2

2
+ λ

N∑
i=1

αk
i |wi|

subject to 1Tw = 1, w ≥ 0,

where
αk

i = 1
ε +

∣∣wk
i

∣∣ .

c. Apply the majorization–minimization approach fully to get the iterative reweighted ℓ1-norm
method that solves sequentially the following convex problem:

minimize
w

1
T

∥∥∥(
r̃b)k − Xw

∥∥∥2

2
+ λ

N∑
i=1

αk
i |wi|

subject to 1Tw = 1, w ≥ 0,

where now (
r̃b)k = rb +

(
Xwk − rb)+

.
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Plot the trade-off curve of regression error vs. sparsity level for each method (by varying the
hyper-parameter λ).

Exercise 13.10: FDR-controlling method for sparse index tracking

Download price data corresponding to some financial index, such as the S&P 500, and the
corresponding constituent N assets for some period of time. Then, construct the benchmark return
vector rb and the assets’ return matrix X, and formulate the sparse index tracking problem

minimize
w

1
T

∥∥rb − Xw
∥∥2

2 + λ∥w∥0

subject to 1Tw = 1, w ≥ 0.

a. Approximate the sparsity regularizer with the ℓ1-norm:

minimize
w

1
T

∥∥rb − Xw
∥∥2

2 + λ∥w∥1

subject to 1Tw = 1, w ≥ 0.

Then solve the problem for different values of λ and plot the trade-off curve of regression
error vs. sparsity level.

b. Employ the T-Rex method to automatically choose the active assets with FDR control.
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