Solutions to Exercises

Portfolio Optimization: Theory and Application
Chapter 11 — Risk Parity Portfolios

Daniel P. Palomar (2025). Portfolio Optimization: Theory and Application.
Cambridge University Press.

portfoliooptimizationbook.com

Exercise 11.1: Change of variable

Show why ¥a = b/x can be equivalently solved as Cx = b/x, where C' is the correlation matrix
defined as C = D~Y/2XD~'/2 with D a diagonal matrix containing diag(X) along the main
diagonal. Would it be possible to use instead C = M ~Y/2XM /2 where M is not necessarily a
diagonal matrix?

Start by writing Xa = b/x as

D '?sD Vg = D7'?b/(D'/?%) = b/,

where & = D/2g. This leads to
Cz=0b/z,

and we can recover ¢ as x = D~ 1/2% = & /o, where o denote the volatilities, i.e., the diagonal
elements of D'/2.

Now, to see if it would be possible to use instead C = M ~Y2XM~1/2 where M is not necessarily
a diagonal matrix, let’s proceed similarly:

M71/22M71/2Cﬁ _ M71/2b/(M71/253),
where & = M/2z. The issue here is that
M~2b/(M~%%) + b/&

because the matrix M is not diagonal, so it seems that a nondiagonal matrix cannot be used.

https://portfoliooptimizationbook.com

Exercise 11.2: Naive diagonal risk parity portfolio

If the covariance matrix is diagonal, ¥ = D, then the system of nonlinear equations ¥x = b/x
has the closed-form solution x = 4/b/diag(D). Explore whether a closed-form solution can be
obtained for the rank-one plus diagonal case ¥ = uu' + D.

If ¥ = D = Diag(d), then Xa = b/x can be written as

Dx = Diag(d)x =d©x =b/x

which leads to
x?=b/d

= \/b/d.

or

Now, to see whether a closed-form solution can still be obtained for the rank-one plus diagonal
case ¥ = uu' + D, let’s proceed similarly:

(uu' + D)x = (u'z)u+d O x =b/x.

This leads to
(u'x)(u/d) ®x +x* = b/d,

which does not seem to simplify as before. However, this can still be solved with the closed-form
solution to a second-order equation:

2’ + (u'z)(u/d) oz —b/d=0
with positive solution given by

—(u"x)(ui/di) + /((uT2) (ui/di))? + 4b; /d;
2 b

T =

or, in vector form,

o~ —(W)(u/d) + /((uTz)(u/d))* + 4(b/d)

2

The solution to the formulation

. . bT 1
maximize og(x)

subjgct to va'3z <oy
is
Az =b/z x Va' Zx.

Can you solve for A and rewrite the solution in a more compact way without \?

We can left-multiply both sides of AXx/VaTXx = b/x by x' to obtain:
MWaTSz =z (b/x) =1"b.

Noting that at an optimal point it must be that the constraint is satisfied with equality: vVa' Xz =
oo (otherwise the objective value could be further increased), we can simplify it to

Aog = 1"b,
which leads to A = 1Tb/0g. Then we can finally write the solution as

-
1—2b x Xx=>b/c.
o

0

Newton’s method requires computing the direction d = H='V f or, equivalently, solving the system
of linear equations Hd = V[for d. Explore whether a more efficient solution is possible by
exploiting the structure of the gradient and Hessian:
Vf=%x—-b/x,
H = % + Diag(b/z?).

Solving the system of linear equations Hd = V f for d has a computational cost of O(n?®). We will
now assume X! has been precomputed and then the resolution will have a cost of O(n?). The key
is to apply the matrix inversion lemma to the Hessian matrix H = ¥ + D, where D = Diag(b/x?),

as follows:)
H'!'=(X+D)'=2"'-2'(I+Dx') D=L

In particular, the steps are the following:
1. Compute preliminary term
v=X"'Vf=2"" Sz -b/z) =z — ="' (b/x).

2. Form the matrix
M =1+Dx !

3. Solve for z:
Mz = Dv.

4. Compute final direction
d=v—-X"1z

Exercise 11.5: MM algorithm

The MM algorithm requires the computation of the largest eigenvalue A\« of matrix 3, which
can be obtained from the eigenvalue decomposition of the matrix. A more efficient alternative is
the power iteration method. Program both methods and compare their computational complexity.

First, we generate the covariance matrix:

library(microbenchmark)

Generate covariance matrix
set.seed(42)

n <- 100

A <- matrix(rnorm(n~2), n, n)
Sigma <- t(A) 7x*) A

Then, we compute the maximum eigenvalue with the built-in function eigen():

direct_nanoseconds = microbenchmark ({
1md_max <- max(eigen(Sigma)$values)
}, unit = "nanoseconds", times = 100L)$time |> median()

cat(direct_nanoseconds, "nanoseconds used by the built-in function eigen()
to compute the maximum eigenvalue of", lmd_max)

2743492 nanoseconds used by the built-in function eigen()
to compute the maximum eigenvalue of 377.2282

Finally, we employ 20 iterations of the power iteration method (the number of iterations depends
on the accuracy desired):

x0 <- rnorm(n)

power_iteration_nanoseconds = microbenchmark ({
u <- x0; for (i in 1:20) u <- Sigma %*J u
lmd_max <- as.numeric(t(u) %*J, Sigma %*% u / sum(u~2))
}, unit = "nanoseconds", times = 100L)$time |> median()

cat(power_iteration_nanoseconds, "nanoseconds used by the power iteration method
to compute the maximum eigenvalue of", lmd_max)

1675598 nanoseconds used by the power iteration method
to compute the maximum eigenvalue of 375.2165

Exercise 11.6: Coordinate descent vs. SCA methods

Consider the vanilla convex formulation

mil;izl’%ize sx' Xz — b log(x).
Implement the cyclical coordinate descent method and the parallel SCA method in a high-level
programming language (e.g., R, Python, Julia, or MATLAB) and compare the convergence
against the CPU time for these two methods. Then, re-implement these two methods in a low-level
programming language (e.g., C, C++, C#, or Rust) and compare the convergence again. Comment
on the difference observed.

Let’s construct a covariance matrix from stock market data:

library(xts)
library(pob) # Market data used in the book
library(riskParityPortfolio)

Prep data

N <- 200

Sigma <- cov(diff(log(SP500_2015t02020$stocks[, 1:N1))[-11)
sigma <- sqrt(diag(Sigma))

C <- cov2cor(Sigma)

b <- rep(1/N, N)

w_opt <- riskParityPortfolio(Sigma, b = b)$w

x_opt <- w_opt / as.vector(sqrt(w_opt %+’ Sigma %*% w_opt))
opt_value <- 0.5 * x_opt %*J Sigma %*J% x_opt - b %*} log(x_opt)

num_iter <- 10L
num_times <- 10L # to compute the cpu time

We can start with the cyclical coordinate descent method for the function f(x) = %a:TZw—bT log(x).
The elementwise minimization becomes

minimize %xfﬁm + xl(mT_lE_”) — b;log x;,

where _; = (x1,...,%i—1,Zit1,...,2xn) denotes the variable & without the ith element and X_; ;
denotes the ith column of matrix 3 without the ith element. Setting the partial derivative with
respect to x; to zero gives us the second-order equation

Eiix? + (:cT_ZE_H)J:l —b; =0

with positive solution given by

—xl B+ \/(CBLELZ‘,Z‘)Q + 43,0,

€T; =

library(microbenchmark)
library(dplyr)

#
Cyclical Spinu coordinate descent algorithm
#
x <- sqrt(b)/sqrt(rowSums(Sigma))
df <- data.frame(
"k = OL,
"cpu time k" O
"obj_value" 0.5 * x %% Sigma %*% x - b Y*) log(x),

gap = 0.5 * x %*% Sigma %*% x - b J*/ log(x) - opt_value,
"method" = "Cyclical coordinate descent",

check.names = FALSE

)

for (k in 1:num_iter) {
cpu_time <- microbenchmark ({
x_new <- X
for (i in 1:N) {
Sigma_xk_i <- as.numeric(x_new[-i] %#J, Sigmal[-i, il)
x_new[i] <- (- Sigma_xk_i + sqrt(Sigma_xk_i"2 + 4*Sigmal[i, il*b[i]))/(2*Sigmali, il)
}
}, unit = "microseconds", times = num_times)$time |> median()
x <- as.numeric(x_new)

df <- rbind(df, list(

"k = k,
"cpu time k" = cpu_time,
"obj_value" = 0.5 * x %x% Sigma %*}% x - b %*) log(x),
"gap" = 0.5 * x %*% Sigma %*% x - b %*) log(x) - opt_value,
"method" = "Cyclical coordinate descent"))
+
The SCA method obtains the iterates ¥, ', 2, ... by solving a sequence of simpler surrogate

problems. In particular, the following surrogate can be used for the term &' 3 around the current
point & = x*:
1
2
where Diag(3) is a diagonal matrix containing the diagonal of 3. We can now solve our original
problems by solving instead a sequence of surrogate problems
minimize iz'Diag(X)z + x' (X — Diag(X))z* — b" log(x),

x>0

TSe ~ %(mk)TEwk + (B (x — ") + %(:c — ") Diag(Z)(xz — x),

from which setting the gradient to zero gives the second-order equation

with positive solution

—((% — Diag(®))a"); + /(X — Diag(%))a*)? + 4%.:b;

€T, =
#
Parallel Spinu SCA
#

x <- sqrt(b)/sqrt(rowSums(Sigma))
gamma <- 1

eps <- 0.1
df <- rbind(df, list(
ngn = OL,
"cpu time k" = 0,
"obj_value" = 0.5 x x ¥%*% Sigma %*)% x - b %*% log(x),
"gap" = 0.5 * x %*% Sigma %*% x - b %*} log(x) - opt_value,
"method" = "SCA")
)

Sigma_Diag_Sigma <- Sigma - diag(diag(Sigma))
for (k in 1:num_iter) {
cpu_time <- microbenchmark ({
Sigma_Diag_Sigma_xk <- Sigma_Diag_Sigma %*J x
x_hat <- (-Sigma_Diag_Sigma_xk + sqrt(Sigma_Diag_Sigma_xk™2 + 4*diag(Sigma)*b))/(2*diag(Sigma))
x_new <- gamma*x_hat + (1 - gamma)*x
}, unit = "microseconds", times = num_times)$time |> median()
x <- as.numeric(x_new)
gamma <- gamma * (1 - eps*gamma)

df <- rbind(df, list(

e = k,

"cpu time k" = cpu_time,

"obj_value" = 0.5 * x ¥%x% Sigma %*% x - b %*J, log(x),

"gap" = 0.5 * x %*J, Sigma %*% x - b %*% log(x) - opt_value,
"method" = "SCA"))

}

Plot convergence:

library(ggplot2)
library(dplyr)
library(scales)

Compute cumulative CPU time over iteratiomns

df <- d4df |>
group_by (method) |>
mutate("CPU time [ms]" = cumsum(cpu time k™)/1e6) |[>
ungroup ()

Plots

daf >

ggplot(aes(x = k, y = gap, color = method)) +

geom_line(linewidth = 1.2) +

scale_y_loglO(breaks = trans_breaks("logl0", function(x) 10°x),
labels = trans_format("logl0", math_format(10~.x))) +

ggtitle("Optimality gap vs. iterations")

Optimality gap vs. iterations

1072~

1074~

10 6 .
method
=== Cyclical coordinate descent

%l—a_
=8 0
=== SCA

lo—lD N,
10722-

1074~
0.0 2.5 5.0 75 10.0

af |[>
ggplot(aes(x = “CPU time [ms]~, y
geom_line(linewidth = 1.2) +
scale_y_loglO(breaks = trans_breaks("logl0", function(x) 10°x),
labels = trans_format("logl0", math_format(10~.x))) +

ggtitle("Optimality gap vs. CPU time")

gap, color = method)) +

Optimality gap vs. CPU time

107~
1074 -

10°-

method

=% ' "
g 108~ === Cyclical coordinate descent
=== SCA

1070~

10722

1074-

0 25 50 75 100
CPU time [ms]

We can observe the much faster convergence of the parallel SCA method compared to the sequential
cyclical coordinate descent.

We leave the implementation in a low-level programming language (e.g., C, C++, C#, or Rust) to
the user to observe whether the difference in convergence speed reduces or remains the same.

10

