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Exercise A.1: Concepts on convexity

a. Define a convex set and provide an example.
b. Define a convex function and provide an example.
c. Explain the concept of convex optimization problems and provide an example.
d. What is the difference between active and inactive constraints in an optimization problem?
e. What is the difference between a locally optimal point and a globally optimal point?
f. Define a feasibility problem and provide an example.
g. Explain the concept of least squares problems and provide an example.
h. Explain the concept of linear programming and provide an example.
i. Explain the concept of nonconvex optimization and provide an example.
j. Explain the difference between a convex and a nonconvex optimization problem.

Solution

a. A convex set is a set where for any two points in the set, the line connecting them is also
contained within the set. An example of a convex set is a closed interval on the real line,
such as [a, b].

b. A convex function is a function where for any two points in its domain, the line connecting
them lies above or on the graph of the function. An example of a convex function is
f(x) = x2.

c. Convex optimization problems are optimization problems where the objective function is
convex and the constraints are convex sets. An example of a convex optimization problem is
minimizing f(x) = x2 + 1 subject to x ≤ 2.

d. Active constraints are constraints that are satisfied with equality at the optimal solution,
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while inactive constraints are satisfied with inequality. In other words, active constraints
play a role in determining the optimal solution, while inactive constraints do not.

e. A locally optimal point is a point that is optimal within a neighborhood, meaning that there
is no other feasible point nearby that has a better objective value. A globally optimal point
is a point that is optimal over the entire feasible set, meaning that there is no other feasible
point with a better objective value.

f. The feasibility problem is to find any feasible solutions for an optimization problem without
regard to the objective value. An example of a feasibility problem is finding a feasible
solution to a system of linear equations.

g. Least squares problems are optimization problems where the objective is to minimize the
sum of squared differences between observed data and a mathematical model. An example
of a least squares problem is fitting a line to a set of data points using the method of least
squares.

h. Linear programming is a type of optimization problem where the objective function and
constraints are all linear. An example of a linear programming problem is maximizing
profit by determining the optimal production levels of different products subject to resource
constraints.

i. Nonconvex optimization refers to optimization problems where the objective function or
constraints are not convex. An example of a nonconvex optimization problem is minimizing
a function with multiple local minima.

j. The main difference between a convex and a nonconvex optimization problem is the nature
of the objective function and constraints. In a convex optimization problem, the objective
function and constraints are convex, allowing for efficient solution methods and guaranteeing
global optimality. In a nonconvex optimization problem, the objective function or constraints
(or both) are not convex, making the problem more challenging to solve and potentially
leading to multiple local optima.

Exercise A.2: Convexity of sets

Determine the convexity of the following sets:

a. X =
{

x ∈ R | x2 − 3x + 2 ≥ 0
}

.
b. X = {x ∈ Rn | max{x1, x2, . . . , xn} ≤ 1}.
c. X =

{
x ∈ Rn | α ≤ cTx ≤ β

}
.

d. X =
{

x ∈ R2 | x1 ≥ 1, x2 ≥ 2, x1x2 ≥ 1
}

.
e. X =

{
(x, y) ∈ R2 | y ≥ x2}.

f. X =
{

x ∈ Rn | ∥x − c∥ ≤ aTx + b
}

.
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g. X =
{

x ∈ Rn | (aTx + b)/(cTx + d) ≥ 1, cTx + d ≥ 1
}

.
h. X =

{
x ∈ Rn | aTx ≥ b or ∥x − c∥ ≤ 1

}
.

i. X =
{

x ∈ Rn | xTy ≤ 1 for all y ∈ S
}

, where S is an arbitrary set.

Solution

a. This set is convex as the feasible set is X = {x ∈ R | x ∈ [1, 2]}.

b. This set is convex. For any x, y ∈ X and 0 ≤ θ ≤ 1, z = θx + (1 − θ)y, we have
zi <= max(xi, yi) ≤ 1, ∀i.

c. This set is convex. It is an intersection of convex halfspaces.

d. This set is convex. It is an intersection of three sets. The first two are convex halfspaces.
The last one is a convex set. Therefore, the intersection of the three convex sets is convex.

e. This set is convex. It is a norm cone.

f. This set is convex. For any x, y ∈ X and 0 ≤ θ ≤ 1 , we have

∥θx + (1 − θ)y − c∥ = ∥θ(x − c) + (1 − θ)(y − c)∥
≤ θ∥x − c∥ + (1 − θ)∥y − c∥
≤ θ(aTx + b) + (1 − θ)(aTy + b)
= aT(θx + (1 − θ)y) + b

g. This set is convex. It can be written as X =
{

x ∈ Rn | (aTx + b) ≥ (cTx + d), cTx + d ≥ 1
}

,
which is the intersection of two halfspaces.

h. This set is not convex. It is an union of a halfspace and a norm ball. A special case is
X = {x ∈ R | x ≥ 2 or |x| ≤ 1}. The two sets are disconnected, and thus the union cannot
be convex.

i. This set is convex. It is the intersection of a batch of convex halfspaces.

Exercise A.3: Convexity of functions

Determine the convexity of the following functions:

a. f(x) = αg(x) + β, where g is a convex function, and α and β are scalars with α > 0.
b. f(x) = ∥x∥p with p ≥ 1.
c. f(x) = ∥Ax − b∥2

2.
d. The difference between the maximum and minimum value of a polynomial on a given interval,
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as a function of its coefficients:

f(x) = sup
t∈[0,1]

px(t) − inf
t∈[0,1]

px(t),

where px(t) = x1 + x2t + x3t2 + · · · + xntn−1.
e. f(x) = xTY −1x (with Y ≻ 0).
f. f(Y ) = xTY −1x (with Y ≻ 0).
g. f(x, Y ) = xTY −1x (with Y ≻ 0). Hint: Use the Schur complement.
h. f(x) =

√√
aTx + b.

i. f(X) = log det (X) on Sn
++.

j. f(X) = det (X)1/n on Sn
+.

k. f(X) = Tr
(
X−1) on Sn

++.
l. f(x) = 1

2 xTΣx − bTlog(x), where Σ ≻ 0 and the log function is applied elementwise.

Solution

a. f can be viewed as a composition u(g(x)) of the scalar function u(t) = αt + β, t ∈ R, and
the function g(x), x ∈ Rn. In this case, u is convex and monotonically increasing over R
(since α > 0), while g is convex over Rn. Hence, f is convex over Rn.

b. f can be viewed as a composition g(h(x)) of the scalar function g(t) = tp, p ≥ 1 and
the function h(x) = ∥x∥. In this case, g is convex and monotonically increasing over the
nonnegative octant, which is the set of values that h can take,while h is convex over Rn

(since any vector norm is convex). Hence f is convex over Rn.

c. Since ∇2f(x) = 2ATA ⪰ 0, f is convex.

d. px(t) is an affine function of x. Therefore supt∈[a,b] px(t) is convex in x. Similarly,
inft∈[a,b] p(t) is concave in x. Therefore f(x) is convex in x.

e. The function f(Y ) = xTY −1x is convex. To see this, suppose Y = Z + tV , where Z ≻ 0,
V ∈ Sn. We define g(t) = xT (Z + tV )−1

x = Tr
(

X (Z + tV )−1
)

with X = xxT.

g(t) = Tr
(

X (Z + tV )−1
)

= Tr
(

Z−1/2XZ−1/2 (I + tZ−1/2V Z−1/2)−1)
= Tr

(
Z−1/2XZ−1/2Q (I + tΛ)−1

QT
)

= Tr
(

QTZ−1/2XZ−1/2Q (I + tΛ)−1
)

=
∑n

i=1
(
QTZ−1/2XZ−1/2Q

)
ii

(1 + tλi)−1
,

where we used the eigenvalue decomposition Z−1/2V Z−1/2 = QΛQT. Since
QTZ−1/2XZ−1/2Q is symmetric and positive semidefinite,

(
QTZ−1/2XZ−1/2Q

)
ii

≥ 0,
i = 1, . . . , n. The function g is thus a nonnegative weighted sum of convex functions
1/(1 + tλi), hence it is convex.
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f. The function f(x) = xTY −1x is convex since it is quadratic with Y −1 ≻ 0.

g. The function f(x, Y ) = xTY −1x is convex. The epigraph of f is

epif = {(x, Y , t) | Y ≻ 0, xTY −1x ≤ t}.

Using the Schur complement condition for positive semidefiniteness of a block matrix,

epif =
{

(x, Y , t) | Y ≻ 0,

[
Y x
xT t

]
⪰ 0

}
.

Since the condition is a linear matrix inequality in (x, Y , t), epif is convex, and the function
f is also convex. Since f(x, Y ) = xTY −1x is jointly convex on x and Y , it is convex in
each variable separately. Thus, from the convexity of f(x, Y ) we can also infer the convexity
of (5) and (6).

h. Since aTx + b is affine and
√√

· is a concave function, it follows that
√√

aTx + b is concave.

i. The concavity of logdet(X) on Sn
++ can be verified by restricting to an arbitrary line.

Suppose X = Z + tV where Z, V ∈ Sn. We define g(t) = logdet(Z + tV ) and restrict g to
the values of t for which Z + tV ≻ 0. Without loss of generality, we assume t = 0 is inside
this interval, i.e., Z ≻ 0. Then

g(t) = logdet (Z + tV )
= logdet

(
Z1/2 (I + tZ−1/2V Z−1/2)Z1/2)

=
∑n

i=1 log(1 + tλi) + logdet(Z)

where λ1, ..., λn are the eigenvalues of Z−1/2V Z−1/2. It can be easily checked that g′′(t) =
−
∑n

i=1
λ2

i

(1+tλi)2 ≤ 0 and we conclude that logdet(X) is concave on Sn
++

j. Define g(t) = f(Z + tV ), where Z ≻ 0 andV ∈ Sn.

g(t) = (det(Z + tV ))1/n

= (det Z1/2 det(I + tZ−1/2V Z−1/2) det Z1/2)1/n

= (det Z)1/n(
n∏

i=1
(1 + tλi))1/n

where λ1, . . . , λn are the eigenvalues of Z−1/2V Z−1/2. From the last equality we see that
g is a concave function of t on {t|Z + tV ≻ 0}, since det(Z) > 0 and the geometric mean
(
∏n

i=1 xi)1/n is concave on Rn
++.

k. Define g (t) = f (Z + tV ), where Z ≻ 0 and V ∈ Sn,

g (t) = Tr
(

(Z + tV )−1
)

= Tr
(

Z−1 (I + tZ−1/2V Z−1/2)−1)
= Tr

(
Z−1Q (I + tΛ)−1

QT
)

=
∑n

i=1
(
QTZ−1Q

)
ii

(1 + tλi)−1
,
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where Z−1/2V Z−1/2 = QΛQT. In the last equality, g is expressed as a positive weighted
sum of convex functions (1 + tλi)−1, hence it is convex.

l. Not convex in general. For example, let x ∈ R with Σ = 1 and b = −1, it’s clear that
f(x) = x2 + log(x) is not convex.

Exercise A.4: Reformulation of problems

a. Rewrite the following optimization problem as an LP (assuming d > ∥c∥1):

minimize
x

∥Ax − b∥1

cTx + d
subject to ∥x∥∞ ≤ 1.

b. Rewrite the following optimization problem as an LP:

minimize
x

∥Ax − b∥1

1 − ∥x∥∞
.

c. Rewrite the following constraint as an SOC constraint:{
(x, y, z) ∈ Rn+2 | ∥x∥2 ≤ yz, y ≥ 0, z ≥ 0

}
.

Hint: You may need the equality yz = 1
4
(
(y + z)2 − (y − z)2).

d. Rewrite the following problem as an SOCP:

minimize
x,y≥0,z≥0

aTx + κ
√

xTΣx

subject to ∥x∥2 ≤ yz,

where Σ ⪰ 0.

e. Rewrite the following problem as an SOCP:

minimize
x

xTAx + aTx

subject to Bx ≤ b,

where A ⪰ 0.

f. Rewrite the following problem as an SDP:

minimize
X⪰0

Tr
(
(I + X)−1)+ Tr (AX) .
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Solution

a. First we show the original problem and the following one

minimize
y,t

∥Ay − bt∥1

subject to ∥y∥∞ ≤ t,
cTy + dt = 1

is equivalent. Define y = x/
(
cTx + d

)
and t = 1/

(
cTx + d

)
. Then ∥Ay − bt∥1 =

∥Ax − b∥1 /
(
cTx + d

)
, ∥y∥∞ = t ∥x∥∞ ≤ t, and cTy + dt = 1. Conversely, suppose y

and t are feasible for the above problem, then t > 0. Define x = y/t, then we have
∥Ax − b∥1 /

(
cTx + d

)
= ∥Ay − bt∥1 and ∥x∥∞ ≤ 1. The above problem is equivalent to

the following LP:
minimize

y,t,s
sT1

subject to −t1 ≤ y ≤ t1,
−s ≤ Ay − bt ≤ s
cTy + dt = 1.

b. We first note that by introducing an auxiliary scalar variable t we can formulate the problem
as

minimize
x,t

∥ Ax − b ∥1

t

subject to t+ ∥ x ∥∞≤ 1
with an implicit constraint t > 0. A change of variables y = x/t, z = 1/t gives a convex
problem

minimize
y,z

∥ Ay − bz ∥1

subject to 1+ ∥ y ∥∞≤ z

(Note that the constraint implies z > 0.) This problem now reduces to an LP

maximize
x,y,u,z

1Tu

subject to − u ⪯ Ay − bz ⪯ u

− v1 ⪯ y ⪯ v1
1 + v ≤ z

with variables u ∈ Rm, y ∈ Rn, z ∈ R, v ∈ R.

c. Since
yz = 1

4
(
(y + z)2 − (y − z)2) ,

the constraint ∥x∥2 ≤ yz, y ≥ 0, z ≥ 0 can be rewritten as∥∥∥∥[ 2x
y − z

]∥∥∥∥ ≤ y + z.

Thus, the set can be rewritten as the following SOC constraint:{
(x, y, z) ∈ Rn+2

∣∣∣∣∣
∥∥∥∥[ 2x

y − z

]∥∥∥∥ ≤ y + z

}
.
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d. The epigraph of the problem has the following formulation:

minimize
x,y≥0,z≥0,t

a⊺x + κt

subject to ∥x∥2 ≤ yz
√

x⊺Σx ≤ t.

The constraint ∥x∥2 ≤ yz can be written as∥∥∥∥[ 2x
y − z

]∥∥∥∥ ≤ y + z,

while
√

x⊺Σx ≤ t can be written as

∥L⊺x∥ ≤ t,

where Σ = LL⊺ (Cholesky decomposition). Therefore, the problem is equivalent to an
SOCP given by

minimize
x,y≥0,z≥0,t

a⊺x + κt

subject to
∥∥∥∥[ 2x

y − z

]∥∥∥∥ ≤ y + z

∥L⊺x∥ ≤ t.

e. By introducing a variable t, then the problem can be reformulated as

minimize
x,t

t + aTx

subject to Bx ≤ b,
xTAx ≤ t.

Notice that xTAx ≤ t is equivalent to ∥A
1
2 x∥2 ≤ t. The above problem can be further

written in an SOCP:
minimize

x,t
t + aTx

subject to Bx ≤ b,∥∥∥∥[2A
1
2 x

t − 1

]∥∥∥∥ ≤ t + 1.

f. The epigraph of the problem is given by

minimize
X≻0,M

Tr (M) + Tr (AX)

subject to (I + X)−1 ⪯ M .

Applying the Schur complement, we get

minimize
X≻0,M

Tr (M) + Tr (AX)

subject to
[

I + X I
I M

]
⪰ 0,

which is an SDP.
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Exercise A.5: Concepts on problem resolution

a. How would you determine if a convex problem is feasible or infeasible?
b. How would you determine if a convex problem has a unique solution or multiple solutions?
c. What are the main ways to solve a convex problem?
d. Given a nonconvex optimization problem, what strategies can be used to find an approximate

solution?

Solution

a. Check the feasibility of constraints. If there exists a point that satisfies all the constraints,
then the problem is feasible.

b. If the feasible set is not empty, and the objective function is strictly convex, then the convex
problem has a unique solution, otherwise there exists multiple solutions.

c. We can solve the convex problem by working out the KKT conditions. If the convex problem
are in the classical classes like LP, QP, SOCP, and SDP, there are corrsponding solvers that
help to solve the problem efficently. If the convex problem are more complex, then we can
use the general nonlinear solvers like gradient-based methods and metaheuristic algorithms.

d. First, we can try to transform the nonconvex problem into a convex one by relaxing or
approximating certain constraints or objectives, and then take the optimal point as an
approximated solution. Besides, local optimization methods such as gradient-based methods
help us to find a local optimum of the nonconvex problem. Randomized search via such as
metaheuristic algorithms can also be an option.

Exercise A.6: Linear regression

a. Consider the line equation y = αx + β. Choose some values for α and β, and generate 100
noisy pairs (xi, yi), i = 1, . . . , 100 (i.e., add some random noise to each observation yi).

b. Formulate a regression problem to fit the 100 data points with a line based on least squares.
Plot the true and estimated lines along with the points.

c. Repeat the regression using several other definitions of error in the problem formulation.
Plot and compare all the estimated lines.

Solution

a. The R code is shown below:
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set.seed(123)
alpha <- 2
beta <- 3
x <- runif(100)
y_true <- alpha * x + beta
y <- y_true + rnorm(100, sd = 0.5)

b. The R code is shown below:

model <- lm(y ~ x) # fit a linear model
plot(x, y, main = "True and Estimated Lines")
abline(a = beta, b = alpha, col = "darkblue") # true line
abline(model, col = "darkred") # estimated line
legend("topleft", legend = c("True line", "Estimated line"),
col = c("darkblue", "darkred"), lty = 1)

0.0 0.2 0.4 0.6 0.8 1.0

3
4

5
6

True and Estimated Lines

x

y

True line
Estimated line

c. The R code is shown below:
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# Using Mean Absolute Error (MAE) as the error definition
model_mae <- optim(par = c(0, 0), fn = function(par) mean(abs(y -
(par[1] * x + par[2]))))
plot(x, y, main = "True and Estimated Lines")
abline(a = beta, b = alpha, col = "darkblue") # true line
abline(model, col = "darkred") # estimated line
# estimated line using MAE
abline(a = model_mae$par[2], b = model_mae$par[1], col = "darkgreen")
legend("topleft", legend = c("True line", "Estimated line",
"Estimated line (MAE)"), col = c("darkblue", "darkred", "darkgreen"), lty = 1)

0.0 0.2 0.4 0.6 0.8 1.0

3
4

5
6

True and Estimated Lines

x

y

True line
Estimated line
Estimated line (MAE)
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Exercise A.7: Concepts on Lagrange duality

a. Define Lagrange duality and explain its significance in convex optimization.
b. Give an example of a problem and its dual.
c. List the KKT conditions and explain their role in convex optimization.
d. Provide an example of a problem with its KKT conditions.
e. Try to find a solution that satisfies the previous KKT conditions. Is this always possible?

Solution

a. Lagrange duality is a fundamental concept in convex optimization that involves transforming
a given optimization problem, known as the primal problem, into its dual problem. The
Lagrange duality provides a lower bound on the optimal value of the primal problem and
helps in characterizing the optimality conditions. It is significant as it allows us to solve a
difficult primal problem by solving a potentially simpler dual problem, providing insights
into the problem structure and facilitating analysis.

b. Consider the following primal problem:

minimize
x

xTx

subject to Ax = b

The dual problem associated with this primal problem is formulated as follows:

maximize
ν

− 1
4νTAATν − bTν.

c. The Karush-Kuhn-Tucker (KKT) conditions play a crucial role in convex optimization.
They are a set of necessary conditions for optimality that apply to both the primal and
dual problems. The KKT conditions ensure that a point satisfies the first-order optimality
conditions and the constraints. Consider the following primal problem:

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, 2, . . . , m

hj(x) = 0, j = 1, 2, . . . , p

The KKT conditions are as follows:

• Primal feasibility:

fi(x) ≤ 0, i = 1, 2, . . . , m

hj(x) = 0, j = 1, 2, . . . , p

• Dual feasibility:

λ ≥ 0
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• Complementary slackness:

λifi(x) = 0, i = 1, 2, . . . , m

• Gradient of the Lagrangian:

∇f0(x) +
m∑

i=1
λi∇fi(x) +

p∑
j=1

νj∇hj(x) = 0

d. Let’s consider an example problem and its KKT conditions. Suppose we have the following
optimization problem:

minimize
x

f(x) = x2

subject to x ≥ 2

The KKT conditions for this problem are:

• Primal feasibility: x ≥ 2
• Dual feasibility: λ ≥ 0
• Complementary slackness: λ(x − 2) = 0
• Gradient of the Lagrangian: 2x − λ = 0

e. It’s easy to verify that x = 2 satisfies the previous KKT conditions. It is not always possible
to find a solution that satisfies all the KKT conditions. In some cases, the primal and
dual problems may be infeasible, or the KKT conditions may not have a feasible solution.
However, if both the primal and dual problems are feasible and satisfy strong duality, then a
solution satisfying the KKT conditions exists, ensuring the optimality of the solution.

Exercise A.8: Solution via KKT conditions

For the following problems, determine the convexity, write the Lagrangian and KKT conditions,
and derive a closed-form solution:

a. Risk parity portfolio:
minimize

x≥0

√
xTΣx

subject to bT log(x) ≥ 1,

where Σ ≻ 0 and the log function is applied elementwise.
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b. Projection onto the simplex:

minimize
x

1
2 ∥x − y∥2

2

subject to 1Tx = (≤)1, x ≥ 0.

c. Projection onto a diamond:
minimize

x

1
2 ∥x − y∥2

2

subject to ∥x∥1 ≤ 1.

Solution

a. Let λ ≥ 0 be the Lagrange multiplier associated with the constraint. The Lagrangian is
given by:

L(x, λ) =
√

xTΣx + λ
(
1 − bT log(x)

)
To derive the KKT conditions, we need to take the partial derivatives of the Lagrangian
with respect to x and set them to zero:

∂L
∂x

= 1
2

1√
xTΣx

· (2Σx) − λ
b

x
= 0,

where b
x represents elementwise division. The KKT conditions are given by:

• Primal feasibility: bT log(x) ≥ 1 and x ≥ 0 (original constraints)
• Dual feasibility: λ ≥ 0 (Lagrange multiplier non-negativity)
• Complementary slackness: λ(1 − bT log(x)) = 0
• Stationarity: ∂L

∂x = 0

Defining x̃ = σ−1/2λ−1/2x with σ =
√

xTΣx, we can rewrite ∂L
∂x = 0 as

Σx̃ = b

x̃
,

which is the desired risk parity/budgeting condition.

b. We apply the standard KKT conditions for the problem. The Lagrangian of the problem is

L(x, λ, υ) = 1
2 ∥x − y∥ − λTx − υ(1Tx − 1),

where λ = [λ1, . . . , λn]T and υ are the Lagrange multipliers associated with the inequality and
equality constraints, respectively. At the optimal solution x, the following KKT conditions
hold:

xi − yi − λi − υ = 0, i = 1, . . . , n
λi ≥ 0, i = 1, . . . , n
λixi = 0, i = 1, . . . , n
xi ≥ 0, i = 1, . . . , n∑n

i=1 xi = 1
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From the complementarity slackness, it is clear that if xi > 0, we must have λi = 0 and
xi = yi + υ > 0; if xi = 0, we must have βi ≥ 0 and xi = yi + λi + υ = 0, whence
yi + υ = −λi ≤ 0. Obviously, the components of the optimal solution x that are zeros
correspond to the smaller components of y. Without loss of generality, we assume the
components of y are sorted and x uses the same ordering, i.e.,

y1 ≥ · · · ≥ yρ ≥ yρ+1 ≥ · · · ≥ yn,
x1 ≥ · · · ≥ xρ > xρ+1 ≥ · · · ≥ xn,

and that x1 ≥ · · · ≥ xρ > 0, xρ+1 = · · · = xn = 0. In other words, ρ is the number of
positive components in the solution x. Now we apply the last condition and have

1 =
∑n

i=1 xi =
∑ρ

i=1 xi =
∑ρ

i=1(yi + υ),

which gives υ = 1
ρ (1 −

∑ρ
i=1 yi). Hence ρ is the key to the solution.

(i) For j = ρ, we have

yρ + 1
ρ

(
1 −

ρ∑
i=1

yi

)
= yρ + υ = xρ > 0.

(ii) For j < ρ, we have

yj + 1
j

(
1 −

j∑
i=1

yi

)
= 1

j

jyj +
ρ∑

i=j+1
yi + 1 −

ρ∑
i=1

yi


= 1

j

jyj +
ρ∑

i=j+1
yi + ρυ


= 1

j

j(yj + υ) +
ρ∑

i=j+1
(yi + υ)

 > 0,

since yi + υ > 0 for i = j, . . . , ρ.
(iii) For j > ρ, we have

yj + 1
j

(
1 −

∑j
i=1 yi

)
= 1

j

(
jyj + 1 −

∑ρ
i=1 yi −

∑j
i=ρ+1 yi

)
= 1

j

(
jyj + ρυ −

∑j
i=ρ+1 yi

)
= 1

j

(
ρ(yj + υ) +

∑j
i=ρ+1(yj − yi)

)
≤ 0,

since yj + λ ≤ 0 for j > ρ and yj ≤ yi.
Therefore, we have

ρ = max
{

1 ≤ j ≤ n : yj + 1
j

(
1 −

∑j
i=1 yi

)
> 0
}

.

The optimal point is xi = max{yi + υ, 0} with υ = 1
ρ (1 −

∑ρ
i=1 y[i]) and {y[i]} are sorted

elements of y such that y[1] ≥ y[2] ≥ . . . y[n].
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c. Projection onto a diamond:
minimize

x

1
2 ∥x − y∥2

2

subject to ∥x∥1 ≤ 1.

Let x⋆ denote the optimal solution. Then, we first show that for ∀i, x⋆
i yi ≥ 0. Assume by

contradiction that the claim does not hold. Thus, there exists i for which x⋆
i yi < 0. Let x̄ be a

vector such that x̄i = 0 and for all j ̸= i we have x̄j = x⋆
j . Therefore, ∥x̄∥1 = ∥x∥1 − |wi| ≤ z

and hence x̄ is a feasible solution. In addition,

∥x⋆ − y∥2
2 − ∥x̄ − y∥2

2 = (x⋆
i − yi)2 − (0 − yi)2

= x⋆2
i − 2x⋆

i yi > x⋆2
i > 0.

We thus constructed a feasible solution x̄ which attains an objective value smaller than
that of x⋆. This leads us to the desired contradiction. Therefore, the above claim indicates
that each non-zero component of the optimal solution x⋆ for the original problem shares
the sign of its counterpart in y. We note that if ∥y∥1 ≤ 1 then the solution of the original
problem is x⋆ = y. Therefore, from now on we assume that ∥y∥1 > 1. In this case, the
optimal solution must be on the boundary of the constraint set and thus we can replace
the inequality constraint with ∥x∥ ≤ 1 with an equality constraint ∥x∥1 = 1. Based on the
above statement and the symmetry of the objective, we are ready to present our reduction.
Let u be a vector obtained by taking the value of each component of y, ui = |yi|. We now
replace original problem with

minimize
z∈Rn

1
2∥z − u∥2

2

subject to 1Tz = 1, z ≥ 0.

Once we obtain the solution z for the problem above, we construct the optimal of the original
problem by setting xi = sign(yi)zi.

Exercise A.9: Dual problems

Find the dual of the following problems:

a. Vanishing maximum eigenvalue problem:

minimize
t,X

t

subject to tI ⪰ X,
X ⪰ 0.
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b. Matrix upper bound problem:

minimize
X

Tr(X)
subject to X ⪰ A,

X ⪰ B

where A, B ∈ Sn
+.

c. Log det problem:
minimize

X⪰0
Tr(CX) + log det(X−1)

subject to AT
i XAi ⪯ Bi, i = 1, . . . , m,

where C ∈ Sn
+ and Bi ∈ Sn

++ for i = 1, . . . , m,.

Solution

a. The Lagrangian function is

L (t, X, Z, Λ) = t + Tr ((X − tI) Z) − Tr (XΛ)
= t (1 − Tr (Z)) + Tr (X (Z − Λ)) ,

where Z ⪰ 0 and Λ ⪰ 0 are the dual variables. The dual function is given by

g (Z, Λ) = inf
t,X

L (t, X, Z, Λ) =
{

0 Tr (Z) = 1, Z = Λ
−∞ otherwise.

The dual problem can be written as

maximize
Z

0

subject to Tr (Z) = 1
Z ⪰ 0.

b. The Lagrangian function is

L (X, Z, Λ) = Tr (X) + Tr ((A − X) Z) + Tr ((B − X) Λ)
= Tr (X (I − Z − Λ)) + Tr (AZ) + Tr (BΛ)

where Z ⪰ 0 and Λ ⪰ 0 are the dual variables. The dual function is given by

g (Z, Λ) = inf
X

L (X, Z, Λ) =
{

Tr (AZ) + Tr (BΛ) Z + Λ = I

−∞ otherwise.

The dual problem can therefore be expressed as

maximize
Z,Λ

Tr (AZ) + Tr (BΛ)

subject to Z + Λ = I

Z ⪰ 0, Λ ⪰ 0,
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or more simply
maximize

Z
Tr ((A − B) Z)

subject to 0 ⪯ Z ⪯ I.

c. The Lagrangian is:

L (X, Z1, . . . , Zm) = Tr (CX) − log det X +
m∑

i=1
Tr
[
Zi

(
AT

i XAi − Bi

)]
.

As a function of X, this is strictly convex, and therefore X minimizes the Lagrangian if and
only if the gradient of the Lagrangian with respect to X is zero:

C − X−1 +
m∑

i=1
AiZiA

T
i = 0.

This equation has a solution if and only if C +
∑m

i=1 AiZiA
T
i ≻ 0. Thus we find that the X

that minimizes the Lagrangian is:

X⋆ =
(

C +
m∑

i=1
AiZiA

T
i

)−1

.

Therefore, the dual function is:

g (Z1, . . . , Zm) = L (X⋆, Z1, . . . , Zm)

= log det
(

C +
m∑

i=1
AiZiA

T
i

)
+ Tr

C

(
C +

m∑
i=1

AiZiA
T
i

)−1


+
m∑

i=1
Tr

Zi

AT
i

(
C +

m∑
i=1

AiZiA
T
i

)−1

Ai − Bi


= log det

(
C +

m∑
i=1

AiZiA
T
i

)

+ Tr

In −

(
m∑

i=1
AiZiA

T
i

)(
C +

m∑
i=1

AiZiA
T
i

)−1


−
m∑

i=1
Tr (ZiBi) + Tr

( m∑
i=1

AiZiA
T
i

)(
C +

m∑
i=1

AiZiA
T
i

)−1


= log det
(

C +
m∑

i=1
AiZiA

T
i

)
−

m∑
i=1

Tr (ZiBi) + n
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with the domain dom g =
{

(Z1, . . . , Zm)| C +
∑m

i=1 AiZiA
T
i ≻ 0

}
. So the dual problem is

maximize log det
(

C +
m∑

i=1
AiZiA

T
i

)
−

m∑
i=1

Tr (ZiBi) + n

subject to C +
m∑

i=1
AiZiA

T
i ≻ 0

Zi ≻ 0, i = 1, . . . , m.

Exercise A.10: Multi-objective optimization

a. Explain the concept of multi-objective optimization problems.
b. What is the significance of the weights in the scalarization of a multi-objective problem?
c. Provide an example of a bi-objective convex optimization problem and its scalarization.
d. Solve this scalarized bi-objective problem for different values of the weight and plot the

optimal trade-off curve.

Solution

a. Multi-objective optimization (MOO) involves the simultaneous optimization of multiple
conflicting objectives. Unlike traditional optimization problems with a single objective,
MOO aims to find a set of solutions that represent the best trade-offs between different
objectives. These objectives may include cost, efficiency, quality, or reliability, and improving
one objective may come at the expense of others. MOO algorithms, such as evolutionary
algorithms or mathematical programming techniques, explore the solution space to identify
the Pareto optimal front set of solutions where no other solution can improve one objective
without worsening another. Decision-makers can then select from the Pareto optimal solutions
based on their preferences and priorities. MOO provides a valuable framework for tackling
real-world problems with competing objectives and enables informed decision-making.

b. Scalarization involves combining multiple objectives into a single-objective problem by
applying weights to each objective. These weights reflect the decision-maker’s preferences
and guide the trade-offs made between different objectives. By adjusting the weights,
decision-makers can express their preferences and influence the resulting solution.

c. In mean-variance portfolio optimization, a bi-objective convex problem, the scalarization
involves assigning weights to expected return and portfolio variance to create a single
objective. By adjusting the weight, investors can balance risk and return trade-offs. By
assigning a higher weight on portfolio variance, investors can prioritize risk reduction in the
scalarization process, leading to more conservative portfolio allocations with lower volatility.
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d. TBD.
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