Solutions to Exercises

Portfolio Optimization: Theory and Application
Chapter 3 — Financial Data: I.I.D. Modeling

Daniel P. Palomar (2025). Portfolio Optimization: Theory and Application.
Cambridge University Press.

portfoliooptimizationbook.com

Exercise 3.1: Unbiasedness and consistency of sample mean estimator

Consider a univariate Gaussian-distributed i.i.d. time series with mean 0.01 and variance 1,
xy ~N(0.01,1), t=1,...,T.

a. Generate data for "= 10 and compute the sample mean. Repeat the experiment multiple
times and plot the histogram of the estimated mean value. Confirm that the expected value
of the histogram coincides with the true mean value.

b. Now repeat the experiment with T' = 20 observations and compare the histograms (also
compute the standard deviation of each histogram).

c. Finally, repeat the experiment multiple times, for different numbers of observations T" =
10,20, ...,100, and plot the mean squared error of the estimation as a function of 7.

library(ggplot2)
library(dplyr)
library(gridExtra)

Set parameters

true_mean <- 0.01

true_variance <- 1

true_sd <- sqrt(true_variance)

n_experiments <- 1000 # Number of repetitions for each T

Set seed for reproducibility
set.seed(123)

https://portfoliooptimizationbook.com

a. Generate data for "= 10 and compute the sample mean. Repeat the experiment multiple
times and plot the histogram of the estimated mean value. Confirm that the expected value
of the histogram coincides with the true mean value.

Part A: Generate data for T=10 and compute sample means
T1 <- 10
sample_means_T10 <- replicate(n_experiments, {

data <- rnorm(T1, mean = true_mean, sd = true_sd)

mean (data)

b

Create histogram for T=10
hist_data_T10 <- data.frame(sample_means = sample_means_T10)

ggplot(hist_data_T10, aes(x = sample_means)) +
geom_histogram(bins = 30, fill = "lightblue", color = "black", alpha = 0.7) +

geom_vline(aes(xintercept = true_mean), color = "red", linewidth = 1.5, linetype = "dashed") +
geom_vline(aes(xintercept = mean(sample_means)), color = "blue", linewidth = 1.5) +
labs(title = "Distribution of Sample Means (T = 10)",

x = "Sample Mean",

y = "Frequency",

subtitle = paste("Red line: True mean =", true_mean,

"| Blue line: Empirical mean =", round(mean(sample_means_T10), 4))) +
theme_minimal ()

Distribution of Sample Means (T = 10)
Red line: True mean = 0.01 | Blue line: Empirical mean = 0.0076

75 —T7—

a
=]

Frequency

25

-1.0 -0.5 0.0 0.5 1.0
Sample Mean

Verify unbiasedness
cat("Part A Results (T = 10):\n")

cat("True mean:", true_mean, "\n")
cat ("Empirical mean of sample means:", round(mean(sample_means_T10), 6), "\n")
cat("Standard deviation of sample means:", round(sd(sample_means_T10), 6), "\n")

cat ("Theoretical standard error:", round(true_sd/sqrt(T1), 6), "\n\n")

Part A Results (T = 10):

True mean: 0.01

Empirical mean of sample means: 0.007628
Standard deviation of sample means: 0.314214
Theoretical standard error: 0.316228

b. Now repeat the experiment with 7' = 20 observations and compare the histograms (also
compute the standard deviation of each histogram).

Part B: Generate data for T=20 and compare

T2 <- 20

sample_means_T20 <- replicate(n_experiments, {
data <- rnorm(T2, mean = true_mean, sd = true_sd)
mean (data)

)

Create histogram for T=20
hist_data_T20 <- data.frame(sample_means = sample_means_T20)

ggplot (hist_data_T20, aes(x = sample_means)) +
geom_histogram(bins = 30, fill = "lightgreen", color = "black", alpha = 0.7) +

geom_vline(aes(xintercept = true_mean), color = "red", linewidth = 1.5, linetype = "dashed") +
geom_vline(aes(xintercept = mean(sample_means)), color = "blue", linewidth = 1.5) +
labs(title = "Distribution of Sample Means (T = 20)",
x = "Sample Mean",
y = "Frequency",
subtitle = paste("Red line: True mean =", true_mean,
"| Blue line: Empirical mean =", round(mean(sample_means_T20), 4))) +

theme_minimal ()

Distribution of Sample Means (T = 20)
Red line: True mean = 0.01 | Blue line: Empirical mean = 0.0019

100 —

75

Frequency
3

25

-0.4 0.0 0.4
Sample Mean

Combined comparison plot

combined_data <- rbind(
data.frame(sample_means = sample_means_T10, T "T = 10"),
data.frame(sample_means = sample_means_T20, T = "T = 20")

)

ggplot(combined_data, aes(x = sample_means, fill = T)) +
geom_histogram(bins = 30, alpha = 0.6, position = "identity") +

geom_vline(aes(xintercept = true_mean), color = "red", linewidth = 1.5, linetype = "dashed")
scale_fill_manual(values = c("lightblue", "lightgreen")) +
labs(title = "Comparison of Sample Mean Distributions",
x = "Sample Mean",
y = "Frequency",
subtitle = "Red line shows true mean = 0.01") +
theme_minimal() +
facet_wrap(~T, scales = "free_y")

Comparison of Sample Mean Distributions
Red line shows true mean = 0.01

10

I
N
o

125

75
100

75

o
=]

T=10

Frequency

T=20
50

25

25

0

P R e e

7=
I
[
[
I
I
I
[
I
I
I
I
.0

-1.0 -0.5 0. 0.5 1.0 -1.0 -0.5

Sample Mean

[=}

0.5 1.0

Print comparison statistics
cat("Part B Results - Comparison:\n")
cat("T = 10: Mean =", round(mean(sample_means_T10), 6),
", SD =", round(sd(sample_means_T10), 6), "\n")
cat("T = 20: Mean =", round(mean(sample_means_T20), 6),
", SD =", round(sd(sample_means_T20), 6), "\n")
cat ("Theoretical SD for T=10:", round(true_sd/sqrt(T1), 6), "\n")
cat ("Theoretical SD for T=20:", round(true_sd/sqrt(T2), 6), "\n\n")

Part B Results - Comparison:

T = 10: Mean = 0.007628 , SD = 0.314214
T = 20: Mean = 0.001897 , SD = 0.22328
Theoretical SD for T=10: 0.316228
Theoretical SD for T=20: 0.223607

c. Finally, repeat the experiment multiple times, for different numbers of observations 7' =
10, 20, ...,100, and plot the mean squared error of the estimation as a function of 7.

Part C: MSE as function of T
T_values <- seq(10, 100, by = 10)
mse_results <- data.frame(T = T_values, MSE = numeric(length(T_values)))

for (i in seq_along(T_values)) {
T_current <- T_values[i]

sample_means_current <- replicate(n_experiments, {
data <- rnorm(T_current, mean = true_mean, sd = true_sd)
mean (data)

i)

Calculate MSE
mse_results$MSE[i] <- mean((sample_means_current - true_mean) 2)

cat("T =", T_current, ", MSE =", round(mse_results$MSE[i], 6), "\n")

+

T =10 , MSE = 0.091842
T =20 , MSE = 0.047585
T =30, MSE = 0.03399

T =40 , MSE = 0.023468
T =50 , MSE = 0.019875
T =60, MSE = 0.015924
T =70, MSE = 0.015382
T =80 , MSE = 0.012385
T =90, MSE = 0.011011
T = 100 , MSE = 0.010055

Theoretical MSE (which equals variance of sample mean)
mse_results$Theoretical MSE <- true_variance / mse_results$T

Plot MSE vs T
ggplot (mse_results, aes(x = T)) +
geom_point(aes(y = MSE, color = "Empirical MSE"), size = 3) +
geom_line(aes(y = MSE, color = "Empirical MSE"), linewidth = 1) +
geom_line(aes(y = Theoretical MSE, color = "Theoretical MSE"),
linewidth = 1, linetype = "dashed") +

scale_color_manual(values = c("Empirical MSE" = "blue", "Theoretical MSE" = "red")) +
labs(title = "Mean Squared Error vs Sample Size",

x = "Sample Size (T)",

y = "Mean Squared Error",

color = "MSE Type",

subtitle = "Demonstrates consistency: MSE decreases as T increases") +

theme_minimal () +
theme (legend.position = "bottom")

Mean Squared Error vs Sample Size
Demonstrates consistency: MSE decreases as T increases

0.100

o
o
<
a

0.050

Mean Squared Error

0.025

\

Summary table
cat("\nPart C Results - MSE Summary:\n")

print (mse_results)

25 50 75 100
Sample Size (T)

MSE Type =@ Empirical MSE = Theoretical MSE

Part C Results - MSE Summary:
MSE Theoretical_MSE

T
10
20
30
40
50
60
70
80
90
10 100

© 00 ~NO O WN -

O OO OO OO O oo

.09184212
.04758472
.03399019
.02346757
.01987454
.01592392
.01538181
.01238546
.01101063
.01005520

0.10000000
.05000000
.03333333
.02500000
.02000000
.01666667
.01428571
.01250000
.01111111
.01000000

O O O OO OO oo

Exercise 3.2: Bias of sample covariance matrix

Suppose we have T i.i.d. N-dimensional observations @1, ...,z distributed as &; ~ N (p, X).
a. Derive the following expected value based on the true p:
T
E [Z(wt —p) (e — H)T] ‘
t=1
b. Derive the following expected value based now on the sample mean (1 = % 23;1 T
T
E lZ(wt —p)(xy — ﬂ)T] :
t=1

c. Discuss the appropriate normalization factor, 1/(7 — 1) or 1/T, to be used in the expression
of the sample covariance matrix.

a. Expected value with true mean:

Using the linearity of expectation:

T

T
=S El(@ - w)@ -] = S =T x =,
t=1

t=1

T
E lZ(fct —p) (@ —p)'

t=1

Thus, to get an unbiased estimator of the covariance matrix, one should include the scaling factor
1/T.

b. Expected value with sample mean:

Once can easily verify the identity:

T T
Y@ —)@ —) = (@ —p) (@ —p) —T(p—p)(p—p)

t=1 t=1
Taking expectations leads to

T

E|Y (x—p)(—p)

t=1

=E

T
Y (@ —p(@ -)| - T xE[(p—p)(a—p)]

From part (a), we know the first term equals T' x 3. For the second term, since

and

we have that

Therefore:

T

by

E > (x— fp)(x —) =T 2-T-Z=T-%-%=(T-1)-3
t=1

Thus, to get an unbiased estimator of the covariance matrix, one should include the scaling factor
1/(T - 1).

c. Appropriate normalization factor

In the case of known mean vector u, the unbiased estimator of the covariance matrix is

. 1 <&

2:unbiased = T Z(wt - l'l') (:Bt - I'L)T7

t=1

. . . ~ T op e
whereas in the case of a mean vector estimated via the sample mean fi = % >, @y, it is

A

T
1 N N
3 unbiased = T_1 g (wt - [.L)(:Bt - M)T.
t=1

The reason why in the case of the sample mean the normalization factor is 1/(T" — 1) instead of
1/T is that the sample mean f is estimated from the same data used to compute the covariance
matrix. This introduces a dependency that reduces the apparent variability, since the sample
mean is the value that minimizes the sum of squared deviations. We “lose” one degree of freedom
by estimating the mean, hence the factor T"— 1 instead of T'.

The factor 1/(T — 1) is sometimes referred to as Bessel’s correction.

Of course, the difference becomes negligible as T — co.

Exercise 3.3: Location estimators

Consider a two-dimensional (N = 2) Gaussian-distributed i.i.d. time series with zero mean and
identity covariance matrix, ; ~ N(0,I), t=1,...,T.

a. Generate data for T = 20 and estimate the mean vector p via the sample mean, the median,
and the spatial median. Visualize the results in a scatter plot.
b. Repeat the experiment multiple times, for different numbers of observations T =

10,20, ...,100, and plot the mean squared error as a function of T'.

First generate synthetic data:

library (mvtnorm)

mu_true = c(0, 0)
Sigma_true <- cbind(c(0.0012, 0.0011), c(0.0011, 0.0014))

Generate synthetic Gaussian data
set.seed(42)
X <- rmvnorm(n = 1000, mean = mu_true, sigma = Sigma_true)

a. Illustration of different location estimators in 2D:

library(ellipse)
library (ICSNP)
library(ggplot2)

T <- 20

estimators

mu_mean <- colMeans(X[1:T, 1)

mu_median <- apply(X[1:T,], 2, median)

mu_spatial_median <- ICSNP::spatial.median(X[1:T, 1)

df <- data.frame("location" = c("true", "sample mean", "median", "spatial median"),
x = c(mu_true[1], mu_mean[1], mu_median[1], mu_spatial_median[1]),
y = c(mu_true[2], mu_mean[2], mu_median[2], mu_spatial_median[2]))

df$location <- factor(df$location, levels = unique(df$location))

scatter plot

colnames(Sigma_true) <- rownames(Sigma_true) <- NULL

ggplot(data.frame(x = X[1:500, 1], y = X[1:500, 2]), aes(x, y)) +
geom_point(alpha = 0.7, size = 1) +
geom_point(data = df, aes(x, y, fill = location, shape = location), size = 6) +
scale_shape_manual (values = c(21, 22, 23, 25)) +
coord_cartesian(xlim = c(-0.08, 0.08), ylim = c(-0.08, 0.08)) +
labs(title = "Scatter plot of data points with different location estimators",

x = NULL, y = NULL)

10

Scatter plot of data points with different location estimators

0.05- —
o
0.00-] o
o .
o ° 4 K
A I- "._ .-:\,_,'~ “-:'.;0-
% -- e®o o l--. l' o . o o
° ®e °° ° & , o 9 °
° pes o o e - ° °
° . %0 _° o
° J ° ° A e °® o
-0.05- o ®e0 ° % % o0
° Py o o
°) '.. . °
° ° o ° ° A
.. -..- ° °
. .
o
o
. . .
-0.05 0.00 0.05

b. Estimation error of location estimators versus number of observations:

11

location

‘ true

. sample mean

’ median
v spatial median

main loop
df <- data.frame()
T_sweep <- seq(from = 10, by = 10, to = 100)
for(T in T_sweep) {
for (i in 1:100) {
X_ <- X[sample(nrow(X), T), 1]

sample mean
mu <- colMeans(X_)

df <- rbind(df, data.frame("T" =T,
"distribution" = "Gaussian",
"method" = "sample mean',
"error mu" = norm(mu - mu_true, "2"),
check.names = FALSE))
median
mu <- apply(X_, 2, median)
df <- rbind(df, data.frame("T" =T,
"distribution" = "Gaussian",
"method" = "median",
"error mu" = norm(mu - mu_true, "2"),
check.names = FALSE))

spatial median
mu <- ICSNP::spatial.median(X_)

df <- rbind(df, data.frame("T" =T,
"distribution" = "Gaussian",
"method" = "spatial median",
"error mu" = norm(mu - mu_true, "2"),
check.names = FALSE))
}
}
af >
group_by(method, T, distribution) |[>
summarize ("error mu" = 100*mean(error mu’)) |>

ungroup() [>

ggplot(aes(x = T, y = “error mu’, color = method,)) +

geom_line(linewidth = 1.2) +

labs(color = "estimator") +

coord_cartesian(xlim = c(1, 100)) +

labs(title = "Error of location estimators under Gaussian data", x = "T", y = "error (%)")

12

Error of location estimators under Gaussian data
15-

1.2-

estimator

=== median

d
©
'

error (%)

=== sample mean

=== spatial median

0.6-

Exercise 3.4: Location estimators with outliers

Consider a two-dimensional (N = 2) Gaussian-distributed i.i.d. time series with zero mean and
identity covariance matrix, z; ~ N(0,I), t=1,...,T.

a. Generate data for T'= 20 and estimate the mean vector p via the sample mean, the median,
and the spatial median. Visualize the results in a scatter plot. Repeat the experiment

multiple times and compute the mean squared error of the estimators.

Then, add some small percentage of outliers in the observations, for example, distributed as

x; ~N(0.1 x 1,I), and compute again the mean squared error of the estimators.

c. Finally, repeat the experiment multiple times and plot the estimation error as a function of

the percentage of outliers. Observe the robustness of the three estimators against outliers
and discuss.

First generate synthetic data:

library (mvtnorm)
library(ellipse)
library (ICSNP)
library(ggplot2)
library(dplyr)

True parameters
mu_true <- c(0, 0)
Sigma_true <- diag(2) # Identity covariance matrix

set.seed(42)
a. Clean data analysis. First, let’s establish baseline performance with clean Gaussian data:

Visualization for one example
T <- 20

X_example <- rmvnorm(n = T, mean = mu_true, sigma = Sigma_true)
mu_mean_ex <- colMeans(X_example)

mu_median_ex <- apply(X_example, 2, median)

mu_spatial median_ex <- ICSNP::spatial.median(X_example)

df _estimators <- data.frame(
location = c("true", "sample mean", "median", "spatial median"),
x = c(mu_true[1], mu_mean_ex[1], mu_median_ex[1], mu_spatial_median_ex[1]),
y = c(mu_true[2], mu_mean_ex[2], mu_median_ex[2], mu_spatial_median_ex[2])
)

df _estimators$location <- factor(df_estimators$location, levels = unique(df_estimators$location))

ggplot(data.frame(x = X_example[, 1], y = X_example[, 2]), aes(x, y)) +
geom_point (alpha = 0.7, size = 2, color = "blue") +
geom_point(data = df_estimators, aes(x, y, fill = location, shape = location), size = 6) +
scale_shape_manual (values = c(21, 22, 23, 25)) +
labs(title = "Clean Gaussian Data: Location Estimators Comparison",
x = lelll’ y = nx2n)

14

Clean Gaussian Data: Location Estimators Comparison

° L) .
location
ol O ‘ ‘ true
o V % . sample mean
X ° (]
° .
o ® ° ’ median
° v spatial median
1-
o0 L4
—2-
°
' ' ' ' '
-2 -1 0 1 2
X1
T <- 20

n_experiments <- 100

Generate clean data and compute MSE for each estimator
mse_clean <- data.frame()

for(i in 1:n_experiments) {
Generate clean Gaussian data
X_clean <- rmvnorm(n = T, mean = mu_true, sigma = Sigma_true)

Compute estimators

mu_mean <- colMeans(X_clean)

mu_median <- apply(X_clean, 2, median)
mu_spatial_median <- ICSNP::spatial.median(X_clean)

Compute squared errors
mse_clean <- rbind(mse_clean, data.frame(
experiment = i,
outlier_pct = O,
method = c("sample mean", "median", "spatial median"),
mse = c(norm(mu_mean - mu_true, "2") 2,
norm(mu_median - mu_true, "2")"2,
norm(mu_spatial_median - mu_true, "2")"2)

)

15

Print average MSE for clean data
cat("Quantiles of MSE (T =", T, "):\n")
mse_clean_summary <- mse_clean 7>/

group_by (method) %>%

summarize (avg_mse = mean(mse),
sd(mse),
.groups = 'drop')

std_mse

print (mse_clean_summary)

Quantiles of MSE (T = 20):
A tibble: 3 x 3

N

#

method avg_mse std_mse
<chr> <dbl> <dbl>
median 0.137 0.139
sample mean 0.113 0.0989
spatial median 0.116 0.112

b. Adding outliers. Now let’s introduce outliers and compare the robustness:

Function to generate data with outliers

generate_data_with_outliers <- function(T, outlier_pct) {

n_outliers <- round(T * outlier_pct / 100)
n_clean <- T - n_outliers

Generate clean data
X <- rmvnorm(n = n_clean, mean = mu_true, sigma = Sigma_true)

Generate outliers: shifted mean
if(n_outliers > 0) {
outlier_mean <- 1.0 * c(1, 1) # larger than specified in the exercise

X_outliers <- rmvnorm(n = n_outliers, mean = outlier_mean, sigma = Sigma_true)

X <- rbind(X, X_outliers)
}

return(X)

16

Test with 10% outliers
outlier_pct <- 20
X_with_outliers <- generate_data_with_outliers(T, outlier_pct)

Compute estimators

mu_mean_out <- colMeans(X_with_outliers)

mu_median_out <- apply(X_with_outliers, 2, median)
mu_spatial_median_out <- ICSNP::spatial.median(X_with_outliers)

Visualization with outliers
n_outliers <- round(T * outlier_pct / 100)
df _data <- data.frame(
x = X_with_outliers[, 1],
y = X_with_outliers[, 2],
type = c(rep("clean", T - n_outliers), rep("outlier", n_outliers))

)

df _estimators_out <- data.frame(
location = c("true", "sample mean", "median", "spatial median"),
x = c(mu_truel[1], mu_mean_out[1], mu_median_out[1], mu_spatial_median_out[1]),
y = c(mu_true[2], mu_mean_out[2], mu_median_out[2], mu_spatial_median_out[2])
)

df _estimators_out$location <- factor(df_estimators_out$location, levels = unique(df_estimators_out$

ggplot(df_data, aes(x, y, color = type)) +
geom_point(alpha = 0.7, size = 2) +
scale_color_manual (values = c("clean" = "blue", "outlier" = "red")) +

geom_point(data = df_estimators_out, aes(x, y, fill = location, shape = location),
size = 6, color = "black") +
scale_shape_manual (values = c(21, 22, 23, 25)) +
labs(title = paste("Data with", outlier_pct, "Y, Outliers: Location Estimators Comparison"),
x = lelll, y = uxzn)

17

Data with 20 % Outliers: Location Estimators Comparison

2- °
o °
type
® clean
°
1- @ outlier
°
N ° i
< 5 ° o location
‘. ‘ true
0- . . sample mean

° ’ median
v spatial median

Compute MSE with outliers over multiple experiments
T <- 20

outlier_pct <- 20

n_experiments <- 100

mse_with_outliers <- data.frame()

for(i in 1:n_experiments) {
Generate data with outliers
X_with_outliers <- generate_data_with_outliers(T, outlier_pct)

Compute estimators

mu_mean <- colMeans(X_with_outliers)

mu_median <- apply(X_with_outliers, 2, median)
mu_spatial_median <- ICSNP::spatial.median(X_with_outliers)

Compute squared errors
mse_with_outliers <- rbind(mse_with_outliers, data.frame(
experiment = i,
outlier_pct = outlier_pct,
method = c("sample mean", "median", "spatial median"),
mse = c(norm(mu_mean - mu_true, "2") 2,
norm(mu_median - mu_true, "2")"2,
norm(mu_spatial_median - mu_true, "2")"2)

))

18

library(tidyr)

Print average MSE with outliers
cat ("Average MSE with", outlier_pct, "% outliers (T =", T, "):\n")
mse_outliers_summary <- mse_with_outliers %>’
group_by (method) %>%
summarize (avg_mse = mean(mse),
std_mse = sd(mse),
.groups 'drop')

print (mse_outliers_summary)

Compare with clean data results
cat ("\nComparison: Clean vs Outliers\n")
comparison <- rbind(
mse_clean 7%>% group_by(method) %>%
summarize (avg_mse = mean(mse), condition = "clean", .groups = 'drop'),
mse_with_outliers %>% group_by(method) %>%
summarize (avg_mse = mean(mse), condition

"outliers", .groups = 'drop')

comparison_wide <- comparison 7%>%
pivot_wider (names_from = condition, values_from = avg_mse) %>%
mutate(ratio = outliers / clean)

print (comparison_wide)

Average MSE with 20 % outliers (T = 20):
A tibble: 3 x 3

method avg_mse std_mse
<chr> <dbl> <dbl>
1 median 0.209 0.202
2 sample mean 0.194 0.173

3 spatial median 0.201 0.170

Comparison: Clean vs Outliers
A tibble: 3 x 4

method clean outliers ratio
<chr> <dbl> <dbl> <dbl>
1 median 0.137 0.209 1.52

2 sample mean 0.113 0.194 1.71
3 spatial median 0.116 0.201 1.73

c. Robustness Analysis. Finally, let’s analyze how estimation error varies with the percentage
of outliers:

19

Sweep over different outlier percentages
outlier_percentages <- seq(0, 60, by = 5)
n_experiments <- 100

results <- data.frame()

for(outlier_pct in outlier_percentages) {
cat ("Processing outlier percentage:", outlier_pct, "%\n")

for(i in 1:n_experiments) {
Generate data with outliers
X <- generate_data_with_outliers(T, outlier_pct)

Compute estimators

mu_mean <- colMeans(X)

mu_median <- apply(X, 2, median)
mu_spatial_median <- ICSNP::spatial.median(X)

Compute squared errors
results <- rbind(results, data.frame(
experiment = i,
outlier_pct = outlier_pct,
method = c("sample mean", "median", "spatial median"),
mse = c(norm(mu_mean - mu_true, "2")"2,
norm(mu_median - mu_true, "2") 2,
norm(mu_spatial_median - mu_true, "2")"2)

))

Processing outlier percentage: 0 %
Processing outlier percentage: 5 %
Processing outlier percentage: 10 %
Processing outlier percentage: 15 %
Processing outlier percentage: 20 %
Processing outlier percentage: 25 %
Processing outlier percentage: 30 %
Processing outlier percentage: 35 %
Processing outlier percentage: 40 %
Processing outlier percentage: 45 %
Processing outlier percentage: 50 %
Processing outlier percentage: 55 %
Processing outlier percentage: 60 %

20

Plot results
results %>
group_by (method, outlier_pct) %>%
summarize (mean_mse = mean(mse), .groups = 'drop') %>%
ggplot(aes(x = outlier_pct, y = mean_mse, color = method)) +
geom_line(linewidth = 1.2) +
geom_point(size = 2) +
labs(title = "Robustness of Location Estimators Against Outliers",
x = "Percentage of Outliers (%)",
y = "Mean Squared Error",
color = "Estimator") +
theme_minimal ()

Robustness of Location Estimators Against Outliers

0.8

Ind
o

Estimator
=®= median
== sample mean

=®= spatial median

Mean Squared Error
o
~

0.2

Percentage of Outliers (%)

Exercise 3.5: Derivation of sample mean as location estimator

Given the observations x;, t = 1,...,T, the sample mean can be derived as the solution to the
following optimization problem:

T
minimize Z 2 — w3
H t=1

21

a. Is this problem convex? What class of optimization problem is it?
b. Derive the solution in closed form by setting the gradient with respect to p to zero.

a. Convexity:

This optimization problem is indeed convex, because the objective function is the sum of squared
Euclidean distances from the observations a; to the optimization variable p, so it is actually a
convex quadratic problem. In fact, it is a least squares problem.

b. Closed-form solution:
We rewrite the quadratic objective function as

T
Fw) =" llw — pl3

t=1

(¢ — M)T(wt — K

I
B

o~
I
—

Il
B

(ziz: — 2z p+ p' p)

t=1
with gradient with respect to p:
T T T
V()= 2(0—25'3:& +2p) = 22(H—fl’t) =2Tp - 2233:&
t=1 t=1 t=1

Finally, setting the gradient to zero leads to the desired result:

1 T
®= th,
t=1

which is precisely the sample mean, confirming that the sample mean is the optimal solution to
the least squares location estimation problem. The result shows that the sample mean minimizes
the sum of squared deviations from all observations, making it the natural choice for estimating
the central location of a dataset.

]

22

Exercise 3.6: Computation of spatial median as location estimator

Given the observations x;, t = 1,...,T, the spatial median can be derived as the solution to the
following optimization problem:

T

minimize Z l: — el
H t=1

a. Is this problem convex? What class of optimization problem is it?

b. Can a closed-form solution be obtained as in the case of the sample mean?

c. Develop an iterative algorithm to compute the spatial median by solving a sequence of
weighted sample means. Hint: find a majorizer of the fy-norm in the form of a squared
{o-norm and then employ the majorization—minimization framework.

a. Convexity:

The spatial median optimization problem is convex. This is because each term |x; — p||2 in the
objective function is a norm, which is inherently convex, and the sum of convex functions remains
convex.

Unlike the sample mean problem, which is a quadratic optimization problem, the spatial median
involves minimizing a sum of ¢5-norms rather than squared fs-norms. This makes the problem a
second-order cone problem (SOCP).

b. Closed-form solution:

No, a closed-form solution cannot be obtained for the spatial median problem. This is a funda-
mental difference from the sample mean case. While the sample mean has a simple closed-form
expression due to the differentiability of the squared norm, the spatial median problem involves
non-differentiable ¢5-norms at points where p = x;, making analytical solution impossible in
general.

c. Iterative Algorithm via Majorization-Minimization:

To develop an iterative algorithm, we employ the majorization-minimization (MM) framework by
finding a suitable majorizer for the £s-norm.

Majorizer Construction: For the {o-norm ||@; — p||2, we can construct a majorizer using the
weighted squared norm. At iteration k with current estimate py, the majorizer is

1
le: — pll2 < Wﬂmt — p||3 4 constant,
2w,
where the weight is defined as
T
e — |2
Algorithm Development: The majorized objective function becomes:

T

1
— e — pl3
Z 9 (k) 2

t=1 <Wy

23

Minimizing this weighted sum of squared norms gives us the update rule for a weighted sample

mean:
Yoy vl
=1 Wy "oy
T ®)
D1 W

Complete Algorithm: The iterative algorithm for computing the spatial median is

Hi+1 =

1. Initialize pg (e.g., using the sample mean)
2. Repeat until convergence:

o Compute weights:

(k) _ 1

wy =————, forallt=1,...,T
2 — pall2

o Update:

T k
Hi+1 = Ly T Ll
T k
pr wt()

This algorithm is essentially Weiszfeld’s algorithm, a well-known iterative method for computing
the spatial median. The key insight is that at each iteration, we solve a weighted least squares
problem where observations closer to the current estimate receive higher weights, naturally leading
to a robust location estimator that is less sensitive to outliers compared to the sample mean.
The algorithm converges to the spatial median, which minimizes the sum of Euclidean distances
and provides a more robust measure of central tendency than the sample mean, particularly in
the presence of outliers.

Exercise 3.7: ML estimation of covariance matrix

Consider an N-dimensional i.i.d. time series with zero mean and identity covariance matrix,

T ’\‘./\/'(O,I)7 tZL,T

a. Generate Gaussian data for NV = 10 and 7' = 50 and estimate the covariance matrix X
via the Gaussian ML estimator and the heavy-tailed ML estimator. Run the experiment
multiple times and compute the mean squared error of the estimators.

b. Now repeat the whole experiment but generating instead heavy-tailed data (e.g., following a
t distribution) with the same mean and covariance matrix. Observe the robustness of the
two estimators against heavy tails and discuss.

24

We will instead choose realistic parameters:

library(xts)
library(pob)
set.seed(123)

N <- 10

get realistic mu and Sigma

X <- diff(log(SP500_2015t02020$stocks)) [-1, 1:100]

X <- X[, sample(ncol(X), N)]

nu <- 4

mu_true <- colMeans(X)

Sigma_true <- cov(X)

scatter_true <- (nu-2)/nu * Sigma_true # cov=nu/(nu-2)*scatter

a. Sample estimators under Gaussian data:

25

library (mvtnorm)
library(fitHeavyTail)
library (ICSNP)

generate synthetic data

set.seed(42)

T _max <- 100

X_Gaussian <- rmvnorm(n = 10*T_max, mean = mu_true, sigma = Sigma_true)

main loop
df <- data.frame()
T_sweep <- seq(from = 15, by = 5, to = T_max)
for(T in T_sweep) {
for (i in 1:100) {
X_ <- X_Gaussian[sample(nrow(X_Gaussian), T),]

Gaussian MLE

mu <- colMeans(X_)

Sigma <- (T-1)/T * cov(X_)
df <- rbind(df, data.frame(

nn = T,
"method" = "Gaussian MLE",
"error mu" = norm(mu - mu_true, "2")/norm(mu_true, "2"),

"MAE mu"
"error Sigma"

sum(abs(mu - mu_true))/sum(abs(mu_true)),
norm(Sigma - Sigma_true, "F")/norm(Sigma_true, "F"),

check.names = FALSE))
heavy-tailed MLE
fitted <- fit_mvt(X_, nu = "iterative", nu_iterative_method = "POP")
df <- rbind(df, data.frame(
"T" =T,
"method" = "heavy-tailed MLE",
"error mu" = norm(fitted$mu - mu_true, "2")/norm(mu_true, "2"),
"MAE mu" = sum(abs(fitted$mu - mu_true))/sum(abs(mu_true)),
"error Sigma" = norm(fitted$cov - Sigma_true, "F")/norm(Sigma_true, "F"),
check.names = FALSE))

}
}
df$method <- factor(df$method, levels = unique(df$method))

df <- d4df |>
group_by (method, T) [>
summarize ("error mu"
"RMSE mu"
"MAE mu"
"error Sigma"

100*mean (" error mu’),
100*sqrt (mean (" error mu™)),
100*mean ("MAE mu’),
100*mean (" error Sigma’)) |[>

ungroup ()

26

library(ggplot2)
library(patchwork) # for combining plots

plot

p_error_mu <- df |>
ggplot(aes(x = T, y = “error mu’, color = method)) +
geom_line(linewidth = 1.2) +

scale_color_discrete(name = "estimator",
labels = c("Gaussian MLE", "heavy-tailed MLE")) +
labs(title = "Error of mean estimators under Gaussian data",
x = "T", y = "normalized error (%)")

p_error_Sigma <- df |[>
ggplot(aes(x = T, y = “error Sigma”, color = method)) +
geom_line(linewidth = 1.2) +
labs(color = "estimator") +
labs(title "Error of covariance estimators under Gaussian data",
x = "T", y = "normalized error (%)")

p_error_mu / p_error_Sigma

Error of mean estimators under Gaussian data

<
€ 500-
e estimator
@ 400-
8 400 === Gaussian MLE
N — —tail
B 300- heavy-tailed MLE
£
2
200-
\) \ \
25 50 75 100
T
Error of covariance estimators under Gaussian data
80~
3
2 60- estimator
[
8 === Gaussian MLE
% 40- === heavy-tailed MLE
£
o
=4
20- —
|) \ \
25 50 75 100
T

b. Sample estimators under heavy-tailed data:

27

library (mvtnorm)
library(fitHeavyTail)
library (ICSNP)

generate synthetic data

set.

seed(42)

T _max <- 100
X_heavy_tail <- rmvt(n = 10*T_max, delta = mu_true, sigma = scatter_true, df

main loop
df <- data.frame()
T_sweep <- seq(from = 15, by = 5, to = T_max)
for(T in T_sweep) {
for (i in 1:100) {

3
b

X_ <~ X_heavy_tail [sample(nrow(X_heavy_tail), T),]

Gaussian MLE

mu <- colMeans(X_)

Sigma <- (T-1)/T * cov(X_)
df <- rbind(df, data.frame(

nn = T,
"method" = "Gaussian MLE",
"error mu" = norm(mu - mu_true, "2")/norm(mu_true, "2"),

"MAE mu"
"error Sigma"

sum(abs(mu - mu_true))/sum(abs(mu_true)),
norm(Sigma - Sigma_true, "F")/norm(Sigma_true, "F"),

check.names = FALSE))
heavy-tailed MLE
fitted <- fit_mvt(X_, nu = "iterative", nu_iterative_method = "POP")
df <- rbind(df, data.frame(
"T" =T,
"method" = "heavy-tailed MLE",
"error mu" = norm(fitted$mu - mu_true, "2")/norm(mu_true, "2"),
"MAE mu" = sum(abs(fitted$mu - mu_true))/sum(abs(mu_true)),
"error Sigma" = norm(fitted$cov - Sigma_true, "F")/norm(Sigma_true, "F"),
check.names = FALSE))

df$method <- factor(df$method, levels = unique(df$method))

df <- df |>
group_by (method, T) [>

summarize ("error mu"

100*mean (" error mu’),
100*sqrt (mean (" error mu™)),
100*mean ("MAE mu’),
100*mean (" error Sigma’)) |[>

"RMSE mu"
"MAE mu"
"error Sigma"

ungroup ()

28

nu)

plot

p_error_mu <- df [>
ggplot(aes(x = T, y = “error mu’, color = method)) +
geom_line(linewidth = 1.2) +

scale_color_discrete(name = "estimator", labels = c("Gaussian MLE", "heavy-tailed MLE")) +
labs(title = "Error of mean estimators under heavy-tailed data",
x = "T", y = "normalized error (%)")

p_error_Sigma <- df |[>
ggplot(aes(x = T, y = “error Sigma™, color = method)) +
geom_line(linewidth = 1.2) +

labs(color = "estimator") +
labs(title = "Error of covariance estimators under heavy-tailed data",
x = "T", y = "normalized error (%)")

p_error_mu / p_error_Sigma

Error of mean estimators under heavy-tailed data

& 400-
S estimator
[}
3 300~ === Gaussian MLE
% === heavy-tailed MLE
£
5 200-
<

. . , \

25 50 75 100

T
Error of covariance estimators under heavy-tailed data

g 80-
e estimator
o 60-
3 === Gaussian MLE
£ — heavy-tailed MLE
g 40-
5]
=4

. ' \ \

25 50 75 100

T

29

Exercise 3.8: Derivation of Gaussian ML estimators

Given T' N-dimensional observations @i, ..., xr, the Gaussian ML estimation for g and X is
formulated as -
1
minimize log det(X) + = x— p)' Sz — p).
i g det(X) T;(t p)' = @ - p)

Derive the estimators by setting the gradient of the objective function with respect to g and X!
to zero.

Defining the precision matrix ® = X!, we can write the objective function as

1

T
f(1,©) = ~logdet(®) + = > (¢ — p) O (s — pa),

el

which is convex in p and in ©.

o The gradient with respect to p is

T
VS (14:0) = Vi | 7 3 (o1 Ol —)
1 T
= (200)
9 T
= —TG Z(mt —).

t=1

Setting this gradient to zero leads to the solution (independent of ®)

Z(mt —p)=0

t=1

and the closed-form expression for the ML estimator for the mean is

1 T
e n e
t=1

el

30

e To derive the solution for the covariance matrix, it is convenient to rewrite the objective as

1

F(1,©) = ~logdet(©) + = >, —) O — p)

M=

1

tr[O(z; — p)(zy — p)']

S|
MH

= —logdet(®) +

~~
Il

1
1z
= —logdet(®) + tr GT Z(azt —p)(xy — p)"
t=1
= —logdet(®) + tr [®S],

where we have used the cyclic property of the trace operator, tr(AB) = tr(BA), and we
have introduced the sample covariance matrix

Z(wt — p)(z —)"

t=1

S:

Nl =

The gradient with respect to ® is
Veof(n,®) =-0"1+8.

Setting this gradient to zero,
-0 '+S8=0,

leads to the closed-form solution:
e '=-s.
The final expression for the ML estimator for the covariance matrix (evaluated at the optimal
sample mean) is
1 Z
=D (e —) —)

t=1

S-S =

Summarizing, the Gaussian maximum likelihood estimators are:

e Mean estimator:

N

T

R 1

n= E Ty
t=1

¢ Covariance estimator:

T
N 1 R AT

= T Z(wt — p)(ze — 1)

t=1

These results show that the ML estimator for the mean is simply the sample mean, while the ML
estimator for the covariance matrix is the sample covariance matrix (using the ML estimate of the
mean). Note that this covariance estimator uses the divisor T rather than T — 1, making it the

maximum likelihood estimator rather than the unbiased estimator.

31

Exercise 3.9: Derivation of heavy-tailed ML estimators

Given T' N-dimensional observations 1, ..., 2y, the heavy-tailed ML estimation (under the ¢
distribution with degrees of freedom v) for p and X is formulated as

v+ N 1
mil};,ig)lize log det(X) + T Z log <1 + ;(a:t —)=y u)) .

Derive the fixed-point equations characterizing the estimators by setting the gradient of the
objective function with respect to p and X! to zero.

Defining the precision matrix ® = X!, we can write the objective function as

(1, ©) = —logdet(®) + “— = Zlog (% —)" O(z; — u))

e The gradient with respect to u is

T
Vil (.©) = ST Veton (14 3 (o - Ol)

t=1
v+ N & 1 1
- = (—20(x, —
T 215 T w0 —p v 20@—#)
:_2(1/+N)i Oz — p)
vT t:11+%($t—#)T@($t—H)

Setting this gradient to zero leads to

K _
Z l)T@(ﬂ’/‘t) a

t=1 V
v+ N
(@ —p) =" (2 —p)’
Zt 1 wtwt

Et 1 Wt

o To derive the solution for the covariance matrix, it is convenient to rewrite the objective
using the trace operator as

Defining the weight w; = we can write the fixed-point equation for p as

=

f(p,®) = —logdet(®) + # Zlog (1 + %tr[@(azt —) (T — H)T]> .

t=1
The gradient with respect to © is

)T

T
V+NZ (:ct—u
1+

_ _M>-1
Vof(n,0)=-0""+ —- w0 (x; — p)

t=1

32

Setting this gradient to zero lead to the fixed-point equation:

VAN~ (=) —)T

VI 1+ (w— p) Oz, — p)

! =

v+N
vt(xe—p) ' Z- Nz —p)’

T
Z wt ﬂ)T

Summarizing, the heavy-tailed ML estimators are characterized by the following fixed-point
equations:

Using the same weight definition w; =

the fixed-point equation for 3
becomes:

'ﬂ \

e« Weight computation:
v+ N

T vt (@ — TS (-)

¢ Mean estimator: .
Zt:l Wt

T
Zt:l Wy

o Covariance estimator:

’ﬂ \

T
Z x — 1)

These equations must be solved iteratively since the weights w; depend on both f and s,
creating a coupled system. The weights give less influence to outlying observations (those with
large Mahalanobis distances), which is the key mechanism by which the ¢ distribution provides
robustness against outliers compared to the Gaussian distribution.

Exercise 3.10: Shrinkage James—Stein estimator for the sample mean

Consider a Gaussian-distributed i.i.d. N-dimensional time series with zero mean and identity
covariance matrix, ; ~ N(0,I), t=1,...,T.

a. Generate data for N = 10 and T = 20, and estimate the mean vector with the sample mean
and with the shrinkage James—Stein estimator.

b. Run the experiment multiple times and compute the mean squared error of the estimators.

c. Finally, repeat the experiment multiple times, for different numbers of observations 7" =

33

10,20, ...,100, and plot the mean squared error as a function of T'.

For convenience, we will define a function to compute the James-Stein shrinkage estimator:

shrink_mu <- function(X, mu, mu_target, cov) {
T <- nrow(X)
N <- ncol(X)

shrinkage
rho <- (N + 2) /
((N + 2) + T * as.numeric((mu - mu_target) %*) solve(cov, mu - mu_target)))

rho <- max(0, min(1, rho))
mu_shrinked <- (1 - rho) * mu + rho * mu_target
return (mu_shrinked)

a. Single experiment:

34

library (mvtnorm)

Parameters
N <- 10
T <- 20

mu_true <- rep(0, N) # True mean vector
mu_target <- rep(0, N) # Target for shrinkage (zero vector)
Sigma_true <- diag(N)

Generate sample
X <- rmvnorm(n = T, mean = mu_true, sigma = Sigma_true)

Compute estimators
mu <- colMeans(X)
mu_JS <- shrink mu(X, mu

colMeans(X), mu_target = mu_target, cov = Sigma_true)

Compute MSE for both estimators
mse_sample <- sum((mu - mu_true) "2)
mse_js <- sum((mu_JS - mu_true) "2)

Display

cat("Results from single experiment with T =", T, ":\n")

cat ("\nMean Squared Error (MSE):\n")

cat ("MSE of Sample Mean:", round(mse_sample, 4), "\n")

cat("MSE of James-Stein:", round(mse_js, 4), "\n")

cat ("Improvement ratio (Sample MSE / JS MSE):", round(mse_sample / mse_js, 4), "\n")

Results from single experiment with T = 20 :
Mean Squared Error (MSE):

MSE of Sample Mean: 0.2693

MSE of James-Stein: 0.0258

Improvement ratio (Sample MSE / JS MSE): 10.4216

b. Multiple experiments with fixed T"

35

set.seed(42) # For reproducibility
num_experiments <- 100

N <- 10

T <- 20

mu_true <- rep(0, N)
mu_target <- rep(0, N)
Sigma_true <- diag(N)

Storage for MSE values
mse_sample_vec <- numeric(num_experiments)
mse_js_vec <- numeric(num_experiments)

Run multiple experiments
for (i in 1:num_experiments) {
Generate sample
X <- rmvnorm(n = T, mean = mu_true, sigma = Sigma_true)

Compute estimators
mu <- colMeans(X)
mu_JS <- shrink_mu(X, mu

colMeans(X), mu_target = mu_target, cov = Sigma_true)

Compute MSE for both estimators
mse_sample_vec[i] <- sum((mu - mu_true) "2)
mse_js_vec[i] <- sum((mu_JS - mu_true) 2)

Compute average MSE across experiments
avg_mse_sample <- mean(mse_sample_vec)
avg_mse_js <- mean(mse_js_vec)

cat("Results from", num_experiments, "experiments with T =", T, ":\n")
cat("Average MSE of Sample Mean:", round(avg_mse_sample, 4), "\n")
cat("Average MSE of James-Stein:", round(avg_mse_js, 4), "\n")

cat("Average improvement ratio:", round(avg_mse_sample / avg_mse_js, 4), "\n")

cat("Standard deviation of Sample MSE:", round(sd(mse_sample_vec), 4), "\n")
cat("Standard deviation of JS MSE:", round(sd(mse_js_vec), 4), "\n")

Results from 100 experiments with T = 20 :
Average MSE of Sample Mean: 0.4993
Average MSE of James-Stein: 0.1219
Average improvement ratio: 4.0968
Standard deviation of Sample MSE: 0.2376
Standard deviation of JS MSE: 0.1159

c. Multiple experiments as a function of T":

36

set.seed(42)

main loop
df <- data.frame()
T_sweep <- seq(from = 20, by = 10, to = 100)
for(T in T_sweep) {
for (i in 1:200) {
X_ <- rmvnorm(n = T, mean = mu_true, sigma = Sigma_true)

Sigma <- cov(X_)
Sigma_reg <- Sigma + mean(diag(Sigma)) * diag(N) # regularize Sigma for stability

sample mean

mu <- colMeans(X_)
df <- rbind(df, data.frame("T" =T,
"parameter" = "mu",
"method" = "sample mean',
"error" = norm(mu - mu_true, "2"),
check.names = FALSE))

sample mean + shrinkage to zero
mu_JS <- shrink_mu(X_, mu = colMeans(X_), mu_target = rep(0, N), cov = Sigma_reg)

df <- rbind(df, data.frame("T" =T,
"parameter" = "mu",
"method" = "shrinkage to zero",
"error" = norm(mu_JS - mu_true, "2"),

check.names
sample mean + shrinkage to grand mean
mu_JS <- shrink mu(X_, mu = colMeans(X_), mu_target = rep(mean(mu), N), cov = Sigma_reg)

FALSE))

df <- rbind(df, data.frame("T" =T,
"parameter" = "mu",
"method" = "shrinkage to grand mean",
lernomnRe = norm(mu_JS - mu_true, "2"),
check.names = FALSE))

sample mean + shrinkage to volatility weighted mean
vol <- sqrt(diag(Sigma)) # target is: mean(mu/vol) * vol
mu_JS <- shrink mu(X_, mu = colMeans(X_), mu_target = mean(mu/vol) * vol, cov = Sigma_reg)

df <- rbind(df, data.frame("T" =T,
"parameter" = "mu",
"method" = "shrinkage to volatility-weighted mean",
"error" = norm(mu_JS - mu_true, "2"),
check.names = FALSE))

37

plot
df$method <- factor(df$method, levels = unique(df$method))

df <- df |>
group_by(parameter, method, T) |>
summarize ("error" = 100*mean(error’)) |>
ungroup ()

df [df $parameter == "mu", 1 [>

ggplot(aes(x = T, y = “error™, color = method)) +
geom_line(linewidth = 1.2) +

labs(color = "estimator") +
scale_x_continuous(breaks = seq(from = T_sweep[1l], to = last(T_sweep), by = 100)) +
labs(title = "Error of mean estimators", x= "T", y = "normalized error (%)")

Error of mean estimators

60-

estimator

=== sample mean

IS
o
'

=== shrinkage to zero
=== shrinkage to grand mean

=== shrinkage to volatility-weighted mean

normalized error (%)

20~

1

Exercise 3.11: Shrinkage sample covariance matrix estimator

Consider a Gaussian-distributed i.i.d. N-dimensional time series with zero mean and identity
covariance matrix, ; ~ N(0,I), t=1,...,T.

a. Generate data for N = 10 and T" = 20, and estimate the covariance matrix with the sample

38

covariance matrix and with the shrinkage Ledoit—Wolf estimator.
b. Run the experiment multiple times and compute the mean squared error of the estimators.
c. Finally, repeat the experiment multiple times, for different numbers of observations 7" =
10, 20, ...,100, and plot the mean squared error as a function of T

For convenience, we will define a function to compute the Ledoit—Wolf shrinkage estimator:

shrink_Sigma <- function(X, S, Sigma_target) {
T <- nrow(X)
N <- ncol(X)
Xc <= X - matrix(colMeans(X), T, N, byrow = TRUE)

shrinkage

rho <- min(1, ((1/T°2) * sum(rowSums(Xc"2)°2) - 1/T * sum(S"2)) / sum((S - Sigma_target) "2))
Sigma_sh <- (1 - rho)*S + rho*Sigma_target

return(Sigma_sh)

a. Single experiment:

39

library (mvtnorm)

Parameters
N <- 10
T <- 20

mu_true <- rep(0, N)
Sigma_true <- diag(N)

Generate sample
X <- rmvnorm(n = T, mean = mu_true, sigma = Sigma_true)

Compute estimators

S <= cov(X)

Sigma_target <- mean(diag(S)) * diag(N)
Sigma_LZ_sh <- shrink_Sigma(X, S, Sigma_target)

Compute MSE for both estimators
mse_sample_cov <- norm(S - Sigma_true, "F")/norm(Sigma_true, "F")
mse_LZ_sh <- norm(Sigma_LZ_sh - Sigma_true, "F")/norm(Sigma_true, "F")

Display

cat ("Results from single experiment with T =", T, ":\n")
cat("\nNormalized Mean Squared Error (NMSE):\n")

cat ("NMSE of Sample Covariance matrix:", round(mse_sample_cov, 4), "\n")
cat ("NMSE of Ledoit-Wolf shrinkage:", round(mse_LZ_sh, 4), "\n")

cat ("Improvement ratio:", round(mse_sample_cov / mse_LZ_sh, 4), "\n")

Results from single experiment with T = 20 :

Normalized Mean Squared Error (NMSE):
NMSE of Sample Covariance matrix: 0.6583
NMSE of Ledoit-Wolf shrinkage: 0.2747
Improvement ratio: 2.3969

b. Multiple experiments with fixed T"

40

set.seed(42) # For reproducibility
num_experiments <- 100

N <- 10

T <- 20

mu_true <- rep(0, N)
Sigma_true <- diag(N)

Storage for MSE values
mse_sample_cov <- numeric(num_experiments)
mse_LZ_sh <- numeric(num_experiments)

Run multiple experiments
for (i in 1:num_experiments) {
Generate sample
X <- rmvnorm(n = T, mean = mu_true, sigma = Sigma_true)

Compute estimators

S <= cov(X)

Sigma_target <- mean(diag(S)) * diag(N)
Sigma_LZ_sh <- shrink_Sigma(X, S, Sigma_target)

Compute MSE for both estimators
mse_sample_cov[i] <- norm(S - Sigma_true, "F")/norm(Sigma_true, "F")
mse_LZ_sh[i] <- norm(Sigma_LZ_sh - Sigma_true, "F")/norm(Sigma_true, "F")

Compute average MSE across experiments
avg_mse_sample_cov <- mean(mse_sample_cov)
avg_mse_LZ_sh <- mean(mse_LZ_sh)

Display

cat("Results from", num_experiments, "experiments with T =", T, ":\n")

cat("Average NMSE of Sample Covariance matrix:", round(avg_mse_sample_cov, 4), "\n")
cat("Average NMSE of Ledoit-Wolf shrinkage:", round(avg_mse_LZ_sh, 4), "\n")
cat("Average improvement ratio:", round(avg_mse_sample_cov / avg_mse_LZ_sh, 4), "\n")

Results from 100 experiments with T = 20 :
Average NMSE of Sample Covariance matrix: 0.7697
Average NMSE of Ledoit-Wolf shrinkage: 0.1912
Average improvement ratio: 4.0255

c. Multiple experiments as a function of T":

41

set.seed(42)

main loop
df <- data.frame()
T_sweep <- seq(from = 20, by = 20, to = 200)
for(T in T_sweep) {
for (i in 1:200) {
X_ <- rmvnorm(n = T, mean = mu_true, sigma = Sigma_true)

SCM
Sigma <- cov(X_)
df <- rbind(df, data.frame("T" =T,
"parameter" = "Sigma",
"method" = "sample covariance matrix",
"error" = norm(Sigma - Sigma_true, "F")/norm(Sigma_true, "F")
check.names = FALSE))

SCM + Ledoit-Wolf shrinked to scaled identity
S <= cov(X_)

Sigma_target <- mean(diag(S)) * diag(N)
Sigma_LZ_sh <- shrink_Sigma(X, S, Sigma_target)

df <- rbind(df, data.frame("T" = T,
"parameter" = "Sigma",
"method" = "shrinkage to scaled identity",

"error"
check.names

norm(Sigma_LZ_sh - Sigma_true, "F")/norm(Sigma_true
FALSE))

plot
df$method <- factor(df$method, levels = unique(df$method))

df <- d4df |>
group_by(parameter, method, T) |[>
summarize ("error" = 100*mean(error’)) |[>
ungroup ()
df [df $parameter == "Sigma",] [>
ggplot(aes(x = T, y = “error’, color = method)) +
geom_line(linewidth = 1.2) +
labs(color = "estimator") +
scale_x_continuous(breaks = seq(from = T_sweep[1], to = last(T_sweep), by = 100)) +
labs(title = "Error of covariance estimators", x= "T", y = "normalized error (%)")

42

Error of covariance estimators
80-

60-

estimator
=== sample covariance matrix

=== shrinkage to scaled identity

normalized error (%)
Py
o
T

20-

'
20 120

Exercise 3.12: Factor model estimator

Consider a Gaussian-distributed i.i.d. N-dimensional time series with zero mean and covariance
matrix with a single-factor structure ¥ = 887 + I (e.g., with 8 =1), z; ~N(0,%), t =1,...,T.

a. Generate data for N =10 and T' = 20, and estimate the covariance matrix with the sample
covariance matrix and with the single-factor model structure (e.g., with PCA).

b. Run the experiment multiple times and compute the mean squared error of the estimators.

c. Finally, repeat the experiment multiple times, for different numbers of observations T' =
10,20, ...,100, and plot the mean squared error as a function of T'.

a. Single experiment:

43

Parameters
N <- 10
T <- 20

mu_true <- rep(0, N)
beta <- runif (N)
Sigma_true <- beta %0% beta + diag(N)

Generate synthetic data
X <- rmvnorm(n = T, mean = mu_true, sigma = Sigma_true)

Sample covariance matrix
S <= cov(X)

Single-factor model estimator using PCA

pca_result <- prcomp(X)

loadings_pcl <- pca_result$rotation[, 1]
variance_noise <- mean(pca_result$sdev[-1]"2)
variance_pcl <- pca_result$sdev[1] "2 - variance_noise

Single-factor model covariance matrix
beta_hat <- loadings_pcl * sqrt(variance_pcl)
Sigma_1factor <- beta_hat Jo0% beta_hat + variance_noisexdiag(N)

Compute MSE for both estimators
mse_scm <- norm(S - Sigma_true, "F")/norm(Sigma_true, "F")
mse_1factor <- norm(Sigma_1lfactor - Sigma_true, "F")/norm(Sigma_true, "F")

Display

cat ("Results from single experiment with T =", T, ":\n")
cat("\nNormalized Mean Squared Error (NMSE):\n")

cat ("NMSE of Sample Covariance matrix:", round(mse_scm, 4), "\n")
cat ("NMSE of PCA with single factor:", round(mse_ifactor, 4), "\n")
cat ("Improvement ratio:", round(mse_scm / mse_lfactor, 4), "\n")

Results from single experiment with T = 20 :

Normalized Mean Squared Error (NMSE):
NMSE of Sample Covariance matrix: 0.5425
NMSE of PCA with single factor: 0.3128
Improvement ratio: 1.7345

b. Multiple experiments with fixed T

44

library (mvtnorm)

Function to run a single experiment
run_single_experiment <- function(N, T, beta) {
True covariance matrix
Sigma_true <- beta 707 beta + diag(N)

Generate synthetic data
X <- rmvnorm(n = T, mean = rep(0, N), sigma = Sigma_true)

Sample covariance matrix
S <- cov(X)

Single-factor model estimator using PCA

pca_result <- prcomp(X)

loadings_pcl <- pca_result$rotation[, 1]
variance_noise <- mean(pca_result$sdev[-1]"2)
variance_pcl <- pca_result$sdev[1] 2 - variance_noise

Single-factor model covariance matrix

beta_hat <- loadings_pcl * sqrt(variance_pcl)

Sigma_lfactor <- beta_hat 707, beta_hat + variance_noise * diag(N)
Compute normalized MSE for both estimators

mse_scm <- norm(S - Sigma_true, "F")"2 / norm(Sigma_true, "F") 2

mse_1factor <- norm(Sigma_1ifactor - Sigma_true, "F") 2 / norm(Sigma_true, "F") 2

return(list(mse_scm = mse_scm, mse_ifactor = mse_1factor))

45

Parameters

N <- 10

T <- 20

beta <- runif (N)
num_experiments <- 1000

Run multiple experiments
set.seed(123)
results <- replicate(num_experiments, run_single_experiment(N, T, beta), simplify = FALSE)

Extract MSE values
mse_scm_values <- sapply(results, function(x) x$mse_scm)
mse_1factor_values <- sapply(results, function(x) x$mse_1lfactor)

Compute mean MSE
mean_mse_scm <- mean(mse_scm_values)

mean_mse_1factor <- mean(mse_1factor_values)

Display results

cat("Results from", num_experiments, "experiments with T =", T, ":\n")

cat ("\nMean Normalized Mean Squared Error (NMSE):\n")

cat ("NMSE of Sample Covariance matrix:", round(mean_mse_scm, 4), "\n")

cat ("NMSE of PCA with single factor:", round(mean_mse_1factor, 4), "\n")
cat ("Improvement ratio:", round(mean_mse_scm / mean_mse_lfactor, 4), "\n")

cat("Standard deviation of SCM NMSE:", round(sd(mse_scm_values), 4), "\n")
cat("Standard deviation of 1-factor NMSE:", round(sd(mse_1factor_values), 4), "\n")

Results from 1000 experiments with T = 20 :

Mean Normalized Mean Squared Error (NMSE):
NMSE of Sample Covariance matrix: 0.4064
NMSE of PCA with single factor: 0.2532
Improvement ratio: 1.605

Standard deviation of SCM NMSE: 0.1519
Standard deviation of 1-factor NMSE: 0.1467

46

library(ggplot2)
Create boxplot comparison
mse_data <- data.frame(
MSE = c(mse_scm_values, mse_1factor_values),
Method = rep(c("Sample Covariance", "Single-Factor PCA"), each = num_experiments)

)

ggplot (mse_data, aes(x = Method, y = MSE, fill = Method)) +
geom_boxplot(alpha = 0.7) +

scale_fill_manual(values = c("Sample Covariance" = "lightblue",
"Single-Factor PCA" = "lightcoral")) +
labs(title = paste("MSE Distribution Comparison (T =", T, ")"),
x = "Estimation Method",
y = "Normalized Mean Squared Error") +
theme_minimal() +
theme (legend.position = "none")

MSE Distribution Comparison (T =20)
15 1
L]

Iy
=]
®

nd
3}

Normalized Mean Squared Error

Sample Covariance Single-Factor PCA
Estimation Method

0.0

¢. Multiple experiments as a function of T

47

Function to run experiments for different T values
run_experiments_varying T <- function(T_values, N, beta, num_experiments = 500) {
results_df <- data.frame()

for (T in T_values) {
cat("Running experiments for T =", T, "\n")

Run experiments for current T
results <- replicate(num_experiments, run_single_experiment(N, T, beta), simplify = FALSE)

Extract MSE values
mse_scm_values <- sapply(results, function(x) x$mse_scm)
mse_1factor_values <- sapply(results, function(x) x$mse_1factor)

Compute statistics

mean_mse_scm <- mean(mse_scm_values)

mean_mse_1factor <- mean(mse_1factor_values)

se_mse_scm <- sd(mse_scm_values) / sqrt(num_experiments)
se_mse_lfactor <- sd(mse_1factor_values) / sqrt(num_experiments)

Store results
temp_df <- data.frame(
T=T,
Method = c("Sample Covariance", "Single-Factor PCA"),
Mean MSE = c(mean_mse_scm, mean_mse_lfactor),
SE_MSE = c(se_mse_scm, se_mse_l1factor)

results_df <- rbind(results_df, temp_df)
}

return(results_df)

3

Parameters

N <- 10

T_values <- seq(10, 100, by = 10)
beta <- runif (N)

num_experiments <- 500

Run experiments
set.seed(123)
results_varying T <- run_experiments_varying T(T_values, N, beta, num_experiments)

10
20

Running experiments for T
Running experiments for T

48

Running experiments for T = 30
Running experiments for T = 40
Running experiments for T = 50
Running experiments for T = 60
Running experiments for T = 70
Running experiments for T = 80
Running experiments for T = 90
Running experiments for T = 100

Create the plot
ggplot(results_varying T, aes(x = T, y = Mean_MSE, color = Method)) +
geom_line(size = 1.2) +
geom_point(size = 3) +
geom_errorbar (aes (ymin

Mean MSE - 1.96 * SE_MSE,

ymax = Mean_MSE + 1.96 * SE_MSE),
width = 2, alpha = 0.7) +
scale_color_manual(values = c("Sample Covariance" = "blue",
"Single-Factor PCA" = "red")) +

labs(title = "Mean Squared Error vs. Number of Observations",

subtitle = paste("N =", N, "dimensions,", num_experiments, "experiments per T"),

x = "Number of Observations (T)",

y = "Mean Normalized MSE",

color = "Estimation Method") +

theme_minimal () +
theme (legend.position = "bottom",
plot.title = element_text(size = 14, face = "bold"),
plot.subtitle = element_text(size = 12)) +
scale_x_continuous(breaks = T_values)

Warning: Using “size” aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use "linewidth”™ instead.

49

Mean Squared Error vs. Number of Observations
N = 10 dimensions, 500 experiments per T

1.00

0.75

0.50

Mean Normalized MSE

0.25

0.00

Estimation Method =@= Sample Covariance =@= Single-Factor PCA

Number of Observations (T)

Display summary statistics
cat ("\nSummary of results:\n")

Summary of results:

print(results_varying_T)

10
10
20
20
30
30
40
40
50
50
60
60
70
70
80
80
90

© 00 ~NO O WN -

[
= O

[e S =
~No oD WwN

Method
Sample Covariance
Single-Factor PCA
Sample Covariance
Single-Factor PCA
Sample Covariance
Single-Factor PCA
Sample Covariance
Single-Factor PCA
Sample Covariance
Single-Factor PCA
Sample Covariance
Single-Factor PCA
Sample Covariance
Single-Factor PCA
Sample Covariance
Single-Factor PCA
Sample Covariance

el el eolNeolNeolNeolNolNolNolNolNolNoNeoNoNoNoNe]

Mean_MSE

.91538616
.61515693
.42935896
.26011617
.27426260
.15476176
.20901161
.11731800
.16856657
.09616690
.13583662
.07370669
.11729081
.06362166
.10301533
.05501044
.09011639

O OO OO OO OODODOOOOOoOOoOOo

50 60

SE_MSE

.021887117
.020309448
.007077762
.006827174
.003880434
.003707439
.003268171
.003177076
.002677914
.002595141
.002019541
.001862286
.001619109
.001542134
.001418531
.001340530
.001245239

50

70

80

90

I

100

18 90 Single-Factor PCA 0.04792290 0.001166863
19 100 Sample Covariance 0.08283160 0.001125983
20 100 Single-Factor PCA 0.04470006 0.001055740

Compute improvement ratios
improvement_ratios <- results_varying T[results_varying_ T$Method == "Sample Covariance", "Mean_ MSE"
results_varying_T[results_varying_T$Method == "Single-Factor PCA", "Mean_ MSE"]

improvement_df <- data.frame(
T = T_values,
Improvement_Ratio = improvement_ratios

)

Plot improvement ratio
ggplot (improvement_df, aes(x = T, y = Improvement_Ratio)) +

geom_line(color = "darkgreen", size = 1.2) +

geom_point(color = "darkgreen", size = 3) +

geom_hline(yintercept = 1, linetype = "dashed", color = "red", alpha = 0.7) +

labs(title = "Performance Improvement of Single-Factor PCA over Sample Covariance",
x = "Number of Observations (T)",

y = "Improvement Ratio (SCM MSE / PCA MSE)") +
theme_minimal () +
scale_x_continuous(breaks = T_values) +
annotate("text", x = max(T_values) * 0.8, y = 1.1,
label = "No improvement", color = "red", alpha = 0.7)

Performance Improvement of Single—Factor PCA over Sample Covariance

I
o
a

=
o
o

1.25

Improvement Ratio (SCM MSE / PCA MSE)

No improvement

10 20 30 40 50 60 70 80 90 100
Number of Observations (T)

o1

