
Exercises
Portfolio Optimization: Theory and Application

Chapter 11 – Risk Parity Portfolios

Daniel P. Palomar (2025). Portfolio Optimization: Theory and Application.
Cambridge University Press.

portfoliooptimizationbook.com

Exercise 11.1: Change of variable

Show why Σx = b/x can be equivalently solved as Cx = b/x, where C is the correlation matrix
defined as C = D−1/2ΣD−1/2 with D a diagonal matrix containing diag(Σ) along the main
diagonal. Would it be possible to use instead C = M−1/2ΣM−1/2, where M is not necessarily a
diagonal matrix?

Exercise 11.2: Naive diagonal risk parity portfolio

If the covariance matrix is diagonal, Σ = D, then the system of nonlinear equations Σx = b/x
has the closed-form solution x =

√
b/diag(D). Explore whether a closed-form solution can be

obtained for the rank-one plus diagonal case Σ = uuT + D.

Exercise 11.3: Vanilla convex risk parity portfolio

The solution to the formulation

maximize
x≥0

bT log(x)

subject to
√

xTΣx ≤ σ0

is
λΣx = b/x ×

√
xTΣx.

Can you solve for λ and rewrite the solution in a more compact way without λ?

1

https://portfoliooptimizationbook.com


Exercise 11.4: Newton’s method

Newton’s method requires computing the direction d = H−1∇f or, equivalently, solving the system
of linear equations H d = ∇f for d. Explore whether a more efficient solution is possible by
exploiting the structure of the gradient and Hessian:

∇f = Σx − b/x,

H = Σ + Diag(b/x2).

Exercise 11.5: MM algorithm

The MM algorithm requires the computation of the largest eigenvalue λmax of matrix Σ, which
can be obtained from the eigenvalue decomposition of the matrix. A more efficient alternative is
the power iteration method. Program both methods and compare their computational complexity.

Exercise 11.6: Coordinate descent vs. SCA methods

Consider the vanilla convex formulation

minimize
x≥0

1
2 xTΣx − bT log(x).

Implement the cyclical coordinate descent method and the parallel SCA method in a high-level
programming language (e.g., R, Python, Julia, or MATLAB) and compare the convergence
against the CPU time for these two methods. Then, re-implement these two methods in a low-level
programming language (e.g., C, C++, C#, or Rust) and compare the convergence again. Comment
on the difference observed.

2


