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Exercise B.1: Euclidean norm approximation

a. Randomly generate the parameters A ∈ R10×5 and b ∈ R10.
b. Formulate a regression problem to approximate Ax ≈ b based on the ℓ2-norm.
c. Solve it directly with the least squares closed-form solution.
d. Solve it using a modeling framework (e.g., CVX).
e. Solve it invoking a QP solver.

Exercise B.2: Manhattan norm approximation

a. Randomly generate the parameters A ∈ R10×5 and b ∈ R10.
b. Formulate a regression problem to approximate Ax ≈ b based on the ℓ1-norm.
c. Solve it using a modeling framework (e.g., CVX).
d. Rewrite it as an LP and solve it invoking an LP solver.

Exercise B.3: Chebyshev norm approximation

a. Randomly generate the parameters A ∈ R10×5 and b ∈ R10.
b. Formulate a regression problem to approximate Ax ≈ b based on the ℓ∞-norm.
c. Solve it using a modeling framework (e.g., CVX).
d. Rewrite it as an LP and solve it invoking an LP solver.
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Exercise B.4: Solving an LP

Consider the following LP:
maximize

x1,x2
3x1 + x2

subject to x1 + 2x2 ≤ 4,
4x1 + 2x2 ≤ 12,
x1, x2 ≥ 0.

a. Solve it using a modeling framework (e.g., CVX).
b. Solve it by directly invoking an LP solver.
c. Solve it by invoking a general-purpose nonlinear solver.
d. Implement the projected gradient method to solve the problem.
e. Implement the constrained Newton’s method to solve the problem.
f. Implement the log-barrier interior-point method to solve the problem (use (1,1) as the initial

point).
g. Compare all the solutions and the computation time.

Exercise B.5: Central path

Formulate the log-barrier problem corresponding to the LP in Exercise B.4 and plot the central
path as the parameter t varies.

Exercise B.6: Phase I method

Design a phase I method to find a feasible point for the LP in Exercise B.4, which can then be
used as the starting point for the barrier method.

Exercise B.7: Dual problem

Formulate the dual problem corresponding to the LP in Exercise B.4 and solve it using a solver of
your choice.

Exercise B.8: KKT conditions

Write down the Karush–Kuhn–Tucker (KKT) conditions for the LP in Exercise @ref(exr:solving-LP)
and discuss their role in determining the optimality of a solution.

Exercise B.9: Solving a QP

Consider the following QP:
maximize

x1,x2
x2

1 + x2
2

subject to x1 + x2 = 1,
x1 ≥ 0, x2 ≥ 0.

a. Solve it using a modeling framework (e.g., CVX).
b. Solve it by directly invoking a QP solver.
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c. Solve it by invoking a general-purpose nonlinear solver.
d. Implement the projected gradient method to solve the problem.
e. Implement the constrained Newton’s method to solve the problem.
f. Implement the log-barrier interior-point method to solve the problem (use (0.5,0.5) as the

initial point).
g. Compare all the solutions and the computation time.

Exercise B.10: Fractional programming

Consider the following fractional program:

maximize
w

wT1√
wTΣw

subject to 1Tw = 1, w ≥ 0,

where Σ ≻ 0.

a. Solve it with a general-purpose nonlinear solver.
b. Solve it via bisection.
c. Solve it via the Dinkelbach method as a sequence of SOCPs.
d. Develop a modified algorithm that solves the problem as a sequence of QPs instead.
e. Solve it via the Schaible transform method.
f. Reformulate the problem as a minimization and then solve it via the Schaible transform

method.
g. Compare all the previous approaches in terms of the accuracy of the solution and the

computation time.

Exercise B.11: Soft-thresholding operator

Consider the following convex optimization problem:

minimize
x

1
2 ∥ax − b∥2

2 + λ|x|,

with λ ≥ 0. Derive the solution and show that it can be written as

x = 1
∥a∥2

2
Sλ

(
aTb

)
,

where Sλ(·) is the so-called soft-thresholding operator defined as

Sλ(u) = sign(u)(|u| − λ)+,

with sign(·) denoting the sign function and (·)+ = max(0, ·).
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Exercise B.12: ℓ2–ℓ1-norm minimization

Consider the following ℓ2–ℓ1-norm minimization problem (with A ∈ R10×5 and b ∈ R10 randomly
generated):

minimize
x

1
2 ∥Ax − b∥2

2 + λ∥x∥1.

a. Solve it using a modeling framework (e.g., CVX).
b. Rewrite the problem as a QP and solve it by invoking a QP solver.
c. Solve it with an ad hoc LASSO solver.

Exercise B.13: BCD for ℓ2–ℓ1-norm minimization

Solve the ℓ2–ℓ1-norm minimization problem in Exercise B.12 via BCD. Plot the convergence
vs. iterations and CPU time.

Exercise B.14: MM for ℓ2–ℓ1-norm minimization

Solve the ℓ2–ℓ1-norm minimization problem in Exercise B.12 via MM and its accelerated version.
Plot the convergence vs. iterations and CPU time.

Exercise B.15: SCA for ℓ2–ℓ1-norm minimization

Solve the ℓ2–ℓ1-norm minimization problem in Exercise B.12 via SCA. Plot the convergence
vs. iterations and CPU time.

Exercise B.16: ADMM for ℓ2–ℓ1-norm minimization

Solve the ℓ2–ℓ1-norm minimization problem in Exercise B.12 via ADMM. Plot the convergence
vs. iterations and CPU time.
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