
Solutions to Exercises
Portfolio Optimization: Theory and Application

Chapter 11 – Risk Parity Portfolios

Daniel P. Palomar (2025). Portfolio Optimization: Theory and Application.
Cambridge University Press.

portfoliooptimizationbook.com

Exercise 11.1: Change of variable

Show why Σx = b/x can be equivalently solved as Cx = b/x, where C is the correlation matrix
defined as C = D−1/2ΣD−1/2 with D a diagonal matrix containing diag(Σ) along the main
diagonal. Would it be possible to use instead C = M−1/2ΣM−1/2, where M is not necessarily a
diagonal matrix?

Solution

Start by writing Σx = b/x as

D−1/2ΣD−1/2x̃ = D−1/2b/(D−1/2x̃) = b/x̃,

where x̃ = D1/2x. This leads to
Cx̃ = b/x̃,

and we can recover x as x = D−1/2x̃ = x̃/σ, where σ denote the volatilities, i.e., the diagonal
elements of D1/2.

Now, to see if it would be possible to use instead C = M−1/2ΣM−1/2, where M is not necessarily
a diagonal matrix, let’s proceed similarly:

M−1/2ΣM−1/2x̃ = M−1/2b/(M−1/2x̃),

where x̃ = M1/2x. The issue here is that

M−1/2b/(M−1/2x̃) ̸= b/x̃

because the matrix M is not diagonal, so it seems that a nondiagonal matrix cannot be used.

1

https://portfoliooptimizationbook.com

Exercise 11.2: Naive diagonal risk parity portfolio

If the covariance matrix is diagonal, Σ = D, then the system of nonlinear equations Σx = b/x
has the closed-form solution x =

√
b/diag(D). Explore whether a closed-form solution can be

obtained for the rank-one plus diagonal case Σ = uuT + D.

Solution

If Σ = D = Diag(d), then Σx = b/x can be written as

Dx = Diag(d)x = d ⊙ x = b/x

which leads to
x2 = b/d

or
x =

√
b/d.

Now, to see whether a closed-form solution can still be obtained for the rank-one plus diagonal
case Σ = uuT + D, let’s proceed similarly:

(uuT + D)x = (uTx)u + d ⊙ x = b/x.

This leads to
(uTx)(u/d) ⊙ x + x2 = b/d,

which does not seem to simplify as before. However, this can still be solved with the closed-form
solution to a second-order equation:

x2 + (uTx)(u/d) ⊙ x − b/d = 0

with positive solution given by

xi = −(uTx)(ui/di) +
√

((uTx)(ui/di))2 + 4bi/di

2 , i = 1, · · · , n

or, in vector form,

x = −(uTx)(u/d) +
√

((uTx)(u/d))2 + 4(b/d)
2 .

2

Exercise 11.3: Vanilla convex risk parity portfolio

The solution to the formulation

maximize
x≥0

bT log(x)

subject to
√

xTΣx ≤ σ0

is
λΣx = b/x ×

√
xTΣx.

Can you solve for λ and rewrite the solution in a more compact way without λ?

Solution

We can left-multiply both sides of λΣx/
√

xTΣx = b/x by xT to obtain:

λ
√

xTΣx = xT(b/x) = 1Tb.

Noting that at an optimal point it must be that the constraint is satisfied with equality:
√

xTΣx =
σ0 (otherwise the objective value could be further increased), we can simplify it to

λσ0 = 1Tb,

which leads to λ = 1Tb/σ0. Then we can finally write the solution as

1Tb

σ2
0

× Σx = b/x.

Exercise 11.4: Newton’s method

Newton’s method requires computing the direction d = H−1∇f or, equivalently, solving the system
of linear equations H d = ∇f for d. Explore whether a more efficient solution is possible by
exploiting the structure of the gradient and Hessian:

∇f = Σx − b/x,

H = Σ + Diag(b/x2).

Solution

Solving the system of linear equations H d = ∇f for d has a computational cost of O(n3). We will
now assume Σ−1 has been precomputed and then the resolution will have a cost of O(n2). The key
is to apply the matrix inversion lemma to the Hessian matrix H = Σ + D, where D = Diag(b/x2),

3

as follows:
H−1 = (Σ + D)−1 = Σ−1 − Σ−1(

I + DΣ−1)−1
DΣ−1.

In particular, the steps are the following:

1. Compute preliminary term

v = Σ−1∇f = Σ−1(
Σx − b/x

)
= x − Σ−1(b/x).

2. Form the matrix
M = I + DΣ−1.

3. Solve for z:
Mz = Dv.

4. Compute final direction
d = v − Σ−1z.

Exercise 11.5: MM algorithm

The MM algorithm requires the computation of the largest eigenvalue λmax of matrix Σ, which
can be obtained from the eigenvalue decomposition of the matrix. A more efficient alternative is
the power iteration method. Program both methods and compare their computational complexity.

Solution

First, we generate the covariance matrix:

library(microbenchmark)

Generate covariance matrix
set.seed(42)
n <- 100
A <- matrix(rnorm(nˆ2), n, n)
Sigma <- t(A) %*% A

Then, we compute the maximum eigenvalue with the built-in function eigen():

4

direct_nanoseconds = microbenchmark({
lmd_max <- max(eigen(Sigma)$values)
}, unit = "nanoseconds", times = 100L)$time |> median()

cat(direct_nanoseconds, "nanoseconds used by the built-in function eigen()
to compute the maximum eigenvalue of", lmd_max)

2743492 nanoseconds used by the built-in function eigen()
to compute the maximum eigenvalue of 377.2282

Finally, we employ 20 iterations of the power iteration method (the number of iterations depends
on the accuracy desired):

x0 <- rnorm(n)
power_iteration_nanoseconds = microbenchmark({

u <- x0; for (i in 1:20) u <- Sigma %*% u
lmd_max <- as.numeric(t(u) %*% Sigma %*% u / sum(uˆ2))
}, unit = "nanoseconds", times = 100L)$time |> median()

cat(power_iteration_nanoseconds, "nanoseconds used by the power iteration method
to compute the maximum eigenvalue of", lmd_max)

1675598 nanoseconds used by the power iteration method
to compute the maximum eigenvalue of 375.2165

Exercise 11.6: Coordinate descent vs. SCA methods

Consider the vanilla convex formulation

minimize
x≥0

1
2 xTΣx − bT log(x).

Implement the cyclical coordinate descent method and the parallel SCA method in a high-level
programming language (e.g., R, Python, Julia, or MATLAB) and compare the convergence
against the CPU time for these two methods. Then, re-implement these two methods in a low-level
programming language (e.g., C, C++, C#, or Rust) and compare the convergence again. Comment
on the difference observed.

5

Solution

Let’s construct a covariance matrix from stock market data:

library(xts)
library(pob) # Market data used in the book
library(riskParityPortfolio)

Prep data
N <- 200
Sigma <- cov(diff(log(SP500_2015to2020$stocks[, 1:N]))[-1])
sigma <- sqrt(diag(Sigma))
C <- cov2cor(Sigma)
b <- rep(1/N, N)
w_opt <- riskParityPortfolio(Sigma, b = b)$w
x_opt <- w_opt / as.vector(sqrt(w_opt %*% Sigma %*% w_opt))
opt_value <- 0.5 * x_opt %*% Sigma %*% x_opt - b %*% log(x_opt)

num_iter <- 10L
num_times <- 10L # to compute the cpu time

We can start with the cyclical coordinate descent method for the function f(x) = 1
2 xTΣx−bT log(x).

The elementwise minimization becomes

minimize
xi≥0

1
2 x2

i Σii + xi(xT
−iΣ−i,i) − bi log xi,

where x−i = (x1, . . . , xi−1, xi+1, . . . , xN) denotes the variable x without the ith element and Σ−i,i

denotes the ith column of matrix Σ without the ith element. Setting the partial derivative with
respect to xi to zero gives us the second-order equation

Σiix
2
i + (xT

−iΣ−i,i)xi − bi = 0

with positive solution given by

xi =
−xT

−iΣ−i,i +
√

(xT
−iΣ−i,i)2 + 4Σiibi

2Σii
.

6

library(microbenchmark)
library(dplyr)

#
Cyclical Spinu coordinate descent algorithm
#
x <- sqrt(b)/sqrt(rowSums(Sigma))
df <- data.frame(

"k" = 0L,
"cpu time k" = 0,
"obj_value" = 0.5 * x %*% Sigma %*% x - b %*% log(x),
"gap" = 0.5 * x %*% Sigma %*% x - b %*% log(x) - opt_value,
"method" = "Cyclical coordinate descent",
check.names = FALSE
)

for (k in 1:num_iter) {
cpu_time <- microbenchmark({

x_new <- x
for (i in 1:N) {

Sigma_xk_i <- as.numeric(x_new[-i] %*% Sigma[-i, i])
x_new[i] <- (- Sigma_xk_i + sqrt(Sigma_xk_iˆ2 + 4*Sigma[i, i]*b[i]))/(2*Sigma[i, i])

}
}, unit = "microseconds", times = num_times)$time |> median()

x <- as.numeric(x_new)

df <- rbind(df, list(
"k" = k,
"cpu time k" = cpu_time,
"obj_value" = 0.5 * x %*% Sigma %*% x - b %*% log(x),
"gap" = 0.5 * x %*% Sigma %*% x - b %*% log(x) - opt_value,
"method" = "Cyclical coordinate descent"))

}

The SCA method obtains the iterates x0, x1, x2, . . . by solving a sequence of simpler surrogate
problems. In particular, the following surrogate can be used for the term xTΣx around the current
point x = xk:

1
2xTΣx ≈ 1

2(xk)TΣxk + (Σxk)T(x − xk) + 1
2(x − xk)TDiag(Σ)(x − xk),

where Diag(Σ) is a diagonal matrix containing the diagonal of Σ. We can now solve our original
problems by solving instead a sequence of surrogate problems

minimize
x≥0

1
2 xTDiag(Σ)x + xT(Σ − Diag(Σ))xk − bT log(x),

from which setting the gradient to zero gives the second-order equation
Σiix

2
i + ((Σ − Diag(Σ))xk)ixi − bi = 0

7

with positive solution

xi = −((Σ − Diag(Σ))xk)i +
√

((Σ − Diag(Σ))xk)2
i + 4Σiibi

2Σii
.

#
Parallel Spinu SCA
#
x <- sqrt(b)/sqrt(rowSums(Sigma))
gamma <- 1
eps <- 0.1
df <- rbind(df, list(

"k" = 0L,
"cpu time k" = 0,
"obj_value" = 0.5 * x %*% Sigma %*% x - b %*% log(x),
"gap" = 0.5 * x %*% Sigma %*% x - b %*% log(x) - opt_value,
"method" = "SCA")
)

Sigma_Diag_Sigma <- Sigma - diag(diag(Sigma))
for (k in 1:num_iter) {

cpu_time <- microbenchmark({
Sigma_Diag_Sigma_xk <- Sigma_Diag_Sigma %*% x
x_hat <- (-Sigma_Diag_Sigma_xk + sqrt(Sigma_Diag_Sigma_xkˆ2 + 4*diag(Sigma)*b))/(2*diag(Sigma))
x_new <- gamma*x_hat + (1 - gamma)*x
}, unit = "microseconds", times = num_times)$time |> median()

x <- as.numeric(x_new)
gamma <- gamma * (1 - eps*gamma)

df <- rbind(df, list(
"k" = k,
"cpu time k" = cpu_time,
"obj_value" = 0.5 * x %*% Sigma %*% x - b %*% log(x),
"gap" = 0.5 * x %*% Sigma %*% x - b %*% log(x) - opt_value,
"method" = "SCA"))

}

Plot convergence:

8

library(ggplot2)
library(dplyr)
library(scales)

Compute cumulative CPU time over iterations
df <- df |>

group_by(method) |>
mutate("CPU time [ms]" = cumsum(`cpu time k`)/1e6) |>
ungroup()

Plots
df |>

ggplot(aes(x = k, y = gap, color = method)) +
geom_line(linewidth = 1.2) +
scale_y_log10(breaks = trans_breaks("log10", function(x) 10ˆx),

labels = trans_format("log10", math_format(10ˆ.x))) +
ggtitle("Optimality gap vs. iterations")

10−14

10−12

10−10

10−8

10−6

10−4

10−2

0.0 2.5 5.0 7.5 10.0
k

ga
p

method

Cyclical coordinate descent

SCA

Optimality gap vs. iterations

df |>
ggplot(aes(x = `CPU time [ms]`, y = gap, color = method)) +
geom_line(linewidth = 1.2) +
scale_y_log10(breaks = trans_breaks("log10", function(x) 10ˆx),

labels = trans_format("log10", math_format(10ˆ.x))) +
ggtitle("Optimality gap vs. CPU time")

9

10−14

10−12

10−10

10−8

10−6

10−4

10−2

0 25 50 75 100
CPU time [ms]

ga
p

method

Cyclical coordinate descent

SCA

Optimality gap vs. CPU time

We can observe the much faster convergence of the parallel SCA method compared to the sequential
cyclical coordinate descent.

We leave the implementation in a low-level programming language (e.g., C, C++, C#, or Rust) to
the user to observe whether the difference in convergence speed reduces or remains the same.

10

