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Preface

This book delves into the realm of practical portfolio optimization and financial data modeling,
encompassing a wide range of formulations and algorithms. The book is not a trading manual.
The central theme revolves around optimization, bridging the gap between mathematical
formulations and the design of practical numerical algorithms. The text is enriched with an
abundance of numerical experiments and a remarkable collection of over 200 figures.

The financial data modeling presented here departs from the conventional Gaussian assumption
and adopts more realistic heavy-tailed distributions, exploring a gamut of methods from basic
time series models and Kalman filtering techniques to cutting-edge financial graph estimation
approaches. The portfolio formulations span from Markowitz’s original 1952 mean–variance
portfolio and the 1966 maximum Sharpe ratio portfolio to more advanced formulations, such as
downside risk portfolios, semi-variance portfolios, CVaR portfolios, drawdown portfolios, risk
parity portfolios, Kelly-based portfolios, utility-based portfolios, high-order portfolios, index
tracking portfolios, robust portfolios, bootstrapped portfolios, bagged portfolios, graph-based
portfolios, pairs trading portfolios, statistical arbitrage portfolios, and deep learning portfolios,
among others. The primary focus of this book is on practical algorithms that can be readily
implemented on a standard computer.

While numerous textbooks on portfolio design exist, most adopt a traditional approach,
primarily concentrating on Markowitz’s portfolio. Others may target specific topics, such
as robust portfolios, risk parity portfolios, or index tracking. This book aims to encompass
all types of portfolios under an optimization framework. Instead of dwelling on deriving
closed-form solutions for simplistic formulations, the emphasis is on the convexity analysis
of the formulations and the use of mature solvers available in all programming languages,
as well as on developing tailored, efficient numerical algorithms. Each portfolio chapter is
dedicated to a specific type of portfolio, starting with the mathematical formulation of the
problem and culminating in a practical numerical algorithm. To facilitate understanding, the
book showcases an extensive array of numerical experiments based on market data.

Birth of This Book
How long has this book been in the making? It’s difficult to say, as it depends on how one
counts, but it’s somewhere between four and eight years. Let’s delve into the story of the
book . . .

My 2003 Ph.D. topic was on convex optimization methods in signal processing for wireless

xi



xii Preface

communication systems (later, in 2012, I would be named IEEE Fellow for contributions in
this area). Around 2008, a couple of years after I became an Assistant Professor at the Hong
Kong University of Science and Technology, my interest in wireless communications was
fading and I got introduced by serendipity to financial engineering. In 2010, I got tenured at
the university and I decided to slowly switch my research area towards my new passion. It
was not easy, I had to start from scratch. Surprisingly, the topics of wireless communications
and portfolio optimization share a striking resemblance on a mathematical level and in terms
of theoretical and practical tools, but that’s another story. It wasn’t until 2012 that I started
timidly publishing research on modeling of financial data. However, the truth is that most
of the Ph.D. students in my own research group were reluctant to join me in the exploration
of this new direction and preferred to continue their research on wireless communications.
They felt safe this way. I felt alone for a number of years. Later, in 2015, my research group
finally started to slowly steer into this direction of optimization methods in finance. In 2017,
my group joined the open-source software movement by creating packages and libraries
for financial-related optimization methods based on our own research papers. That year, to
my pleasant surprise, I was invited to teach a portfolio optimization course in the reputable
Financial Mathematics M.Sc. program. In 2018, I started teaching the course after having
spent a year preparing the course material from scratch. The course slides kept evolving over
the years and I always made them available online. Much to my delight, I kept receiving many
encouraging emails from practitioners in the financial industry. There seemed to be broad
interest in the material I had prepared and it was proving useful to someone out there. And
so, around the summer of 2020 I started writing this book. In the early stages, I wasn’t sure
whether I was actually writing a book or just jotting down some supplementary notes for the
course. But somehow the book came to life. The writing period took approximately four long
years. Ultimately, I had to put a stop to the endless revisions, or I would never finish the book
(thankfully, my wise colleague Emilio Sanvicente reminded me that “perfect is the enemy
of good”). During the final revisions of the book in 2024, I got the rewarding news that I
was named EURASIP Fellow for “contributions to optimization theory and algorithms with
applications in communication systems and finance.” Overall, the making of this book was
a lengthy and arduous journey, marked by a number of difficult personal events, yet always
uplifted by the two precious lights in my life, Gisela and Mireia.

Audience
This book is intended for several types of readers:

• undergraduate students, who may focus on basic concepts and practical coding;
• practitioners, who may prefer a stronger emphasis on the practical implementation of

algorithms;
• M.Sc. students, who may need to explore both mathematical and coding aspects;
• Ph.D. students, who may wish to delve deeper into the theoretical aspects and explore the

provided references further.

This book, along with the slides and code examples available on the companion website, can
be used as a textbook for a variety of courses related to portfolio optimization and financial
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data modeling. Most of the chapters are self-contained, with little dependence on one another,
making it easy to select chapters for one-semester or two-semester courses.

For instance, material from this book, together with the slides, code examples, and exercises,
have been used in part in the following courses at the Hong Kong University of Science and
Technology:

• M.Sc. course Portfolio Optimization with R (part of the M.Sc. program on Financial
Mathematics);
• M.Sc. course Optimization in FinTech (part of the M.Sc. program on FinTech);
• undergraduate course Data-Driven Portfolio Optimization (with Python);
• Ph.D. course Convex Optimization.

Topics Not Covered
The book considers the modeling of financial data and portfolio design for various types
of tradable assets in financial markets, such as stocks, bonds, commodities, currencies,
exchange-traded funds (ETFs), and cryptocurrencies. Derivatives, such as options, are not
covered; however, many books are available on derivatives.

Multi-asset modeling in this book is approached from a statistical perspective based on
heavy-tailed multivariate distributions. The methodology based on copulas is not covered but
is standard material in many textbooks.

Multi-period portfolio optimization is not covered in this book. It involves very different
mathematical formulations, treatments, and numerical algorithms; although scarce, literature
on this topic is available elsewhere.

High-frequency trading based on the limit order book requires a completely different treatment
than what is covered in this book.

Additional Resources
The book is supplemented with a variety of additional materials, including slides, sample
code, exercises with solutions, and videos. These supplementary resources can be accessed
on the companion website at:

portfoliooptimizationbook.com

The citation for this book is:

Daniel P. Palomar (2025). Portfolio Optimization: Theory and Application.
Cambridge University Press.

Acknowledgments
I will always be grateful to Stephen Boyd, for he introduced me to the wonderful world of
convex optimization during my Ph.D. stay at Stanford University in 2001. Since then, it’s

https://portfoliooptimizationbook.com
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been a common theme in my research, whether it was applied to wireless communications,
data analytics, or financial systems.

Special thanks go to a few colleagues and good friends. Looking back, I realize that I have
been a part of all of their weddings and bachelor parties, if any. Francisco Rubio ignited my
curiosity for finance back in 2008. Yiyong Feng was the first adventurous Ph.D. student to join
me in transitioning from wireless communications to finance. Konstantinos Benidis helped
initiate our participation in the open-source software movement. Vinícius de M. Cardoso
kindly proofread many of the manuscript chapters, provided aesthetic comments, and helped
with Python code. Jasin Machkour also proofread most of the manuscript and provided critical
comments.

I would also like to express my gratitude for the help and feedback provided by Dany Cajas,
who proofread Chapter 9 on high-order portfolios; Xiwen Wang, who assisted with some
numerical experiments in Chapter 9; Vinícius de M. Cardoso, who helped with the plots of
financial graphs in Chapter 5; and Jasin Machkour, who provided assistance with the index
tracking experiments under false discovery rate in Chapter 13.

A heartfelt “thank you” is extended to my current and former students at the Hong Kong
University of Science and Technology who have persevered through the journey of exploring
various facets of financial data modeling and portfolio optimization. Together, we have delved
into a broad range of topics, gained substantial knowledge, advanced the state of the art,
published papers, and developed open-source code. They know who they are, my coauthors,
too numerous to list here.

Daniel P. Palomar
Hong Kong
December 2024
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Introduction

En un lugar de La Mancha, de cuyo nombre no quiero acordarme . . .

— Miguel de Cervantes Saavedra, Don Quixote

Modern portfolio theory started with Harry Markowitz’s 1952 seminal paper “Portfolio
Selection” (Markowitz, 1952), for which he would later receive the Nobel Prize in Economic
Sciences1 in 1990. He put forth the idea that risk-averse investors should optimize their
portfolio based on a combination of two objectives: expected return and risk. Until today, that
idea has remained central to portfolio optimization. In practice, however, the vanilla Markowitz
portfolio formulation does not perform as anticipated. Consequently, most practitioners either
combine it with various heuristics or refrain from using it altogether.

Over the past 70 years, researchers and practitioners have reconsidered the Markowitz portfolio
formulation, leading to numerous variations, enhancements, and alternatives. These include
robust optimization methods, alternative risk measures, regularization through sparsity,
improved covariance matrix estimators via random matrix theory, robust estimators for heavy
tails, factor models, mean models, volatility clustering models, risk parity formulations, and
more.

This book explores practical financial data modeling and portfolio optimization, covering a
wide range of variations and extensions. It systematically starts with mathematical formulations
and proceeds to develop practical numerical algorithms, supplemented with code examples to
enhance understanding.

• The financial data modeling considered herein moves away from the unrealistic Gaussian
assumption and delves into more realistic models based on heavy-tailed distributions. It
encompasses an array of topics, ranging from basic time series models, making extensive
use of Kalman filtering methods, to state-of-the-art techniques for estimating financial
graphs.

• The portfolio formulations covered in this book span a wide range, from the original

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.

1 To be exact, what is usually referred to as the Nobel Prize in Economic Sciences is actually the Sveriges
Riksbank Prize in Economic Sciences in Memory of Alfred Nobel.
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2 Introduction

1952 Markowitz’s mean–variance portfolio and 1966 maximum Sharpe ratio portfolio, to
more sophisticated formulations such as Kelly-based portfolios, utility-based portfolios,
high-order portfolios, downside risk portfolios, semi-variance portfolios, CVaR portfolios,
drawdown portfolios, risk parity portfolios, graph-based portfolios, index tracking portfolios,
robust portfolios, bootstrapped portfolios, bagged portfolios, pairs trading portfolios,
statistical arbitrage portfolios, and deep learning portfolios, among others.

The primary focus and central theme of this book is on practical algorithms for portfolio
formulations that can be effortlessly executed on a standard computer.

1.1 What is Portfolio Optimization?
Suppose you observe a random variable 𝑋 with mean 𝜇 = IE[𝑋] and variance 𝜎2 =

IE[(𝑋 − 𝜇)2]; for example, a normal (or Gaussian) random variable 𝑋 ∼ N(𝜇, 𝜎2). The
mean 𝜇 is the value you expect to obtain, whereas the variance 𝜎2 gives the variability or
randomness around that value. The ratio 𝜇/𝜎 gives a measure of the deterministic-to-random
balance. In finance, 𝑋 may represent the return of an investment and the ratio 𝜇/𝜎 is called
Sharpe ratio. In signal processing, it is more common to use the signal-to-noise ratio (SNR)
measured in units of power and defined as 𝜇2/𝜎2.

Now suppose that for each time 𝑡, a different (independent) value of the random variable is
observed (called a random process or random time series): 𝑋𝑡 ∼ N(𝜇, 𝜎2). In finance, these
represent the returns of the investment, and the cumulative return is the accumulation of the
previous returns, which reflects the accumulated wealth of the investment. Figure 1.1 shows a
realization of such return random variables as well as the cumulative returns.
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Figure 1.1 Illustration of random returns and cumulative returns.
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The evolution of the cumulative returns or wealth over time, albeit random, is strongly
determined by the value of the Sharpe ratio, 𝜇/𝜎, as illustrated in Figure 1.2 for high and low
values. If the Sharpe ratio is high, the cumulative return will have some fluctuations but with
a consistent growth. On the other hand, if the ratio is low, the fluctuations become larger and
one may even end up losing everything, leading to bankruptcy.
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Figure 1.2 Illustration of cumulative returns with different values of Sharpe ratio.

What can an investor do to improve the cumulative return? While the random nature of the
investment assets themselves cannot be changed, there are at least two dimensions that can be
potentially exploited: the temporal dimension and the asset dimension.

• Temporal dimension: It may be the case that the distribution of the random return 𝑋𝑡
changes with time, leading to time-varying 𝜇𝑡 and 𝜎2

𝑡 . In that case, a smart investor will
adapt the size of the investment to the current value of 𝜇𝑡/𝜎𝑡 . In order to do that, one needs
to develop an appropriate time series model, that is, a data model at time 𝑡 given the past
observations. This is called data modeling and it is explored in Part I of this book.

• Asset dimension: In general, an investor has a choice of 𝑁 potential assets in which to
invest, with returns 𝑋𝑖 for 𝑖 = 1, . . . , 𝑁. Suppose they are all independent and identically
distributed (i.i.d.): 𝑋𝑖 ∼ N(𝜇, 𝜎2). It follows from basic probability that the average of
such returns, 1

𝑁

∑𝑁
𝑖=1 𝑋𝑖, preserves the mean 𝜇 but enjoys a reduced variance of 𝜎2/𝑁. In

finance, this average is achieved by distributing the capital equally over the 𝑁 assets (the
popular 1/𝑁 portfolio precisely implements this). In practice, however, the 1/𝑁 factor
in the reduction of the variance cannot be achieved because the random returns 𝑋𝑖 are
correlated among the assets, that is, the assumption of uncorrelation does not hold. Over
the decades, academics and practitioners have proposed a multitude of ways to properly
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allocate the capital, as opposed to the baseline 1/𝑁 allocation, in order to try to circumvent
the inherent correlation of the assets and minimize the risk or variance. This is called
portfolio optimization (also known as portfolio allocation or portfolio design) and it is
covered in detail in Part II of this book.

1.2 The Big Picture
The two main components for portfolio design are data modeling and portfolio optimization.
Figure 1.3 illustrates these two building blocks for the case of mean–variance portfolios
(i.e., based on the mean vector 𝝁 and covariance matrix 𝚺) to produce the optimal portfolio
weights 𝒘.

data modeling w
(  ,   )μ Σ 			portfolio

optimization

Figure 1.3 Block diagram of data modeling and portfolio optimization.

Part I of this book examines the data modeling component in Figure 1.3. The main purpose
of this block is to characterize the statistical distribution of future returns, primarily in terms
of the first- and second-order moments, 𝝁 and 𝚺, which will be utilized by the portfolio
optimization block later on.

Part II fully explores a wide variety of formulations for the portfolio optimization component
in Figure 1.3. These portfolio formulations can be classified according to different criteria
leading to a diverse taxonomy of portfolios as follows.

• Taxonomy according to the data used:

– second-order portfolios: portfolios based on the mean and the variance, such as Markowitz
mean–variance portfolio, maximum Sharpe ratio portfolio, index tracking portfolios,
and volatility-based risk parity portfolios;

– high-order portfolios: portfolios based directly on high-order moments as well as
approximations of utility-based portfolios; and

– raw-data portfolios: these include portfolios that require the raw data, such as downside
risk portfolios, semi-variance portfolios, conditional variance-at-risk (CVaR) portfolios,
drawdown portfolios, graph-based portfolios, and deep learning portfolios.

• Taxonomy according to the view on the efficient-market hypothesis:2

– active portfolios: most of the portfolio formulations that attempt to beat the market; and
– passive portfolios: index tracking portfolios which simply track the market, avoiding

frequent portfolio rebalancing.

• Taxonomy according to the myopic nature of the portfolio formulation:

2 The efficient-market hypothesis states that asset prices reflect all information and, therefore, it should be
impossible to outperform the overall market through expert stock selection or market timing.
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– single period portfolios: most of the formulations considered here are based on a single
step into the future; and

– multi-period portfolios: more involved formulations that consider several steps into the
future so that the long-term effect of current actions is better taken into account; this
is not covered in this book, see (Boyd et al., 2017) for a monograph on multi-period
portfolio optimization.

1.3 Outline of the Book
This book is organized into two main parts, comprising a total of 16 chapters, along with two
appendices at the end. The content of each of the chapters is outlined next.

Part I. Financial Data: This part focuses on financial data modeling, which is a necessary
component before the portfolio design.

• Chapter 2 discusses stylized facts in financial data. These unique characteristics differentiate
financial data from other types of data. Some of these characteristics include lack of
stationarity, volatility clustering, heavy-tailed distributions, and strong asset correlation.
This chapter provides a concise and visual overview of these stylized facts to help readers
better understand and analyze financial data.

• Chapter 3 focuses on i.i.d. modeling in financial data. Although the i.i.d. model is a
simplistic approximation, it is still widely used in practice. However, challenges arise due
to non-Gaussian distributions and noise, which are often ignored in financial literature.
To address these challenges, robust and heavy-tailed estimators for the mean vector and
the covariance matrix are necessary, and this chapter provides detailed explanations for
these estimators. Furthermore, incorporating prior information through techniques such
as shrinkage, factor modeling, and Black–Litterman fusion can significantly improve the
accuracy of estimates. Due to the breadth of topics covered in this chapter, the length is
rather long, but it provides readers with a comprehensive understanding of i.i.d. modeling
for financial data.

• Chapter 4 explores the application of time series models to financial data to capture
temporal dependencies for both mean modeling and variance modeling. While mean
models provide debatable improvement over the i.i.d. approach, variance models, including
GARCH-related models and stochastic volatility models, have been shown to be effective
in capturing the volatility of financial data (the latter showing improved results but at a
higher computational cost). This chapter presents a unified modeling approach through
state-space modeling with special emphasis on the use of the efficient Kalman filter, which
notably allows the approximation of stochastic volatility models with low computational
cost.

• Chapter 5 focuses on financial graphs and their applications in financial data analysis.
While graphical modeling of financial data originated in 1999, many methods have since
been proposed. Among these methods, sparse Gaussian models are suitable for providing
basic insights, low-rank formulations can be used to cluster assets, and heavy-tailed models
are appropriate for accounting for non-Gaussian data. Graph-based techniques can provide
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valuable visual and analytical tools for financial data analysis. This chapter provides an
overview of cutting-edge techniques for graph modeling of financial assets, allowing readers
to gain a deeper understanding of the applications and benefits of financial graphs in data
analysis.

Part II. Portfolio Optimization: This part contains a wide range of chapters covering various
portfolio formulations with corresponding algorithms and examples.

• Chapter 6 provides a comprehensive introduction to portfolio basics. The chapter covers
fundamental topics such as portfolio notation, cumulative return calculation, transaction
costs, portfolio rebalancing, practical constraints, measures of performance, simple heuristic
portfolios, and basic risk-based portfolios. While the chapter covers the basics, it also
includes an interesting nugget on the interpretation of the heuristic quintile portfolio, widely
used by practitioners, as a formally derived robust portfolio. This chapter serves as an
excellent starting point for readers new to portfolio management, providing them with the
foundational knowledge necessary to understand and build portfolios.

• Chapter 7 delves into the topic of modern portfolio theory, which is the main focus of the
majority of textbooks on portfolio design. In this book, this chapter serves as a starting point
for exploring a wide range of different portfolio formulations. The chapter begins with an
introduction to the basic mean–variance portfolio and then moves on to the often-ignored
maximum Sharpe ratio portfolio, for which several practical numerical algorithms are
presented in detail (such as bisection, Dinkelbach, and Schaible transform-based methods).
The Kelly portfolio and utility-based portfolios are also introduced. The chapter concludes
with a discussion of a recently proposed universal algorithm that can be utilized to solve
portfolios based on any trade-off between the mean and variance. Overall, this chapter
provides readers with a comprehensive understanding of modern portfolio theory and its
practical applications.

• Chapter 8 focuses on portfolio backtesting, which is essential in strategy evaluation. Many
biases, such as overfitting, can invalidate backtesting results, making it a challenging task.
As a consequence, published backtests should not be trusted blindly. This chapter delves
into the common pitfalls and dangers of backtesting, which are often ignored in textbooks,
and puts forward the approach of multiple randomized backtests to help mitigate risks. The
chapter also discusses the benefits of stress testing with resampled data to complement
the backtesting results. By providing readers with a comprehensive understanding of the
challenges of backtesting and suggesting practical solutions to overcome them, this chapter
serves as an essential guide for portfolio assessment.

• Chapter 9 explores high-order portfolios, which introduce high-order moments in the
mean–variance formulation. This idea dates back to the beginning of modern portfolio
theory, but until recently it was impractical due to difficulties in parameter estimation,
excessive memory requirements, and the complexity of optimization methods for a realistic
number of assets. This chapter covers all the basics of high-order portfolios and introduces
recent advances that make this approach practical.

• Chapter 10 considers portfolios with alternative measures of risk. While variance is the
most commonly used measure of risk in portfolio optimization, many advanced risk
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measures, such as downside risk, semi-variance, CVaR, and drawdown, can also be
incorporated. These measures can be formulated in convex form, allowing for the use of
efficient algorithms. This chapter provides an overview of these sophisticated alternatives
to Markowitz’s seminal mean–variance formulation.

• Chapter 11 presents risk parity portfolios, which aim to diversify risk allocation beyond
equal capital allocation. These portfolios were proposed by practitioners and rely on
using granular asset risk contributions rather than overall portfolio risk. This chapter
presents risk parity portfolios progressively, starting from a naive diagonal formulation
and progressing to sophisticated convex and nonconvex formulations. It also covers a wide
range of numerical algorithms, including newly proposed techniques.

• Chapter 12 gives an overview of graph-based portfolios, which utilize graphical representa-
tions of asset relationships learned from data to improve the portfolio design. Graph-based
portfolios enable hierarchical clustering and novel formulations that account for asset
interconnectivity, enhancing portfolio construction. This chapter provides a comprehensive
overview of all existing graph-based portfolios, presenting a unified view of the different
approaches.

• Chapter 13 covers index tracking portfolios, which are designed to mimic an index under the
assumption that the market is efficient and cannot be beaten. Sparse index tracking further
improves this approach by using few assets, posing a sparse regression problem. This
chapter provides a state-of-the-art overview of the existing methodologies and introduces
new formulations for index tracking portfolios. It also includes a cutting-edge algorithm
that automatically selects the right level of sparsity, making index tracking more efficient
and effective.

• Chapter 14 gives an overview of robust portfolios, which aim to address the inevitable
parameter estimation errors that can lead to meaningless or catastrophic results if ignored.
While optimal portfolio solutions may seem ideal in theory, practical implementation
requires techniques like robust optimization and resampling methods. This chapter covers
these standard techniques, providing readers with a comprehensive understanding of robust
portfolios and how to optimize them.

• Chapter 15 explores pairs trading or statistical arbitrage portfolios, which are market-
neutral strategies designed to be orthogonal to the market trend. These strategies trade
on the oscillations among different assets, making them a popular technique in advanced
portfolio management. This chapter provides an overview of the basics of pairs trading and
statistical arbitrage, as well as exploring the more sophisticated use of Kalman filtering.

• Chapter 16 presents the concept of deep learning portfolios, which utilize deep learning
techniques to analyze financial time series data and optimize portfolios. While deep learning
has revolutionized fields like natural language processing and computer vision, its potential
in finance remains uncertain due to challenges such as limited availability of nonstationary
data and the weakness of the signal buried in noise. This chapter provides a standalone
account of deep learning and the current efforts in the financial arena, acknowledging the
risk of becoming quickly obsolete but still providing a good starting point.
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Appendices A and B. Preliminaries on Optimization: This final part provides an overview
of basic concepts in optimization theory (Appendix A) and a concise account of practical
algorithms (Appendix B) used throughout the book.

1.4 Comparison with Existing Books
The financial literature on data modeling and portfolio design is extensive and diverse. This
book aims to provide a unique perspective on these topics, and it is instructive to compare it
with some of the existing textbooks.

• Financial data modeling: Many excellent textbooks cover financial data modeling, such
as Campbell et al. (1997), Meucci (2005), Tsay (2010), Ruppert and Matteson (2015),
Lütkepohl (2007), Tsay (2013), Fabozzi et al. (2007), Fabozzi et al. (2010), and Feng
and Palomar (2016). In this book, Chapters 3 and 4 provide a succinct overview of i.i.d.
models and models with temporal structure, respectively. Particular emphasis is placed on
heavy-tailed models and estimators (as opposed to the more traditional methods based on
the Gaussian assumption), stochastic volatility models (usually not receiving their deserved
attention), and the use of state-space models with Kalman filtering as a unified approach
with efficient algorithms.

• Modern portfolio theory: Traditional books that focus primarily on portfolio foundations
and mean–variance portfolios include Grinold and Kahn (2000), Meucci (2005), Cornuejols
and Tütüncü (2006), Fabozzi et al. (2007), Prigent (2007), Michaud and Michaud (2008),
Bacon (2008), and Fabozzi et al. (2010). In this book, Chapters 6 and 7 cover this material
with an optimization perspective, including utility-based portfolios, a recent derivation
of the otherwise heuristic quintile portfolio as a robust solution, and particularly delving
in detail into the nonconvex formulation of the maximum Sharpe ratio portfolio. It also
provides a recently proposed universal algorithm for all these portfolios based on different
trade-offs of the mean and variance.

• Risk parity portfolios: Roncalli’s book (Roncalli, 2013) provides a detailed mathematical
treatment (see also Feng and Palomar (2016)), while Qian’s book (Qian, 2016) covers the
fundamentals. In this book, Chapter 11 covers risk parity portfolios from an optimization
perspective, progressively covering the naive solution, the vanilla convex formulations, and
the more practical and general nonconvex formulations, with emphasis on the numerical
algorithms.

• Backtesting: López de Prado’s book (López de Prado, 2018) covers backtesting and its
dangers in great detail from the perspective of machine learning, while Pardo (2008)
focuses on the walk-forward backtest. In this book, Chapter 8 explores the many dangers of
backtesting and the different forms of executing backtesting based on market data, as well
as synthetic data, with abundant figures.

• Index tracking: The topic of index tracking is treated in detail in Prigent (2007) and Benidis
et al. (2018), with shorter treatments in Cornuejols and Tütüncü (2006) and Feng and
Palomar (2016). In this book, Chapter 13 provides a concise yet broad state-of-the-art
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exposure, offering new formulations and a cutting-edge algorithm that automatically selects
the right level of sparsity.

• Robust portfolios: Robust optimization is widely explored within the context of portfolio
design, with standard references including Fabozzi et al. (2007) and Cornuejols and Tütüncü
(2006) (see also Feng and Palomar (2016)). In this book, Chapter 14 gives a concise
presentation of these techniques for obtaining robust portfolios with illustrative numerical
experiments.

• Pairs trading: The standard reference to this topic is Vidyamurthy (2004); see also Feng
and Palomar (2016). In this book, Chapter 15 provides full coverage of the basics and
presents a more sophisticated use of the Kalman filter for better adaptability over time.

• High-frequency trading: High-frequency data and trading based on the limit order book
require a completely different treatment than what is covered in this book. Some key
references include Abergel et al. (2016), Lehalle and Laruelle (2018), Bouchaud et al.
(2018), and Kissell (2020).

• Machine learning in finance: Recent textbooks that give a broad account of the use of
machine learning in financial systems include López de Prado (2018) and Dixon et al.
(2020). In this book, Chapter 16 briefly discusses machine learning and deep learning
techniques in the context of portfolio design.

1.5 Reading Guidelines
This book has been written under the premise that each chapter can be read independently.
For example, a reader who is already familiar with portfolio optimization can jump directly to
Chapter 16 on deep learning portfolios or to Chapter 15 on pairs trading.

Some suggested ways to read the book include the following approaches:

• A “reader in a rush” can go directly to Chapter 6 for portfolio basics and Chapter 7 for
modern portfolio theory, perhaps also taking a quick look at Chapter 2 on stylized facts
of financial data, and then jump to any other chapter, for example Chapter 14 on robust
portfolios or Chapter 9 on high-order portfolios.

• A “reader with a bit more time,” apart from the basic Chapters 2, 6, and 7, could also read
Chapter 3 on i.i.d. data modeling and Chapter 8 on portfolio backtesting to get a better
grasp of the fundamentals.

• For full coverage of all the different portfolio designs, a reader can go over any chapter in
Part II; that is, apart from the fundamental Chapters 6–8, one can explore (in any particular
order):

– high-order portfolios (Chapter 9);
– portfolios with alternative risk measures (Chapter 10);
– risk parity portfolios (Chapter 11);
– graph-based portfolios (Chapter 12);
– index tracking portfolios (Chapter 13);
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– robust portfolios (Chapter 14);
– pairs trading or statistical arbitrage portfolios (Chapter 15); and
– deep learning portfolios (Chapter 16).

• To complete the financial data modeling, one should go over all the chapters in Part I: apart
from Chapters 2 and 3; Chapter 4 covers time series modeling, and Chapter 5 explores the
more recent topic of graph modeling of financial assets.

• In order to gain a more solid understanding of the portfolio optimization formulations and
algorithms, a reader may want to go over Appendices A and B, that is, the basics of convex
optimization theory in Appendix A and optimization algorithms in Appendix B.

1.6 Notation
Notation differs depending on the research area and on the personal taste of the author. This
book mainly follows the notation widely accepted in the statistics, signal processing, and
operations research communities.

To differentiate the dimensionality of quantities we employ lowercase for scalars, boldface
lowercase for (column) vectors, and boldface uppercase for matrices, for example, 𝑥, 𝒙, and
𝑿, respectively. The 𝑖th entry of vector 𝒙 is denoted by 𝑥𝑖 and the (𝑖, 𝑗)th element of matrix
𝑿 by 𝑋𝑖, 𝑗 . The elementwise product (also termed the Hadamard product) and elementwise
division are denoted by ⊙ and ⊘, respectively, e.g., 𝒙 ⊙ 𝒚 and 𝒙 ⊘ 𝒚 (𝒙/𝒚 abusing notation);
similarly, the Kronecker product is denoted by ⊗. The transpose of a vector 𝒙 or a matrix 𝑿
are denoted by 𝒙T and 𝑿T, respectively. The inverse, trace, and determinant of matrix 𝑿 are
denoted by 𝑿−1, Tr(𝑿), and |𝑿 | (or det(𝑿)), respectively. The norm of a vector is written as
∥𝒙∥, which can be further specified as the ℓ2-norm ∥𝒙∥2 (also termed the Euclidean norm),
the ℓ1-norm ∥𝒙∥1, and the ℓ∞-norm ∥𝒙∥∞. The operator (𝒙)+ denotes the projection onto
the nonnegative orthant, that is, (𝒙)+ ≜ max(0, 𝒙). We denote by 𝑰 the identity matrix of
appropriate dimensions.

For random variables, Pr[·] denotes probability, and the operators IE[·], Std[·], Var[·],
and Cov[·] denote expected value, standard deviation, variance, and covariance matrix,
respectively.

The set of real numbers is denoted by R (nonnegative real numbers by R+ and positive real
numbers by R++). The set of 𝑚 × 𝑛 matrices is denoted by R𝑚×𝑛, the set of symmetric 𝑛 × 𝑛
matrices by S𝑛, and the set of positive semidefinite 𝑛 × 𝑛 matrices by S𝑛+. By 𝒂 ≥ 𝒃 we denote
elementwise inequality (i.e., 𝑎𝑖 ≥ 𝑏𝑖). The matrix inequalities 𝑨 ⪰ 𝑩 and 𝑨 ≻ 𝑩 denote that
𝑨 − 𝑩 is positive semidefinite and positive definite, respectively. The indicator function is
denoted by 1{·} or 𝐼 (·).

Table 1.1 lists the most common abbreviations used throughout the book, and Table 1.2
provides some key financial mathematical symbols.
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Table 1.1 Common abbreviations used in the book.

Abbreviation Meaning

AI Artificial intelligence
AR Autoregressive
ARCH Autoregressive conditional heteroskedasticity
ARIMA Autoregressive integrated moving average
ARMA Autoregressive moving average
B&H portfolio Buy and hold portfolio
BCD Block coordinate descent
CAPM Capital asset pricing model
CCC Constant conditional correlation
CP Conic problem/program
CVaR Conditional value-at-risk
DCC Dynamic conditional correlation
DD Drawdown
DL Deep learning
DR Downside risk
ES Expected shortfall
EWMA Exponentially weighted moving average
EWP Equally weighted portfolio (a.k.a. 1/𝑁 portfolio)
FP Fractional problem/program
FX Foreign exchange
GARCH Generalized autoregressive conditional heteroskedasticity
GICS Global Industry Classification Standard
GMRP Global maximum return portfolio
GMVP Global minimum variance portfolio
GP Geometric problem/program
HRP Hierarchical risk parity
i.i.d. independent and identically distributed
IPM Interior-point method
IVarP Inverse variance portfolio
IVolP Inverse volatility portfolio
LFP Linear fractional problem/program
LP Linear problem/program
LPM Lower partial moment
LS Least squares
MA Moving average
MDecP Maximum decorrelation portfolio
MDivP Most diversified portfolio
ML Maximum likelihood or machine learning (depending on context)
MM Majorization–minimization
MSRP Maximum Sharpe ratio portfolio
MVolP Mean–volatility portfolio
MVP Mean–variance portfolio
MVSK Mean–variance–skewness–kurtosis
NAV Net asset value
P&L Profit and loss
QCQP Quadratically–constrained quadratic problem/program
QP Quadratic problem/program
QuintP Quintile portfolio
RPP Risk parity portfolio
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Table 1.1 Common abbreviations used in the book. (continued)

Abbreviation Meaning

S&P 500 Standard & Poor’s 500
SCA Successive convex approximation
SDP Semidefinite problem/program
SOCP Second-order cone problem/program
SR Sharpe ratio
SV Stochastic volatility
TE Tracking error
VaR Value-at-risk
VARMA Vector autoregressive moving average
VECM Vector error correction model

Table 1.2 Mathematical notation used in the book.

Term Meaning

𝒘 Normalized portfolio weight vector
𝒘cap Portfolio capital allocation vector (e.g., in units of US dollar)
𝒘units Portfolio unit allocation vector (e.g., in units of shares for stocks)
𝒑𝑡 Price vector of assets at time 𝑡
𝒚𝑡 Log-price vector of assets at time 𝑡
𝒓𝑡 (𝒙𝑡 ) Return vector of assets at time 𝑡 (linear or log-returns, depending on context)
𝒓lin
𝑡 Linear returns vector of assets at time 𝑡
𝒓
log
𝑡 Log-returns vector of assets at time 𝑡
𝝁𝑡 Vector of expected value of returns 𝒓𝑡
𝚺𝑡 Covariance matrix of returns 𝒓𝑡
𝑁 Number of financial assets in the considered universe
𝑇 Number of temporal observations 𝑡 = 1, . . . , 𝑇
N(𝝁,𝚺) Normal or Gaussian multivariate distribution with mean 𝝁 and covariance 𝚺

1.7 Website for the Book
The book is supplemented with a variety of additional materials, including slides, sample
code, exercises with solutions, and videos. These supplementary resources can be accessed
on the companion website at:

portfoliooptimizationbook.com

1.8 Code Examples
This book is supplemented with a large number of code examples in R and Python that can
reproduce all the figures in the book. These supplementary resources are available on the
companion website for the book.

Generally speaking, the resolution of all the portfolio optimization formulations covered in
the book can be approached in a variety of ways, namely:

https://portfoliooptimizationbook.com
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• Use a software package or library specifically designed to optimize portfolios under a
wide variety of formulations and constraints. Examples include the popular R package
fPortfolio (Wuertz et al., 2023) and the Python packages Riskfolio-Lib (Cajas, 2023)
and PyPortfolioOpt (Martin, 2021).

• Utilize a modeling framework like CVX, which automatically calls upon a solver behind
the scenes, available for programming languages including Python, R, and Julia (Fu et al.,
2020, 2022; Grant & Boyd, 2008, 2014).

• Directly invoke an appropriate solver.

• Develop ad hoc efficient algorithms for specific formulations, as done in the packages
developed by the ConvexFi group.3
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Financial Data: Stylized Facts

“If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.”

— James Whitcomb Riley

Different domains in science and engineering are deeply rooted on the specifics of the data.
For instance, Sir Isaac Newton formulated the laws of motion and universal gravitation based
on observations of the motion of planets and other objects on Earth. As another example,
Claude Shannon – the “father of information theory” and inventor of the concept of a “bit” as a
measure of information – developed a groundbreaking mathematical theory of communication
based on probabilistic models of wireless and wireline transmission channels.

Likewise, the first step in any endeavor in finance or financial engineering should be to
understand financial data. The study and characterization of financial data started flourishing
as early as the 1960s (Fama, 1965; Mandelbrot, 1963) and it is now a mature topic in which
academics and practitioners have exposed some particularities of the data commonly referred
to as “stylized facts.” This chapter takes us on a rather visual exploratory analysis of financial
data based on empirical market data.

2.1 Stylized Facts
Stylized facts are properties common across many instruments, markets, and time periods that
have been observed by independent studies (Cont, 2001; McNeil et al., 2015). Some notable
examples include:

• Lack of stationarity: The statistics of financial time series change over time (past returns do
not necessarily reflect future performance).

• Volatility clustering: Large price changes tend to be followed by large price changes
(ignoring the sign), whereas small price changes tend to be followed by small price changes
(Fama, 1965; Mandelbrot, 1963).

• Absence of autocorrelations: Autocorrelations of returns are often insignificant (Ding &
Granger, 1996), which can be explained by the efficient-market hypothesis (Fama, 1970).

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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• Heavy tails: Gaussian distributions generally do not hold in financial data; instead,
distributions typically exhibit so-called heavy tails.

• Gain/loss asymmetry: The distribution of the returns is not symmetric.

• Positive correlation of assets: Returns are often positively correlated since assets typically
move together with the market.

It is worth noting that different data frequency regimes may exhibit a variation of characteristics:

• Low frequency (weekly, monthly, quarterly): Gaussian distributions may fit reasonably well
after correcting for volatility clustering (except for the asymmetry), but the scarcity of data
is a big issue in a statistical sense.

• Medium frequency (daily): Heavy tails cannot be ignored (even after correcting for volatility
clustering) and the amount of data may be acceptable for statistical significance provided
the models do not contain too many parameters (or overfitting will be inevitable).

• High frequency (intraday, 30 min, 5 min, tick-data): Large amounts of data are available,
which makes this regime more amenable to data analytics and machine learning techniques.
Furthermore, as the frequency of the data increases, the influence of microstructure noise
becomes more prominent, which requires alternative models.

2.2 Prices and Returns
The price of an asset is arguably the most obvious quantity one can observe in financial
markets. We denote it by 𝑝𝑡 , where 𝑡 is the discrete time index (a continuous time index can
also be used) corresponding to arbitrary periods such as minutes, hours, days, weeks, months,
quarters, or years.

When it comes to modeling, it turns out that the logarithm of the prices,

𝑦𝑡 ≜ log 𝑝𝑡 ,

is mathematically more convenient. In addition, using the logarithm has the advantage that a
much wider dynamic range of the signal can be naturally represented (i.e., tiny values are
amplified and large values are attenuated).

Some accessible textbooks that cover financial data modeling are Meucci (2005), Cowpertwait
and Metcalfe (2009), Tsay (2010), Ruppert and Matteson (2015), with more emphasis on the
multi-asset case in Lütkepohl (2007) and Tsay (2013).

The simplest model for the log-prices is the random walk:

𝑦𝑡 = 𝜇 + 𝑦𝑡−1 + 𝜖𝑡 , (2.1)

where 𝜇 is the drift and 𝜖𝑡 is the i.i.d. random noise. Figure 2.1 shows the daily prices of
the stock index S&P 5001 over a span of more than a decade and Figure 2.2 shows the daily

1 The Standard and Poor’s 500, or simply the S&P 500, is a stock market index of 500 of the largest companies
listed on stock exchanges in the United States. It is one of the most commonly followed equity indices.
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prices of Bitcoin2 over six years, both on a logarithmic scale (which is equivalent to plotting
the log-prices on a linear scale).
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Figure 2.1 Price time series of S&P 500.
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Figure 2.2 Price time series of Bitcoin.

Another key quantity is the price change, also called the return, which, unlike the absolute
price, exhibits some degree of stationarity and may be more convenient for mathematical
modeling. Among the different definitions of returns (Ruppert & Matteson, 2015; Tsay,
2010), we will focus on two types that have important additive properties along two different
domains:

• The linear return (a.k.a. simple or net return) is defined as

𝑟 lin
𝑡 ≜

𝑝𝑡 − 𝑝𝑡−1

𝑝𝑡−1
=

𝑝𝑡

𝑝𝑡−1
− 1

2 Bitcoin (BTC) is the first and most popular cryptocurrency. It was invented in 2008 by an unknown person or
group of people using the name Satoshi Nakamoto. The currency began its use in 2009.
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and has the property that it is additive among the assets (i.e., the overall linear return when
investing in several assets equals the sum of the returns of the assets weighted according to
the percentage of the budget invested in each). Thus, linear returns are key when dealing
with the return of a portfolio of several assets (refer to Chapter 6 for details).

• The log-return (a.k.a. continuously compounded return) is defined as

𝑟
log
𝑡 ≜ 𝑦𝑡 − 𝑦𝑡−1 = log

(
𝑝𝑡

𝑝𝑡−1

)
and has the property that it is additive along the time domain (i.e., the log-return of a long
period equals the sum of the log-returns of the basic periods within the long period). Thus,
log-returns are preferred when it comes to mathematical modeling of time series (refer to
Chapters 3–4). For example, according to the previous random walk model in (2.1), the
log-return is stationary:

𝑟
log
𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = 𝜇 + 𝜖𝑡 .

Interestingly, the simple return and log-return are related as

𝑟
log
𝑡 = log

(
1 + 𝑟 lin

𝑡

)
,

which leads to the convenient approximation 𝑟 log
𝑡 ≈ 𝑟 lin

𝑡 , when 𝑟 lin
𝑡 is small, as illustrated in

Figure 2.3. The approximation is almost perfect when the magnitude of the return is less than
0.05 or 5%, then it slowly degrades.
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Figure 2.3 Approximation of log-return vs. linear return.

Figure 2.4 shows the daily log-returns of the S&P 500 stock index over a span of more than a
decade. One can easily observe the high-volatility period during the global financial crisis in
2008, as well as the high peak in volatility in early 2020 due to the COVID-19 pandemic.
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Figure 2.5 shows the daily log-returns of Bitcoin over six years. Observe the Bitcoin flash
crash on March 12, 2020, with a drop close to 50% in a single day.3
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Figure 2.4 Daily log-return time series of S&P 500.
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Figure 2.5 Daily log-return time series of Bitcoin.

It is insightful to compare the volatility levels for the two classes of assets. The annualized
volatility of the S&P 500 stock index is on the order of 21%, whereas for Bitcoin it is around
78%. Generally speaking, a value of anywhere between 12% and 20% is considered low,
whereas above 30% it is considered extremely volatile. Thus, the S&P 500 has a low volatility
whereas Bitcoin is extremely volatile.

3 The flash crash of March 12, 2020, was triggered by COVID-19, since, just one day earlier, the World Health
Organization had announced that “COVID-19 can be characterized as a pandemic.”



24 Financial Data: Stylized Facts

2.3 Non-Gaussianity: Asymmetry and Heavy Tails
The Gaussian or normal distribution is one of the most commonly used for continuous random
variables due to its ease of mathematical manipulation. It is characterized by two parameters:
the mean and the variance (first- and second-order moments). Its probability distribution
function (pdf) reads:

𝑓 (𝑥) = 1
√

2𝜋𝜎
𝑒−

1
2 ( 𝑥−𝜇𝜎 )2 ,

where 𝜇 is the mean and 𝜎2 is the variance.

In many areas, the Gaussian distribution may in fact be appropriate and easily justified
from physical principles (like the pervasive thermal noise in electronic circuits that hinders
communication systems). However, in other domains, like radar and financial systems, the
random quantities are often not Gaussian distributed and higher-order moments are necessary
for a proper characterization (Jondeau et al., 2007). Two new aspects enter the picture for a
proper characterization:

• the skewness as a measure of the asymmetry in the distribution, and
• the kurtosis as a measure of the thickness of the tails (i.e., whether the tails decay faster or

slower than the exponential decay of the Gaussian distribution).

Figure 2.6 illustrates the effect of skewness and kurtosis on the pdf. Financial data typically
exhibits negative skewness and large kurtosis (with potential huge losses due to the heavy left
tail).
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Figure 2.6 Effect of skewness and kurtosis on the probability distribution function.

The combination of skewness and kurtosis makes it more likely for highly negative returns
to occur (with the obvious consequences for an investor who has bought the asset). This
is illustrated in Figure 2.7, where the left tail of a typical distribution of financial data is
clearly shown to be much fatter or heavier than that of a Gaussian distribution. This is why
distributions with tails decaying slower than the exponential (decay of the Gaussian) are
called heavy tails, fat tails, or thick tails.

Figure 2.8 shows histograms of the S&P 500 log-returns at different frequencies (namely,
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Figure 2.7 Left tail of Gaussian and typical financial data distributions.

daily, monthly, and quarterly). It can be seen that the tails of the histograms are significantly
heavier or thicker than that of a Gaussian and that the histogram is not symmetric. Figure 2.9
shows histograms of Bitcoin log-returns, again with clear heavy tails, although the asymmetry
seems less pronounced than in the S&P 500 case.

-0.10 -0.05 0.00 0.05 0.10

return

d
e
n
s
ity

Daily returns

-0.4 -0.2 0.0 0.2

return

Monthly returns

-0.4 -0.2 0.0 0.2

return

Quarterly returns

Figure 2.8 Histogram of S&P 500 log-returns at different frequencies (with
inappropriate Gaussian fit).

While histograms provide a quick visual inspection of the whole distribution, there are
other more convenient types of plot that allow for a clearer characterization of the level of
asymmetry and heavy-tailness.

Asymmetry or Skewness
Skewness is a measure of the asymmetry of the probability distribution of a real-valued
random variable about its mean. Zero skewness implies a symmetric distribution; negative
skew commonly indicates that the thick tail is on the left side of the distribution, whereas
positive skew indicates that the thick tail is on the right. The skewness of a random variable

𝑋 is defined as the third standardized moment IE
[(
𝑋−𝜇
𝜎

)3
]
.
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Figure 2.9 Histogram of Bitcoin log-returns at different frequencies (with
inappropriate Gaussian fit).

Figure 2.10 plots the skewness of the S&P 500 returns during 2007–2022 as a function of
the period of the returns. As the period increases from one day to ten days, the skewness
decreases rapidly; then it saturates. Figure 2.11 shows the same for Bitcoin during 2017–2022,
with similar results. As previously observed from the histograms, the skewness of Bitcoin is
closer to zero than that of the S&P 500. Thus, as a first approximation, cryptocurrencies seem
to be more symmetric than stocks.
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Figure 2.10 Skewness of S&P 500 log-returns.
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Figure 2.11 Skewness of Bitcoin log-returns.
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Heavy-Tailness or Kurtosis
Q–Q (quantile–quantile) plots allow for a clearer assessment of the degree of heavy tails as
compared to the exponential one of the Gaussian case. Figures 2.12 and 2.13 show Q–Q plots
corresponding to the S&P 500 and Bitcoin log-returns, respectively. The deviation of both the
left and right tails in all cases clearly indicates heavy tails.
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Figure 2.12 Q–Q plots of S&P 500 log-returns at different frequencies.
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Figure 2.13 Q–Q plots of Bitcoin log-returns at different frequencies.

Kurtosis is a measure of the “tail heavyness” of the probability distribution of a real-valued
random variable. Like skewness, kurtosis describes the shape of a probability distribution
and there are different ways of quantifying it. The kurtosis of a Gaussian distribution is 3.
Higher kurtosis values correspond to greater extremity of deviations (or outliers), hence the
names heavy/fat/thick tails. It is common practice to use an adjusted version of the kurtosis,
the excess kurtosis, which is the kurtosis minus 3. The standard definition of the kurtosis of a

random variable 𝑋 is the fourth standardized moment IE
[(
𝑋−𝜇
𝜎

)4
]
.

Figure 2.14 plots the kurtosis of the S&P 500 returns during 2007–2022 as a function of the
period of the returns. As the period increases from one day to three days, the excess kurtosis
decreases very rapidly and then it saturates at around 6 to 8. Similarly, Figure 2.15 shows the
kurtosis of Bitcoin returns during 2017–2022. As the period increases from one to three days,
the excess kurtosis decreases very rapidly to less then 3. Interestingly, the kurtosis of Bitcoin
seems to be smaller than that of the S&P 500. Thus, as a first approximation, it may seem that
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cryptocurrencies are less heavy-tailed or more Gaussian than stocks. However, this deserves a
closer look by looking at the excess kurtosis during different periods:

• From 2017 to 2019: 5.41 for the S&P 500 and 3.46 for Bitcoin.
• During 2020: 8.51 for the S&P 500 and 50.87 for Bitcoin.
• From 2021 to 2022: 0.95 for the S&P 500 and 2.34 Bitcoin.

From these distinct periods, it is evident that the primary difference occurred in 2020, during
which Bitcoin exhibited significantly more heavy-tailed behavior.
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Figure 2.14 Excess kurtosis of S&P 500 log-returns.
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Figure 2.15 Excess kurtosis of Bitcoin log-returns.

Statistical Tests
From the previous analysis, financial data clearly show skewness and kurtosis. To assess
whether these parameters, together with the mean and variance, are enough to characterize
the data, we can resort to mathematically sound statistical tests.

The Anderson–Darling statistic measures how well the data follow a particular distribution
(the better the distribution fits the data, the smaller this statistic will be). The hypotheses for
the Anderson–Darling test are

• H0: the data follow a specified distribution (null hypothesis); and
• H1: the data do not follow a specified distribution (alternative hypothesis).
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As is customary, we can use the 𝑝-value to determine whether the data come from the chosen
distribution (if it is smaller than some threshold, typically 0.05 or so, then we can reject the
null hypothesis that the data came from that distribution).4

Table 2.1 shows the results of the Anderson–Darling test for three distributions: the Gaussian,
the Student 𝑡 distribution (which models heavy tails), and the skewed 𝑡 distribution (which
accounts for both skewness and heavy tails). From these results we can conclude that the
skewed 𝑡 distribution provides a good fit to the S&P 500 during the period 2015–2020. For an
additional visual inspection, Figure 2.16 shows Q–Q plots of the empirical data with respect
to the three candidate distributions (Gaussian, Student 𝑡, and skewed 𝑡). We can again confirm
that the skewed 𝑡 distribution is a good fit.

Table 2.1 Results of Anderson–Darling test on financial data, supporting the skewed
𝑡 distribution.

Distribution Anderson–Darling test 𝑝-value

Gaussian 55.315 4.17 × 10−7

Student 𝑡 5.4503 0.001751
Skewed 𝑡 2.3208 0.06161
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Figure 2.16 Q–Q plots of S&P 500 log-returns vs. different candidate distributions.

2.4 Temporal Structure
Are the returns i.i.d. or do they show some temporal structure? This is a key question in
finance because it determines the problem of forecasting the returns or prices. In fact, this has
been a highly debated topic in economics for decades.

The efficient-market hypothesis (EMH) states that share prices reflect all information and
4 The 𝑝-value is the probability of obtaining the observed results under the assumption that the null hypothesis is

correct. A small 𝑝-value means that there is strong evidence to reject the null hypothesis and accept the
alternative hypothesis. Typical thresholds for determining whether a 𝑝-value is small enough are in the range
0.01–0.05.
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consistent “alpha”5 generation is impossible (Fama, 1970). Accordingly, stocks always trade
at their fair value on exchanges, making it impossible for investors to purchase undervalued
stocks or sell stocks for inflated prices. Therefore, it should be impossible to outperform the
overall market through expert stock selection or market timing, and the only way an investor
can obtain higher returns is by purchasing riskier investments.

Although it is a cornerstone of modern financial theory, the EMH is highly controversial
and often disputed (Shiller, 1981). Believers argue it is pointless to search for undervalued
stocks or to try to predict trends in the market through either fundamental or technical
analysis. Theoretically, neither technical nor fundamental analysis can produce risk-adjusted
excess returns (i.e., “alpha”) consistently, and only insider information can result in outsized
risk-adjusted returns. Although academics present a substantial body of evidence in support
of it, there is an equal amount of dissent as well. For example, the fundamental-based investor
Warren Buffett or the hedge fund Renaissance Technologies’ Medallion Fund have consistently
beaten the market over long periods, which by definition is impossible according to the EMH.

Proponents of the EMH conclude that, because of the randomness of the market, investors
could do better by investing in a low-cost, passive portfolio. On the other hand, opponents
insist on the possibility of designing portfolios that can beat the market.

Some accessible textbooks that cover temporal analysis include Tsay (2010), Cowpertwait
and Metcalfe (2009), and Ruppert and Matteson (2015).

Linear Structure in Returns
The autocorrelation function (ACF) and partial autocorrelation function (PACF) are heavily
used in time series analysis and forecasting. They measure the linear structure or dependency
along the temporal domain, which, according to the EMH, should be insignificant (Ding &
Granger, 1996). The autocorrelation is simply the correlation between the signal at a time and
some previous time, whereas the partial autocorrelation eliminates the effect of the signal in
between those two time instances.

Figure 2.17 indicates that the S&P 500 index exhibits almost no significant autocorrelation
that can be exploited by models for forecasting (lags other than zero are basically within
the statistical insignificant level). Figure 2.18 similarly illustrates that there is no significant
autocorrelation to be exploited in Bitcoin (hourly returns similarly show no autocorrelations).

Nonlinear Structure in Returns
From the previous absence of significant autocorrelations, one may be tempted to conclude
that there is no temporal structure to be exploited. However, that would be a wrong conclusion.
A visual inspection of the returns suffices to see that clearly some structure is present in the
volatility envelope of the signal (Ding & Granger, 1996), which measures the time-varying
standard deviation of the signal along the time domain.

5 In finance, the term “alpha” is commonly used to denote a signal or information that results in the
outperformance of profits compared to a benchmark.
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Figure 2.17 Autocorrelation of S&P 500 daily log-returns.

0.00

0.25

0.50

0.75

1.00

0 10 20 30

lag

ACF

0.00

0.25

0.50

0.75

1.00

0 10 20 30

lag

PACF

Figure 2.18 Autocorrelation of Bitcoin daily log-returns.

Figure 2.19 shows S&P 500 log-returns together with the volatility envelope, illustrating the
phenomenon of the so-called volatility clustering. Clearly the volatility envelope changes
slowly and can be easily forecast, as already pointed out in the 1990s (Ding & Granger, 1996).
Figure 2.20 shows Bitcoin log-returns together with the volatility envelope, also exhibiting
volatility clustering.

But how can it be that the returns show no significant autocorrelations but clearly there is
some temporal structure?

The answer lies in the fact that autocorrelation measures only the linear dependency. Nonlinear
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Figure 2.19 Volatility clustering in S&P 500.
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Figure 2.20 Volatility clustering in Bitcoin.

dependencies are more elusive to detect. In fact, machine learning is a potential tool to try to
identify such nonlinear dependencies (López de Prado, 2018).

Since the envelope is basically a smooth version of the absolute value of the signal, one could
calculate instead the autocorrelation of the absolute values of the returns. Figure 2.21 shows
very significant autocorrelation values for the absolute values of the S&P 500 log-returns.
Similarly, Figure 2.22 shows significant autocorrelation values for the absolute values of
Bitcoin log-returns (albeit not as significant as in the case of the S&P 500).

It may be useful to factor out the volatility envelope from the returns (i.e., dividing the
returns by the volatility) so as to obtain a time series without volatility clustering, termed
standardized returns. Figures 2.23 and 2.24 illustrate such standardized returns for the S&P
500 and Bitcoin.
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Figure 2.21 Autocorrelation of absolute value of S&P 500 daily log-returns.
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Figure 2.22 Autocorrelation of absolute value of Bitcoin daily log-returns.

2.5 Asset Structure
Apart from the structure along the temporal dimension, which can be used for modeling and
forecasting, there is structure along the asset dimension (also referred to as cross-sectional
structure). This means that rather than considering the assets one by one independently, they
have to be jointly modeled.

This is particularly important when it comes to assessing the risk of a portfolio, since different
stocks may have different correlations. For example, one may diversify an investment by
allocating capital to several assets, but if they are strongly correlated it may not help in
reducing the risk. Figure 2.25 illustrates the effect of asset correlation on the volatility of
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the equally weighted portfolio for the case of two assets with correlation 𝜌 and each with
variance 1. We can observe that for fully correlated assets, 𝜌 = 1, the portfolio does not
benefit from any diversity with respect to investing in a single asset and the variance remains
at 1 (volatility of 1); for uncorrelated assets, 𝜌 = 0, the portfolio gets a diversity benefit with
the variance reduced to half (volatility of

√
0.5), and for negatively correlated assets, 𝜌 < 0,

the diversity benefit increases further. In reality, assets tend to have a high correlation close to
1 and finding uncorrelated assets or classes of assets is the “holy grail.” The particular case of
fully negatively correlated assets, 𝜌 = −1, can be achieved with a synthetic asset created for
the sole purpose of hedging another one to control the risk exposure.

Figure 2.26 shows heatmaps of the correlation matrix of some stocks from the S&P 500 (daily
returns) and some cryptocurrencies (hourly returns). Compared to the diagonal elements
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Figure 2.25 Effect of asset correlation on volatility for a two-asset portfolio.

(which are equal to 1), the off-diagonal components are much weaker (and no value lies in the
negative range). In the case of cryptocurrencies, for example, there is a pair of names that are
fully correlated: BTC and WBTC, which is expected since WBTC is by definition a wrapped
BTC.
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Figure 2.26 Correlation matrix of returns for stocks and cryptocurrencies.

We can confirm the previous observation that the cross-correlations are mostly nonnegative
from the histograms depicted in Figure 2.27 for S&P 500 stocks (daily returns) and cryptocur-
rencies (hourly returns). In fact, this positive correlation among stocks and cryptocurrencies
is not surprising since assets tend to move together with the market.

To explore the asset structure more deeply, it is worth inspecting how the eigenvalues of the
correlation matrix tend to cluster into very few large ones and a big group of much smaller
ones, the so-called factor model structure (Fama & French, 1992; Sharpe, 1964) (see Chapter 3
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Figure 2.27 Histogram of correlations among returns of stocks and cryptocurrencies.

for details). Figure 2.28 depicts histograms of eigenvalues of the correlation matrix of daily
returns for the S&P 500 stocks and hourly returns for the top 82 cryptocurrencies. In both
cases, we can observe that a single eigenvalue is totally predominant (corresponding to the
market index and constituting almost half of the total value of the eigenvalues), perhaps with
one to four other nonnegligible eigenvalues, while the rest of them are orders of magnitude
smaller (note that the horizontal axis follows a logarithmic scale).
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Figure 2.28 Histogram of correlation matrix eigenvalues of stocks and
cryptocurrencies.

2.6 Summary
Financial data display unique characteristics known as stylized facts, with the most prominent
ones including:

• Lack of stationarity: The statistics of financial data change over time significantly and any
attempt at modeling will have to continuously adapt.

• Volatility clustering: This is perhaps the most visually apparent aspect of financial time
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series. There are a myriad models in the literature that can be utilized for forecasting
(covered in Chapter 4).

• Heavy tails: The distribution of financial data is definitely not Gaussian and this constitutes
a significant departure from many traditional modeling approaches (covered in Chapter 3).

• Strong asset correlation: The goal in investing is to discover assets that are not strongly
correlated, which is a daunting task due to the naturally occurring strong asset correlation.

Exercises
Choose one or several assets (e.g., stocks or cryptocurrencies) for the following exercises.

2.1 (Price time series) Choose one asset and plot the price time series using both a linear
and a logarithmic scale. Compare the plots and comment.

2.2 (Return time series) Choose one asset and plot the linear returns and log-returns.
Compare the plots and comment.

2.3 (Volatility envelope) Choose one asset and compute the volatility (square root of the
average of the squared returns over 𝑘 samples) on a rolling-window basis in two ways:

a. Left-aligned window: at each time 𝑡, use the samples 𝑡 − 𝑘 + 1, . . . , 𝑡. Try different values
of 𝑘 , observe the effect, and discuss.

b. Centered window: at each time 𝑡, use the samples 𝑡− ⌊𝑘⌋/2, . . . , 𝑡 + ⌈𝑘⌉/2−1. Try different
values of 𝑘 , observe the effect, and discuss.

Finally, compare the left-aligned and centered rolling-window approaches and discuss.

2.4 (Return distribution) Choose one asset and perform the following tasks:

a. Plot histograms of the log-returns at different frequencies. Compare the plots and comment.
b. Draw Q–Q plots to focus on the tail distribution. Do the returns follow a Gaussian

distribution?
c. Compute the skewness and kurtosis to see if they correspond to a Gaussian distribution.

2.5 (Return autocorrelation) Choose one asset and perform the following tasks:

a. Plot the autocorrelation function of the log-returns at various frequencies. Compare the
plots and comment.

b. Repeat the process using squared returns instead of log-returns. Compare these plots and
comment.

2.6 (Asset correlation) Choose several stocks and perform the following tasks:

a. Compute the cross-correlations and plot a heatmap.
b. Compute the correlation between each of the stocks and the index. Discuss the results.
c. Compute the correlation between a stock and a cryptocurrency. Discuss the result and the

implications.
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3

Financial Data: I.I.D. Modeling

“All models are wrong, but some are useful.”

— George E. P. Box

Under the efficient-market hypothesis (Fama, 1970), the price of a security is a good estimate
of its intrinsic value. That is, any information about future prospects is already incorporated in
the current price, so that the forecast is just the current price. This leads to modeling the prices
as a random walk (Malkiel, 1973) and, equivalently, the returns as a sequence of independent
and identically distributed (i.i.d.) random variables. In the case of multiple assets, the random
variables denote the returns of all the assets, leading to a multivariate random variable. This is
a simple and convenient model, which in fact was already employed in Markowitz’s seminal
paper on portfolio design (Markowitz, 1952).

Under the i.i.d. model, no temporal structure is incorporated and the returns at a given
time are assumed to be independent from other time instances; in addition, the distribution
of the random returns over time is assumed fixed. Hence the terminology “independent
and identically distributed.” This chapter explores the characterization of the multivariate
i.i.d. distribution, from the simplest sample estimators to the more sophisticated robust
non-Gaussian estimators that may include prior information in the form of shrinkage, factor
modeling, or prior views.

3.1 I.I.D. Model
Chapter 2 gives an exploratory view of financial data and the important stylized facts. This
chapter explores a simple but useful and popular way to model financial data. Suppose we have
𝑁 securities or tradable assets – possibly from distinct asset classes such as bonds, equities,
commodities, mutual funds, currencies, and cryptos – and let 𝒙𝑡 ∈ R𝑁 (often denoted as 𝒓𝑡 )
denote the random returns of the assets at time 𝑡. Note that the time index 𝑡 can denote any
arbitrary period such as minutes, hours, days, weeks, months, quarters, years, and so on.

Under the i.i.d. model, the returns are simply modeled as

𝒙𝑡 = 𝝁 + 𝝐𝑡 , (3.1)
This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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where 𝝁 ∈ R𝑁 denotes the expected return and 𝝐𝑡 ∈ R𝑁 is the residual component with zero
mean and covariance matrix 𝚺 ∈ R𝑁×𝑁 . This model can be motivated by the efficient-market
hypothesis (Fama, 1970).1 Figure 3.1 shows an example of a synthetic univariate Gaussian
i.i.d. time series.
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0 100 200 300 400 500

i.i.d. time series

Figure 3.1 Example of a synthetic Gaussian i.i.d. time series.

To be more exact, the i.i.d. model in (3.1) corresponds to the random walk model (Campbell
et al., 1997; Malkiel, 1973) on the log-prices 𝒚𝑡 ≜ log 𝒑𝑡 (also referred to as the geometric
random walk model on the prices):

𝒚𝑡 = 𝝁 + 𝒚𝑡−1 + 𝝐𝑡 ,

which leads to (3.1) when 𝒙𝑡 denotes the log-returns: 𝒙𝑡 = 𝒚𝑡 − 𝒚𝑡−1.

The i.i.d. model in (3.1) ignores any temporal structure or dependency in the data. Chapter 4
considers more sophisticated time series models that attempt to incorporate the time structure.
Some accessible textbooks that cover financial data modeling are Meucci (2005), Tsay (2010),
Ruppert and Matteson (2015), with more emphasis on the multivariate case in Lütkepohl
(2007) and Tsay (2013).

3.2 Sample Estimators
In practice, the parameters of the i.i.d. model in (3.1), (𝝁,𝚺), are unknown and have to
be estimated using historical data 𝒙1, . . . , 𝒙𝑇 containing 𝑇 past observations. The simplest
estimators are the sample mean,

�̂� =
1
𝑇

𝑇∑︁
𝑡=1

𝒙𝑡 , (3.2)

1 Eugene F. Fama was awarded the 2013 Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred
Nobel for his work on the efficient-market hypothesis. Ironically, Robert J. Shiller was co-awarded the same
prize precisely for his work on the inefficiency of markets.
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and the sample covariance matrix,

�̂� =
1

𝑇 − 1

𝑇∑︁
𝑡=1

(𝒙𝑡 − �̂�) (𝒙𝑡 − �̂�)T, (3.3)

where the “hat” notation “ ˆ ” denotes estimation.

One important property is that these estimators are unbiased, namely,

IE [ �̂�] = 𝝁, IE
[
�̂�
]
= 𝚺.

In words, the random estimates �̂� and �̂� are centered around the true values. In fact, the
factor of 1/(𝑇 − 1) in the sample covariance matrix is precisely chosen so that the estimator
is unbiased; if, instead, the more natural factor 1/𝑇 is used, then the estimator is biased:
IE

[
�̂�
]
=

(
1 − 1

𝑇

)
𝚺.

Another important property is that these estimators are consistent, that is, from the law of
large numbers (Anderson, 2003; Papoulis, 1991) it follows that

lim
𝑇→∞

�̂� = 𝝁, lim
𝑇→∞

�̂� = 𝚺.

In words, the sample estimates converge to the true quantities as the number of observations 𝑇
grows. Figure 3.2 shows how the estimation error indeed goes to zero as 𝑇 grows for synthetic
Gaussian data of dimension 𝑁 = 100 (in particular, the normalized error is used, defined as
100 × ∥ �̂� − 𝝁∥/∥𝝁∥ for the case of the sample mean, and similarly for the sample covariance
matrix).

These sample estimators �̂� and �̂� are easy to understand, simple to implement, and cheap
in terms of computational cost. However, they are only good estimators for a large number
of observations 𝑇 ; otherwise, the estimation error becomes unacceptable. In particular, the
sample mean is a very inefficient estimator, producing very noisy estimates (Chopra & Ziemba,
1993; Meucci, 2005). This can be observed in Figure 3.2, where the normalized error of �̂�
for 𝑁 = 100 and 𝑇 = 500 is over 100%, which means that the error is as large as the true 𝝁.
In practice, however, there are two main reasons why 𝑇 cannot be chosen large enough to
produce good estimations:

• Lack of available historical data: For example, if we use use daily stock data (i.e., 252
observations per year) and the universe size is, say, 𝑁 = 500, then a popular rule of thumb
suggests that we should use 𝑇 ≈ 10 × 𝑁 observations, which means 20 years of data.
Generally speaking, 20 years of data are rarely available for the whole universe of assets.

• Lack of stationarity: Even if we had available all the historical data we wanted, because
financial data is not stationary over long periods of time, it does not make much sense to
use such data: the market behavior and dynamics 20 years ago are too different from the
current ones (cf. Chapter 2).

As a consequence, in a practical setting, the amount of data that can be used is very limited.
But then, the estimates �̂� and �̂� will be very noisy, particularly the sample mean. This is, in
fact, the “Achilles’ heel” of portfolio optimization: �̂� and �̂� will inevitably contain estimation
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Figure 3.2 Estimation error of sample estimators vs. number of observations (for
Gaussian data with 𝑁 = 100).

noise which will lead to erratic portfolio designs. This is why Markowitz’s portfolio has not
been fully embraced by practitioners.

In the rest of this chapter, we will get a deeper perspective on why sample estimators perform
so poorly with financial data and, then, we will explore a number of different ways to improve
them.

3.3 Location Estimators
From the i.i.d. model in (3.1), the parameter 𝝁 can be interpreted as the “center” or “location”
around which the random points are distributed. Thus, it makes sense to try to estimate
this location, which can be done in a variety of ways. The classical approach is based on
least squares fitting, but it is very sensitive to extreme observations and missing values;
thus, alternative robust multivariate location estimators have been thoroughly studied in the
literature. In fact, this topic can be traced back to the 1960s (Huber, 1964; Maronna, 1976),
as surveyed in Small (1990), Huber (2011), and Oja (2013).
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3.3.1 Least Squares Estimator
The method of least squares (LS) dates back to 1795 when Gauss used it to study planetary
motions. It deals with the linear model 𝒚 = 𝑨𝒙 + 𝝐 by solving the problem (Kay, 1993; Scharf,
1991)

minimize
𝒙

∥𝒚 − 𝑨𝒙∥22 ,

which has the closed-form solution 𝒙★ =
(
𝑨T𝑨

)−1
𝑨T𝒚.

Going back to the i.i.d. model in (3.1), we can now formulate the estimation of the center of
the points, 𝒙𝑡 = 𝝁 + 𝝐𝑡 , as an LS problem:

minimize
𝝁

𝑇∑︁
𝑡=1

∥𝒙𝑡 − 𝝁∥22,

whose solution, interestingly, coincides with the sample mean in (3.2):

�̂� =
1
𝑇

𝑇∑︁
𝑡=1

𝒙𝑡 .

The sample mean is well known to suffer from lack of robustness against contaminated points
or outliers, as well as against distributions with heavy tails (as will be empirically verified
later in Figure 3.4).

3.3.2 Median Estimator
The median of a sample of points is the value separating the higher half from the lower half
of the points. It may be thought of as the “middle” value of the points. The main advantage of
the median compared to the mean (often described as the “average”) is that it is not affected
by a small proportion of extremely large or small values. Thus, it is a natural robust estimate
and provides a better representation of a “typical” value. It is also possible to further improve
on the median by using additional information from the data points such as the sample size,
range, and quartile values (Wan et al., 2014).

In the multivariate case, there are multiple ways to extend the concept of median, as surveyed
in Small (1990), Huber (2011), and Oja (2013), to obtain a natural robust estimate of the
center of the distribution or set of points. One straightforward extension consists of employing
the univariate median elementwise.

In the context of the i.i.d. model in (3.1), it turns out that this elementwise median can be
formulated as the solution to the following problem:

minimize
𝝁

𝑇∑︁
𝑡=1

∥𝒙𝑡 − 𝝁∥1,

where now the ℓ1-norm is the measure of error instead of the squared ℓ2-norm as in the case
of the sample mean.
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3.3.3 Spatial Median Estimator
Another way to extend the univariate median to the multivariate case is the so-called spatial
median or geometric median (also known as the 𝐿1 median) obtained as the solution to the
problem

minimize
𝝁

𝑇∑︁
𝑡=1

∥𝒙𝑡 − 𝝁∥2,

where now the ℓ2-norm or Euclidean distance is the measure of error instead of the ℓ1-norm
or the squared ℓ2-norm. Interestingly, the lack of the squaring operator has a huge effect; for
example, the estimator for each element is no longer independent of the other elements (as is
the case with the sample mean and elementwise median). The spatial median has the desired
property that for 𝑁 = 1 it reduces to the univariate median.

The spatial median is the solution to a convex second-order cone problem (SOCP) and can be
solved with an SOCP solver. Alternatively, very efficient iterative algorithms can be derived
by solving a sequence of LS problems via the majorization–minimization (MM) method (Sun
et al., 2017); see also Section B.7 in Appendix B for details.

3.3.4 Numerical Experiments
Figure 3.3 illustrates the different location estimators in a two-dimensional (𝑁 = 2) case.
Since this is just one realization, we cannot conclude which method is preferable.
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Figure 3.3 Illustration of different location estimators.
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Figure 3.4 shows the estimation error of different location estimators as a function of the
number of observations 𝑇 for synthetic Gaussian and heavy-tailed data (the mean vector 𝝁 and
covariance matrix 𝚺 are taken as measured in typical stock market data). For Gaussian data,
the sample mean is the best estimator (as further analyzed in Section 3.4), with the spatial
median almost identical, and the elementwise median being the worst. For heavy-tailed data,
the sample mean is as bad as the median and the spatial median remains the best. Overall, the
spatial median seems to be the best option as it is robust to outliers and does not underperform
under Gaussian data.
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Figure 3.4 Estimation error of location estimators vs. number of observations (with
𝑁 = 100).

Figure 3.5 examines in more detail the effect of the heavy tails in the estimation error for
synthetic data following a 𝑡 distribution with degrees of freedom 𝜈. Financial data typically
corresponds to 𝜈 on the order of somewhere between 4 and 5, which is significantly heavy-
tailed, whereas a large value of 𝜈 corresponds to a Gaussian distribution. We can observe
that the error for the sample mean remains similar regardless of 𝜈. Interestingly, the spatial
median is similar to the sample mean for large 𝜈 (Gaussian regime) whereas it becomes better
for heavy tails. Again, this illustrates the robustness of the spatial median.
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Figure 3.5 Estimation error of location estimators vs. degrees of freedom in a 𝑡
distribution (with 𝑇 = 200 and 𝑁 = 100).

3.4 Gaussian ML Estimators
3.4.1 Preliminaries on ML Estimation

Maximum likelihood (ML) estimation is an important technique in estimation theory (Anderson,
2003; Kay, 1993; Scharf, 1991). The idea is very simple. Suppose the probability of a random
variable 𝒙 can be “measured” by the probability distribution function (pdf) 𝑓 .2 Then the
probability of a series of 𝑇 independent given observations 𝒙1, . . . , 𝒙𝑇 can be measured
by the product 𝑓 (𝒙1) × · · · × 𝑓 (𝒙𝑇 ). Suppose now that we have to guess which of two
possible distributions, 𝑓1 and 𝑓2, is more likely to have produced these observations. It seems
reasonable to choose as most likely the one that gives the largest probability of observing
these observations. Now, suppose we have a family of possible distributions parameterized by
the parameter vector 𝜽: 𝑓𝜽 , which is called likelihood function when viewed as a function of
𝜽 for the given observations. Again, it seems reasonable to choose as the most likely 𝜽 the
one that gives the largest probability of observing these observations. This is precisely the
essence of ML estimation and can be written as the following optimization problem:

maximize
𝜽

𝑓𝜽 (𝒙1) × · · · × 𝑓𝜽 (𝒙𝑇 ),

where 𝒙1, . . . , 𝒙𝑇 denote the 𝑇 given observations. For mathematical convenience, ML
estimation is equivalently formulated as the maximization of the log-likelihood function:

maximize
𝜽

𝑇∑︁
𝑡=1

log 𝑓𝜽 (𝒙𝑡 ).

The ML estimator (MLE) enjoys many desirable theoretical properties that make it an
asymptotically optimal estimator (asymptotic in the number of observations 𝑇). More
specifically, the MLE is asymptotically unbiased and it asymptotically attains the Cramér–Rao

2 To be precise, the term 𝑓 (𝒙0 )𝑑𝒙 gives the probability of observing 𝒙 in a region centered around 𝒙0 with
volume 𝑑𝒙.
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bound (which gives the lowest possible variance attainable by an unbiased estimator); in other
words, it is asymptotically efficient (Kay, 1993; Scharf, 1991). In practice, however, the key
question is how large 𝑇 has to be for the asymptotic properties to effectively hold.

3.4.2 Gaussian ML Estimation
The pdf corresponding to the i.i.d. model (3.1), assuming that the residual follows a multivariate
normal or Gaussian distribution, is

𝑓 (𝒙) = 1√︁
(2𝜋)𝑁 |𝚺 |

exp
(
−1

2
(𝒙 − 𝝁)T𝚺−1(𝒙 − 𝝁)

)
, (3.4)

from which we can see that the parameters of the model are 𝜽 = (𝝁,𝚺).

Given 𝑇 observations 𝒙1, . . . , 𝒙𝑇 , the MLE can then be formulated (ignoring irrelevant
constant terms) as

minimize
𝝁,𝚺

log det(𝚺) + 1
𝑇

𝑇∑︁
𝑡=1

(𝒙𝑡 − 𝝁)T𝚺−1(𝒙𝑡 − 𝝁),

where log det(·) denotes the logarithm of the determinant of a matrix.

Setting the gradient of the objective function with respect to 𝝁 and 𝚺−1 to zero leads to

1
𝑇

𝑇∑︁
𝑡=1

(𝒙 − 𝝁) = 0,

−𝚺 + 1
𝑇

𝑇∑︁
𝑡=1

(𝒙𝑡 − 𝝁) (𝒙𝑡 − 𝝁)T = 0,

which results in the following estimators for 𝝁 and 𝚺:

�̂� =
1
𝑇

𝑇∑︁
𝑡=1

𝒙𝑡 ,

�̂� =
1
𝑇

𝑇∑︁
𝑡=1

(𝒙𝑡 − 𝝁) (𝒙𝑡 − 𝝁)T.
(3.5)

Interestingly, these estimators coincide with the sample estimators in (3.2) and (3.3), apart
from the factor 1/𝑇 instead of the factor 1/(𝑇 − 1). The ML estimator of the covariance
matrix is biased since IE

[
�̂�
]
=

(
1 − 1

𝑇

)
𝚺; however, it is asymptotically unbiased as 𝑇 →∞

(as already expected from the asymptotic optimality of ML).

At first, it may seem that we have not achieved anything new, since we had already derived
the same estimators from the perspective of sample estimators and from the perspective of
least squares. However, after more careful thought, we have actually learned that the sample
estimators are optimal when the data is Gaussian distributed, but not otherwise. That is, when
the data has a different distribution, the optimal ML estimators can be expected to be different,
as explored later in Section 3.5.
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3.4.3 Numerical Experiments
Figure 3.6 shows the estimation error of the ML estimators for the mean and covariance
matrix as a function of the number of observations 𝑇 for synthetic Gaussian and heavy-tailed
data. We can observe how the estimation of the covariance matrix 𝚺 becomes much worse for
heavy-tailed data, whereas the estimation of the mean 𝝁 remains similar.
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Figure 3.6 Estimation error of Gaussian ML estimators vs. number of observations
(with 𝑁 = 100).

Figure 3.7 examines in more detail the effect of the heavy tails in the estimation error for
synthetic data following a 𝑡 distribution with degrees of freedom 𝜈. We can confirm that the
error in the estimation of the mean remains the same, whereas the estimation of the covariance
matrix becomes worse as the distribution exhibits heavier tails. Nevertheless, we should not
forget that the size of the error is one order of magnitude larger for the mean than for the
covariance matrix.

3.5 Heavy-Tailed ML Estimators
Gaussian ML estimators are optimal, in the sense of maximizing the likelihood of the
observations, whenever data follow the Gaussian distribution. However, if data follow a
heavy-tailed distribution – like it is the case with financial data – then we need some further
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Figure 3.7 Estimation error of Gaussian ML estimators vs. degrees of freedom in a 𝑡
distribution (with 𝑇 = 200 and 𝑁 = 100).

understanding of the potentially detrimental effect. On the one hand, since the ML estimators
coincide with the sample estimators in Section 3.2, we know they are unbiased and consistent,
which are desirable properties. But, on the other hand, is this sufficient or can we do better?

3.5.1 The Failure of Gaussian ML Estimators
As explored in Section 3.4, Figure 3.6 demonstrates that the effect of heavy tails in the
estimation of the covariance matrix is significant, whereas it is almost nonexistent for the
estimation of the mean. Figure 3.7 further shows the error as a function of how heavy the
tails are (small 𝜈 represents heavy-tailed distributions whereas large 𝜈 tends to a Gaussian
distribution).

To further understand the detrimental effect of heavy tails, Figure 3.8 illustrates this effect, as
well as the effect of outliers in otherwise Gaussian data. In this example, 𝑇 = 10 data points
are used for the estimation of the two-dimensional covariance matrix, which satisfies the ratio
𝑇/𝑁 = 5. It is very clear that, while for Gaussian data the Gaussian ML estimator (or sample
covariance matrix) follows the true covariance matrix very closely, once we include a single
outlier in the Gaussian data or we use heavy-tailed data, the estimation is disastrous. Still,
most practitioners and academics adopt the sample covariance matrix due to its simplicity.
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Figure 3.8 Effect of heavy tails and outliers in the Gaussian ML covariance matrix
estimator.

3.5.2 Heavy-Tailed ML Estimation
We have empirically observed that the Gaussian MLE for the covariance matrix significantly
degrades when the data distribution exhibits heavy tails (see Figures 3.6, 3.7, and 3.8). But
this is not unexpected since the sample covariance matrix is optimal only under the Gaussian
distribution as derived in Section 3.4. Thus, to derive an improved estimator, we should drop
the Gaussian assumption and instead consider a heavy-tailed distribution in the derivation of
optimal ML estimators. There are many families of distributions with heavy tails (McNeil
et al., 2015) and, for simplicity, we will focus our attention on the Student 𝑡 distribution or,
simply, 𝑡 distribution, which is widely used to model heavy tails via the parameter 𝜈. It is
worth noting that using any other heavy-tailed distribution shows little difference.

The pdf corresponding to the i.i.d. model (3.1), assuming now that the residual term follows a
multivariate 𝑡 distribution, is

𝑓 (𝒙) = Γ((𝜈 + 𝑁)/2)
Γ(𝜈/2)

√︁
(𝜈𝜋)𝑁 |𝚺 |

(
1 + 1

𝜈
(𝒙 − 𝝁)T𝚺−1(𝒙 − 𝝁)

)−(𝜈+𝑁 )/2
,

where Γ(·) is the gamma function,3 𝝁 is the location parameter (which coincides with the
mean vector for 𝜈 > 1 as in the Gaussian case and is undefined otherwise), 𝚺 denotes the
scatter matrix (not to be confused with the covariance matrix, which can now be obtained
as 𝜈

𝜈−2𝚺 if 𝜈 > 2 and is undefined otherwise), and 𝜈 denotes the “degrees of freedom” that
controls how heavy or thick the tails are (𝜈 ≈ 4 corresponds to significantly heavy tails,
whereas 𝜈 →∞ corresponds to the Gaussian distribution). Thus, the parameters of this model
are 𝜽 = (𝝁,𝚺, 𝜈), which includes the extra scalar parameter 𝜈 compared to the Gaussian case
in (3.4). This parameter can either be fixed to some reasonable value (financial data typically
satisfies 𝜈 ≈ 4 or 𝜈 ≈ 5) or can be estimated together with the other parameters.

3 The gamma function is defined as Γ (𝑧) =
∫ ∞

0 𝑡 𝑧−1𝑒−𝑡 d𝑡 . For a positive integer 𝑛, it corresponds to the
factorial function Γ (𝑛) = (𝑛 − 1)!.
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The MLE can then be formulated, given 𝑇 observations 𝒙1, . . . , 𝒙𝑇 , as

minimize
𝝁,𝚺,𝜈

log det(𝚺) + 𝜈 + 𝑁
𝑇

𝑇∑︁
𝑡=1

log
(
1 + 1

𝜈
(𝒙𝑡 − 𝝁)T𝚺−1(𝒙𝑡 − 𝝁)

)
+2 log Γ(𝜈/2) + 𝑁log(𝜈) − 2 log Γ

(
𝜈 + 𝑁

2

)
.

For simplicity we will fix the parameter 𝜈 = 4, and then only the first two terms in the problem
formulation become relevant in the estimation of the remaining parameters 𝝁 and 𝚺. Setting
the gradient of the objective function with respect to 𝝁 and 𝚺−1 to zero leads to

1
𝑇

𝑇∑︁
𝑡=1

𝜈 + 𝑁
𝜈 + (𝒙𝑡 − 𝝁)T𝚺−1(𝒙𝑡 − 𝝁)

(𝒙𝑡 − 𝝁) = 0,

−𝚺 + 1
𝑇

𝑇∑︁
𝑡=1

𝜈 + 𝑁
𝜈 + (𝒙𝑡 − 𝝁)T𝚺−1(𝒙𝑡 − 𝝁)

(𝒙𝑡 − 𝝁) (𝒙𝑡 − 𝝁)T = 0,

which can be conveniently rewritten as the following fixed-point equations for 𝝁 and 𝚺:

𝝁 =

1
𝑇

∑𝑇
𝑡=1 𝑤𝑡 (𝝁,𝚺) × 𝒙𝑡

1
𝑇

∑𝑇
𝑡=1 𝑤𝑡 (𝝁,𝚺)

,

𝚺 =
1
𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 (𝝁,𝚺) × (𝒙𝑡 − 𝝁) (𝒙𝑡 − 𝝁)T,
(3.6)

where we define the weights

𝑤𝑡 (𝝁,𝚺) =
𝜈 + 𝑁

𝜈 + (𝒙𝑡 − 𝝁)T𝚺−1(𝒙𝑡 − 𝝁)
. (3.7)

It is important to remark that (3.6) are fixed-point equations because the parameters 𝝁 and 𝚺
appear on both sides of the equalities, which makes their calculation not trivial. Existence
of a solution is guaranteed if 𝑇 > 𝑁 + 1 (Kent & Tyler, 1991); conditions for existence and
uniqueness with optional shrinkage were derived in Sun et al. (2015).

Nevertheless, these fixed-point equations have a beautiful interpretation: if one assumes
the weights 𝑤𝑡 to be known, then the expressions in (3.6) become a weighted version of
the Gaussian MLE expressions in (3.5). Interestingly, the weights 𝑤𝑡 have the insightful
interpretation that they become smaller as the point 𝒙𝑡 is further away from the center 𝝁, which
means that they automatically down-weight the outliers. Thus, we can expect these estimators
to be robust to outliers, unlike the Gaussian ML estimators in (3.5) whose performance can be
severely degraded in the presence of outliers. Observe that as 𝜈 →∞, i.e., as the distribution
becomes Gaussian, the weights in (3.7) tend to 1 (unweighted case) as expected.

In practice, a simple way to solve the fixed-point equations in (3.6) is via an iterative process
whereby the weights are fixed to the most current value and then 𝝁 and 𝚺 are updated.4

4 The R package fitHeavyTail contains the function fit_mvt() to solve the fixed-point equations (3.6)-(3.7)
iteratively via (3.8) (Palomar et al., 2023).

https://cran.r-project.org/package=fitHeavyTail
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Specifically, the iterations for 𝑘 = 0, 1, 2, . . . are given as follows:

𝝁𝑘+1 =
1
𝑇

∑𝑇
𝑡=1 𝑤𝑡 (𝝁𝑘 ,𝚺𝑘) × 𝒙𝑡

1
𝑇

∑𝑇
𝑡=1 𝑤𝑡 (𝝁𝑘 ,𝚺𝑘)

,

𝚺𝑘+1 =
1
𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 (𝝁𝑘+1,𝚺𝑘) × (𝒙𝑡 − 𝝁𝑘+1) (𝒙𝑡 − 𝝁𝑘+1)T.
(3.8)

The iterative updates in (3.8) can be formally derived from the ML formulation and shown to
converge to the optimal solution by means of the MM algorithmic framework. For details
on MM, the reader is referred to Sun et al. (2017) and Section B.7 in Appendix B. For the
specific derivation of (3.8), together with technical conditions for the convergence of the
algorithm, details can be found in Kent et al. (1994) and in Sun et al. (2015) from the MM
perspective. For convenience, this MM-based method is summarized in Algorithm 3.1. In
addition, the estimation of 𝜈 is further considered in Liu and Rubin (1995) and acceleration
methods for faster convergence are derived in Liu et al. (1998).

Algorithm 3.1: MM-based method to solve the heavy-tailed ML fixed-point equations in
(3.6).

1: Choose initial point (𝝁0,𝚺0);
2: Set 𝑘 ← 0;
3: repeat
4: Iterate the weighted sample mean and sample covariance matrix as

𝝁𝑘+1 =
1
𝑇

∑𝑇
𝑡=1 𝑤𝑡 (𝝁𝑘 ,𝚺𝑘) × 𝒙𝑡

1
𝑇

∑𝑇
𝑡=1 𝑤𝑡 (𝝁𝑘 ,𝚺𝑘)

,

𝚺𝑘+1 =
1
𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 (𝝁𝑘+1,𝚺𝑘) × (𝒙𝑡 − 𝝁𝑘+1) (𝒙𝑡 − 𝝁𝑘+1)T,

where the weights are defined in (3.7);
5: 𝑘 ← 𝑘 + 1;
6: until convergence;

Figure 3.9 illustrates the robustness of the heavy-tailed ML estimator, compared with the
Gaussian ML estimator, under data with heavy tails and outliers. The difference observed is
quite dramatic and should serve as a red flag to practitioners for using the sample covariance
matrix when dealing with heavy-tailed data.

3.5.3 Robust Estimators
What happens if the true distribution that generates the data deviates slightly from the assumed
– typically Gaussian – one? Estimators that are not very sensitive to outliers or distribution
contamination are generally referred to as robust estimators.

The robustness of estimators can be objectively measured in different ways; notably, with the
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Figure 3.9 Effect of heavy tails and outliers in heavy-tailed ML covariance matrix
estimator.

influence function, which measures the effect when the true distribution slightly deviates from
the assumed one, and the breakdown point, which is the minimum fraction of contaminated
data points that can render the estimator useless.

As already discussed in Section 3.4, sample estimators or Gaussian ML estimators are not
robust against deviations from the Gaussian distribution. It is well known that they are very
sensitive to the tails of the distribution (Huber, 1964; Maronna, 1976). In fact, their influence
function is unbounded, meaning that an infinitesimal point mass contamination can have
an arbitrarily large influence. In addition, a single contaminated point can ruin the sample
mean or the sample covariance matrix, that is, the breakdown point is 1/𝑇 . For reference,
the median has a breakdown of around 0.5, that is, one needs more than 50% of the points
contaminated to ruin it. On the other hand, as will be further elaborated next, the heavy-tailed
ML estimators from Section 3.5.2 can be shown to be robust estimators.

Some classical early references on robust estimation are Huber (1964) for the univariate
case and Maronna (1976) for the multivariate case, whereas more modern surveys include
Maronna et al. (2006), Huber (2011), Wiesel and Zhang (2014), and Chapter 4 in Zoubir et al.
(2018).

𝑀-Estimators
The term 𝑀-estimators for robust estimation goes back to the 1960s (Huber, 1964). In a
nutshell, 𝑀-estimators for the location and scatter parameters, 𝝁 and 𝚺, are defined by the
following fixed-point equations:

1
𝑇

𝑇∑︁
𝑡=1

𝑢1

(√︃
(𝒙𝑡 − 𝝁)T𝚺−1(𝒙𝑡 − 𝝁)

)
(𝒙𝑡 − 𝝁) = 0,

1
𝑇

𝑇∑︁
𝑡=1

𝑢2
(
(𝒙𝑡 − 𝝁)T𝚺−1(𝒙𝑡 − 𝝁)

)
(𝒙𝑡 − 𝝁) (𝒙𝑡 − 𝝁)T = 𝚺,

(3.9)

where 𝑢1(·) and 𝑢2(·) are weight functions satisfying some conditions (Maronna, 1976;
Maronna et al., 2006).

𝑀-estimators are a generalization of the maximum likelihood estimators and can be regarded
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as the weighted sample mean and the weighted sample covariance matrix. In terms of
robustness, they have a desirable bounded influence function, although the breakdown point
is still relatively low (Maronna, 1976; Maronna et al., 2006). Other estimators, such as the
minimum volume ellipsoid and minimum covariance determinant, have higher breakdown
points.

The Gaussian ML estimators can be obtained from the 𝑀-estimators in (3.9) with the trivial
choice of weight functions 𝑢1(𝑠) = 𝑢2(𝑠) = 1.

A notable common choice to obtain robust estimators is to choose the weight functions based
on Huber’s 𝜓-function 𝜓(𝑧, 𝑘) = max(−𝑘,min(𝑧, 𝑘)), where 𝑘 is a positive constant that caps
the argument 𝑧 from above and below, as follows (Maronna, 1976):

𝑢1(𝑠) = 𝜓(𝑧, 𝑘)/𝑠,
𝑢2(𝑠) = 𝜓(𝑧, 𝑘2)/(𝛽𝑠),

where 𝛽 is a properly chosen constant.

Interestingly, the 𝑀-estimators in (3.9) particularize to the heavy-tailed ML estimators derived
in (3.7) for the choice

𝑢1(𝑠) = 𝑢2(𝑠2) = 𝜈 + 𝑁
𝜈 + 𝑠2 .

Tyler’s Estimator
In 1987, Tyler proposed an estimator for the scatter matrix (which is proportional to the
covariance matrix) for heavy-tailed distributions (Tyler, 1987). The idea is very simple and
ingenious, as described next. Interestingly, Tyler’s estimator can be shown to be the most
robust version of an 𝑀-estimator.

Suppose the random variable 𝒙 follows a zero-mean elliptical distribution – which means that
the distribution depends on 𝒙 through the term 𝒙T𝚺−1𝒙. If the mean is not zero, then it has to
be estimated with some location estimator, as described in Section 3.3, and then subtracted
from the observations so that they have zero mean.

The key idea is to normalize the observations

𝒔𝑡 =
𝒙𝑡
∥𝒙𝑡 ∥2

and then use ML based on these normalized points. The surprising fact is that the pdf of the
normalized points can be analytically derived – known as angular distribution – as

𝑓 (𝒔) ∝ 1√︁
|𝚺 |

(
𝒔T𝚺−1𝒔

)−𝑁/2
,

which is independent of the shape of the tails and still contains the parameter 𝚺 which we
wish to estimate.

The MLE can then be formulated, given 𝑇 observations 𝒙1, . . . , 𝒙𝑇 and noting that
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𝒔T𝑡 𝚺

−1𝒔𝑡
)−𝑁/2 ∝ (

𝒙T
𝑡 𝚺
−1𝒙𝑡

)−𝑁/2, as

minimize
𝚺

log det(𝚺) + 𝑁
𝑇

𝑇∑︁
𝑡=1

log
(
𝒙T
𝑡 𝚺
−1𝒙𝑡

)
.

Setting the gradient with respect to 𝚺−1 leads to the following fixed-point equation (which
has the same form as the one for the heavy-tailed MLE in (3.6)):

𝚺 =
1
𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 (𝚺) × 𝒙𝑡𝒙T
𝑡 ,

where the weights are now given by

𝑤𝑡 (𝚺) =
𝑁

𝒙T
𝑡 𝚺
−1𝒙𝑡

. (3.10)

Observe that these weights behave similarly to those in (3.7), in the sense of down-weighting
the outliers and making the estimator robust. Existence of a solution is guaranteed if 𝑇 > 𝑁
(Tyler, 1987); conditions for existence and uniqueness with optional shrinkage were derived
in Chen et al. (2011), Wiesel (2012), and Sun et al. (2014).

This fixed-point equation can be solved iteratively like in the case of the heavy-tailed MLE in
Section 3.5.2, see Tyler (1987) and Sun et al. (2014). However, it is important to realize that
Tyler’s method can only estimate the parameter 𝚺 up to a scaling factor, as can be observed
from the invariance of the likelihood function with respect to a scaling factor in 𝚺. In fact, this
should not be surprising since the normalization of the original points destroys the information
of such a scaling factor. In practice, the scaling factor 𝜅 can be recovered with some simple
heuristic to enforce

diag(𝜅 × 𝚺) ≈ �̂�2,

where �̂�2 denotes some robust estimation of the variances of the assets; for example,

𝜅 =
1
𝑁

1T (
�̂�2/diag(𝚺)

)
.

3.5.4 Numerical Experiments
We now proceed to a final comparison of the presented robust estimators benchmarked against
the traditional and popular Gaussian-based estimator. In particular, the following estimators
are considered for the mean and covariance matrix:

• Gaussian MLE
• heavy-tailed MLE
• Tyler’s estimator for the covariance matrix (with spatial median for the location).

Figure 3.10 shows the estimation error as a function of the number of observations 𝑇 for
synthetic heavy-tailed data (𝑡 distribution with 𝜈 = 4). The heavy-tailed MLE is the best,
followed closely by the Tyler estimator (with the spatial median estimator for the mean), while
the Gaussian MLE is the worst by far.
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Figure 3.10 Estimation error of different ML estimators vs. number of observations
(for 𝑡-distributed heavy-tailed data with 𝜈 = 4 and 𝑁 = 100).

Figure 3.11 examines in more detail the effect of the heavy tails in the estimation error for
synthetic data following a 𝑡 distribution with degrees of freedom 𝜈. We can confirm that for
Gaussian tails, the Gaussian MLE is similar to the heavy-tailed MLE; however, as the tails
become heavier (smaller values of 𝜈), the difference becomes quite significant in favor of the
robust heavy-tailed MLE.

The final conclusion could not be more clear: financial data is heavy-tailed and one must
necessarily use robust heavy-tailed ML estimators (like the one summarized in Algorithm 3.1).
Interestingly, the computational cost of the robust estimators is not much higher than the
traditional sample estimators because the algorithm converges in just a few iterations (each
iteration has a cost comparable to the sample estimators). Indeed, Figure 3.12 indicates that
the algorithm converges in three to five iterations in this particular example with heavy-tailed
data (following a 𝑡 distribution with 𝜈 = 4) with 𝑇 = 200 observations and 𝑁 = 100 assets.

Nevertheless, it is important to emphasize that the errors in the estimation of the mean vector
𝝁 based on historical data are extremely large (see Figures 3.10 and 3.11), to the point that
such estimations may become useless in practice. This is precisely why practitioners typically
obtain factors from data providers (at a high premium) and then use them to estimate 𝝁 via
regression. Alternatively, many portfolio designs that ignore any estimation of 𝝁 are quite
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Figure 3.11 Estimation error of different ML estimators vs. degrees of freedom in a 𝑡
distribution (with 𝑇 = 200 and 𝑁 = 100).
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Figure 3.12 Convergence of robust heavy-tailed ML estimators.
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common, for example the global minimum variance portfolio (see Chapter 6) and the risk
parity portfolio (see Chapter 11).

3.6 Prior Information: Shrinkage, Factor Models, and Black–Litterman
All the estimators thus far surveyed in this chapter are based purely on the 𝑇 historical data
points 𝒙1, . . . , 𝒙𝑇 . Unfortunately, in many practical settings, as discussed in Section 3.2,
the number of observations is not large enough to achieve proper estimation of the model
parameters with a sufficiently small error. Researchers and practitioners have spent decades
trying to deal with this issue and devising a variety of mechanisms to improve the estimators.
The basic recipe is to somehow incorporate any prior information that one may have available.
We will next give an overview of three notable ways to incorporate prior information into the
parameter estimation process:

• shrinkage: to incorporate prior knowledge on the parameters in the form of targets;
• factor modeling: to incorporate structural information; and
• Black–Litterman: to combine the data with discretionary views.

Each of these approaches deserves a whole chapter – if not a whole book – but we will merely
scratch the tip of the iceberg here, while providing key references for the interested reader to
probe further.

3.6.1 Shrinkage
Shrinkage is a popular technique to reduce the estimation error by introducing a bias in the
estimator. In statistics, this idea goes back to 1955 with Stein’s seminal publication (Stein,
1955). In the financial area, it was popularized by its application to shrinkage in the covariance
matrix in the early 2000s (Ledoit & Wolf, 2004) and it is now covered in many textbooks
(Meucci, 2005) and surveys (Bun et al., 2017).

The mean squared error (MSE) of an estimator can be separated into two terms: the bias and
the variance. This is a basic concept in estimation theory referred to as the bias–variance
trade-off (Kay, 1993; Scharf, 1991). Mathematically, for a given parameter 𝜽 and an estimator
𝜽 , the bias–variance trade-off reads:

MSE(𝜽) ≜ IE
[𝜽 − 𝜽2

]
= IE

[𝜽 − IE
[
𝜽
]2

]
+

IE
[
𝜽
]
− 𝜽

2

= Var
(
𝜽
)
+ Bias2 (𝜽 ) .

In the small-sample regime (i.e., when the number of observations is small), the main source
of error comes from the variance of the estimator (since the estimator is based on a small
number of random samples). In the large-sample regime, on the other hand, one may expect
the variance of the estimator to be reduced and the bias to dominate the overall error.

Traditionally, unbiased estimators had always been desirable. To the surprise of the statistical
community, Stein proved in 1955 in a seminal paper (Stein, 1955) that it might be advantageous



3.6 Prior Information: Shrinkage, Factor Models, and Black–Litterman 59

to allow for some bias in order to achieve a smaller overall error. This can be implemented by
shrinking the estimator to some known target value. Mathematically, for a given estimator 𝜽
and some target 𝜽 tgt (i.e., the prior information), a shrinkage estimator is given by

𝜽sh = (1 − 𝜌) 𝜽 + 𝜌 𝜽 tgt,

where 𝜌 (with 0 ≤ 𝜌 ≤ 1) is the shrinkage trade-off parameter or shrinkage factor.

In practice, there are two important issues when implementing shrinkage:

• the choice of the target 𝜽 tgt, which represents the prior information and, in a financial
context, may come from discretionary views on the market;

• the choice of the shrinkage factor 𝜌, which may look like a trivial problem, but the reality
is that tons of ink have been devoted to this topic in the literature.

While the choice of the target is important, it is perhaps surprising that the most critical part
is the choice of the shrinkage factor 𝜌. The reason is that, no matter how poorly chosen the
target is, a proper choice of the shrinkage factor can always weight the target in the right
amount. There are two main philosophies when it comes to choosing the shrinkage factor 𝜌:

• empirical choice based on cross-validation, and
• analytical choice based on sophisticated mathematics.

In our context of financial data, the parameter 𝜽 may represent the mean vector 𝝁 or the
covariance matrix 𝚺, and the estimator 𝜽 may be, for example, the sample mean or the sample
covariance matrix.

Shrinking the Mean Vector
Consider the mean vector 𝝁 and the sample mean estimator in (3.2):

�̂� =
1
𝑇

𝑇∑︁
𝑡=1

𝒙𝑡 .

As we know from Section 3.2, the sample mean �̂� is an unbiased estimator, IE [ �̂�] = 𝝁. In
addition, from the central limit theorem, we can further characterize its distribution as

�̂� ∼ N
(
𝝁,

1
𝑇
𝚺

)
and its MSE as

IE
[�̂� − 𝝁

2
]
=

1
𝑇

Tr(𝚺).

The startling result proved by Stein in 1955 is that, in terms of MSE, this approach is
suboptimal and it is better to allow some bias in order to reduce the overall MSE, which can
be achieved in the form of shrinkage.

The so-called James–Stein estimator (W. James & Stein, 1961) is

�̂�JS = (1 − 𝜌) �̂� + 𝜌 𝝁tgt,
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where 𝝁tgt is the target and 𝜌 the shrinkage factor. To be precise, regardless of the chosen
target 𝝁tgt, one can always improve the MSE,

IE
[�̂�JS − 𝝁

2
]
≤ IE

[�̂� − 𝝁
2

]
,

with a properly chosen 𝜌, such as (Jorion, 1986)

𝜌 =
(𝑁 + 2)

(𝑁 + 2) + 𝑇 × ( �̂� − 𝝁tgt)T 𝚺−1 ( �̂� − 𝝁tgt)
,

where, in practice, 𝚺 can be replaced by an estimation �̂�. The choice of 𝜌 was also considered
under heavy-tailed distributions in Srivastava and Bilodeau (1989).

It is worth emphasizing that this result holds regardless of the choice of the target 𝝁tgt. In
other words, one can choose the target as bad as desired, but still the MSE can be reduced (a
phenomenon often referred to as the Stein paradox). This happens because the value of 𝜌
automatically adapts in the following ways:

• 𝜌 → 0 as 𝑇 increases, that is, the more observations, the stronger the belief in the original
sample mean estimator;
• 𝜌 → 0 as the target disagrees with the sample mean (built-in safety mechanism under

wrongly chosen targets).

While it is true that the MSE can be reduced no matter the choice of the target, the size of the
improvement will obviously depend on how good and informative the target is. Any available
prior information can be incorporated in the target. Some reasonable and common choices
are (Jorion, 1986):

• zero: 𝝁tgt = 0;
• grand mean: 𝝁tgt =

1T �̂�
𝑁
× 1; and

• volatility-weighted grand mean: 𝝁tgt =
1T�̂�

−1
�̂�

1T�̂�
−11
× 1.

Shrinking the Covariance Matrix
Consider the covariance matrix 𝚺 and the sample covariance matrix estimator in (3.3):

�̂� =
1

𝑇 − 1

𝑇∑︁
𝑡=1

(𝒙𝑡 − �̂�) (𝒙𝑡 − �̂�)T.

As we know from Section 3.2, the sample covariance matrix �̂� is an unbiased estimator,
IE

[
�̂�
]
= 𝚺. We will now introduce some bias in the form of shrinkage.

The shrinkage estimator for the covariance matrix has the form

�̂�
sh
= (1 − 𝜌) �̂� + 𝜌 𝚺tgt,

where 𝚺tgt is the target and 𝜌 the shrinkage factor.

The idea of shrinkage of the covariance matrix had been already used in the 1980s, for example
in wireless communications systems under the term “diagonal loading” (Abramovich, 1981).
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In finance, it was popularized in the early 2000s (Ledoit & Wolf, 2003, 2004) and more
mature tools developed in recent decades (Bun et al., 2017).

Common choices for the covariance matrix target are:

• scaled identity: 𝚺tgt = 1
𝑁

Tr
(
�̂�
)
× 𝑰;

• diagonal matrix: 𝚺tgt = Diag
(
�̂�
)
, which is equivalent to using the identity matrix as the

correlation matrix target, that is, 𝑪tgt = 𝑰; and
• equal-correlation matrix: 𝑪tgt with off-diagonal elements all equal to the average cross-

correlation of assets.

The shrinkage factor 𝜌 can be determined empirically via cross-validation or analytically via
a mathematically sophisticated approach such as random matrix theory (RMT) (Bun et al.,
2006, 2017). This was made popular in the financial community by Ledoit and Wolf in the
early 2000s (Ledoit & Wolf, 2003, 2004). The idea is simple: choose 𝜌 to form the shrinkage
estimator �̂�sh in order to minimize the error measure IE

[�̂�sh − 𝚺
2

F

]
, where ∥ · ∥F denotes

the Frobenius norm. Of course, this problem is ill-posed since precisely the true covariance
matrix 𝚺 is unknown; otherwise, the so-called “oracle” solution is obtained as

𝜌 =

IE
[�̂� − 𝚺2

F

]
IE

[�̂� − 𝚺tgt
2

F

] .
This is where the magic of RMT truly shines: asymptotically for large 𝑇 and 𝑁 , one can
derive a consistent estimator that does not require knowledge of 𝚺 as

𝜌 = min

(
1,

1
𝑇

∑𝑇
𝑡=1

�̂� − 𝒙𝑡𝒙T
𝑡

2
F�̂� − 𝚺tgt

2
F

)
. (3.11)

The usefulness of RMT is that the results are extremely good even when 𝑇 and 𝑁 are not very
large, that is, the asymptotics kick in very fast in practice.

One important way to extend shrinkage is to consider heavy-tailed distributions (introduced
in Section 3.5) and derive an appropriate choice for 𝜌 under heavy tails (Chen et al., 2011;
Ollila & Raninen, 2019; Ollila et al., 2021, 2023).

It is worth pointing out that the shrinkage factor in (3.11) is derived to minimize the error
measure IE

[�̂�sh − 𝚺
2

F

]
. Alternatively, one can consider more meaningful measures of error

better suited to the purpose of portfolio design, with the drawback that the mathematical
derivation of 𝜌 becomes more involved and cannot be obtained in a nice closed-form expression
such as (3.11). Some examples include the following (cf. Feng and Palomar (2016)):

• Portfolios designed based on 𝚺 are more directly related to the inverse covariance matrix
𝚺−1 (see Chapter 7). Thus, it makes sense to measure the error in terms of the inverse
covariance matrix instead, IE

[(�̂�sh)−1 − 𝚺−1
2

F

]
(Zhang, Rubio, & Palomar, 2013).

• Portfolios are typically evaluated in terms of the Sharpe ratio, which is related to the term
𝚺−1𝝁 (see Chapter 7). Thus, it has more practical meaning to choose 𝜌 to maximize the
achieved Sharpe ratio (Ledoit & Wolf, 2017; Zhang, Rubio, Palomar, & Mestre, 2013).
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The covariance shrinkage estimator is a linear combination of the estimate �̂� and the target 𝚺tgt.
Another way to extend this idea is to consider a nonlinear shrinkage in terms of eigenvalues
of the covariance matrix, which again leads to an increased sophistication in the required
mathematics, for example, Ledoit and Wolf (2017), Bun et al. (2006), Bun et al. (2017), Bartz
(2016), and Tyler and Yi (2020).

Numerical Experiments
Figure 3.13 shows the estimation error of shrinkage estimators as a function of the number
of observations 𝑇 for synthetic Gaussian data. We can observe that a clear improvement is
achieved in the estimation of the mean vector, whereas only a modest improvement is achieved
in the estimation of the covariance matrix. As expected, the benefit of shrinkage diminishes
as the number of observations grows large.

Interestingly, shrinkage to zero seems to produce the best results. This is not unexpected since,
according to the efficient-market hypothesis (Fama, 1970), the prices are expected to contain
all the current information of the assets (including future prospects). Thus, a reasonable
forecast for the prices are just the current prices or, equivalently in terms of returns, the zero
return vector.

It is important to emphasize that these numerical results are obtained in terms of the mean
squared error of the estimators. However, in the context of portfolio optimization, the mean
squared error may not be the best measure of errors. Thus, these results should be taken with
a grain of salt and more appropriate measures of error should probably be considered (Ledoit
& Wolf, 2017).

3.6.2 Factor Models
Factor modeling is standard material in finance and can be found in many textbooks, such
as Campbell et al. (1997), Fabozzi et al. (2010), Tsay (2010), Ruppert and Matteson (2015),
Lütkepohl (2007), and Tsay (2013).

The idea is to introduce prior information into the basic i.i.d. model of the returns in (3.1),
𝒙𝑡 = 𝝁 + 𝝐𝑡 , in the form of a more sophisticated asset structure. For example, the simplest
case is the single-factor model

𝒙𝑡 = 𝜶 + 𝜷 𝑓 mkt
𝑡 + 𝝐𝑡 , (3.12)

where 𝜶 ∈ R𝑁 and 𝜷 ∈ R𝑁 are the so-called “alpha” and “beta” of the 𝑁 assets, respectively,
the scalar 𝑓 mkt

𝑡 is the market factor (or market index), and 𝝐𝑡 is the zero-mean residual
component. The “beta” refers to how sensitive the asset is to the overall market, whereas
the “alpha” indicates the excess return of the asset. As explored in Chapter 6, one common
constraint in portfolio design is to be market neutral, which refers precisely to the portfolio
being orthogonal to 𝜷.

The single-factor model in (3.12) has some connection with the capital asset pricing model
(CAPM) introduced by Sharpe (1964). In particular, the CAPM is concerned with the expected
excess returns and assumes a zero “alpha”,

IE[𝑥𝑖] − 𝑟f = 𝛽𝑖
(
IE

[
𝑓 mkt]

]
− 𝑟f

)
, (3.13)
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Figure 3.13 Estimation error of different shrinkage estimators vs. number of
observations (for Gaussian data with 𝑁 = 100).

where 𝑟f denotes the risk-free asset return.

More generally, the multi-factor model is

𝒙𝑡 = 𝜶 + 𝑩 𝒇𝑡 + 𝝐𝑡 , (3.14)

where now 𝒇𝑡 ∈ R𝐾 contains 𝐾 factors (also termed risk factors)—typically with 𝐾 ≪ 𝑁—
and the matrix 𝑩 ∈ R𝑁×𝐾 contains along its columns the betas (also called factor loadings)
for each of the factors. It is also possible to include time dependency in the factors, leading to
the so-called dynamic factor models (Fabozzi et al., 2010).

The residual term 𝝐𝑡 in (3.12) and (3.14) – typically referred to as the idiosyncratic component
– is assumed to have independent elements or, in other words, a diagonal covariance matrix
𝚿 = Diag(𝜓1, . . . , 𝜓𝑁 ) ∈ R𝑁×𝑁 . The rationale is that the correlation among the assets is
already modeled by the other term via the factors.

One key realization in factor modeling is that the number of parameters of the model to be
estimated is significantly reduced. For example, in the case of 𝑁 = 500 assets and 𝐾 = 3
factors, the number of parameters in the plain i.i.d. model in (3.1) is 125750 (𝑁 for 𝝁 and
𝑁 (𝑁 + 1)/2 for the symmetric covariance matrix 𝚺), whereas for the factor model in (3.14)
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the number of parameters is 2500 (𝑁 for 𝜶, 𝑁𝐾 for 𝑩, and 𝑁 for the diagonal covariance
matrix 𝚿).

The mean and covariance matrix according to the model (3.14) are given by

𝝁 = 𝜶 + 𝑩𝝁 𝑓 ,

𝚺 = 𝑩𝚺 𝑓 𝑩
T + 𝚿,

(3.15)

where 𝝁 𝑓 and 𝚺 𝑓 are the mean vector and covariance matrix, respectively, of the factors
𝒇𝑡 . Observe that the covariance matrix has effectively been decomposed into a low-rank
component 𝑩𝚺 𝑓 𝑩

T (with rank 𝐾) and a full-rank diagonal component 𝚿.

Essentially, factor models decompose the asset returns into two parts: the low-dimensional
factor component, 𝑩 𝒇𝑡 , and the idiosyncratic residual noise 𝝐𝑡 . Depending on the assumptions
made on the factors 𝒇𝑡 and “betas” in 𝑩, factor models can be classified into three types:

• Macroeconomic factor models: Factors are observable economic and financial time series
but the loading matrix 𝑩 is unknown.

• Fundamental factor models: Some models construct the loading matrix 𝑩 from asset
characteristics with unknown factors, whereas others construct the factors from asset
characteristics first.

• Statistical factor models: Both the factors and the loading matrix 𝑩 are unknown.

Macroeconomic Factor Models
In macroeconomic factor models, the factors are observable time series such as the market
index, the growth rate of the GDP,5 interest rate, inflation rate, and so on. In the investment
world, factors are computed in complicated proprietary ways from a variety of nonaccessible
sources of data and, typically, investment funds pay a substantial premium to have access
to them. Such expensive factors are not available to small investors, which have to rely on
readily available sources of data.

Given the factors, the estimation of the model parameters can be easily formulated as a simple
least squares regression problem,

minimize
𝜶,𝑩

𝑇∑︁
𝑡=1

∥𝒙𝑡 − (𝜶 + 𝑩 𝒇𝑡 )∥22,

from which 𝝁 and 𝚺 can then be obtained from (3.15).

Fundamental Factor Models
Fundamental factor models use observable asset-specific characteristics (termed fundamentals),
such as industry classification, market capitalization, style classification (e.g., value, growth),
to determine the factors. Typically, two approaches are followed in the industry:

5 The gross domestic product (GDP) is a monetary measure of the market value of all the final goods and services
produced and sold in a specific time period by a country.
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• Fama–French approach: First, a portfolio is formed based on the chosen asset-specific
characteristics to obtain the factors 𝒇𝑡 . Then, the loading factors 𝑩 are obtained as in the
macroeconomic factor models. The original model was composed of 𝐾 = 3 factors, namely,
the size of firms, book-to-market values, and excess return on the market (Fama & French,
1992), and was later extended to 𝐾 = 5 factors (Fama & French, 2015).

• Barra risk factor analysis approach (developed by Barra Inc. in 1975): First, the loading
factors in 𝑩 are constructed from observable asset characteristics (e.g., based on industry
classification). Then, the factors 𝒇𝑡 can be estimated via regression (note that this is the
opposite of macroeconomic factor models).

Statistical Factor Models
Statistical factor models work under the premise that both the factors 𝒇𝑡 and the loading factor
matrix 𝑩 are unknown. At first, it may seem impossible to be able to fit such a model due to
so many unknowns. After careful inspection, one realizes that the effect of the factor model
structure in (3.14) is to introduce some structure in the parameters as in (3.15). Basically, now
the covariance matrix 𝚺 has a very specific structure in the form of a low-rank component
𝑩𝚺 𝑓 𝑩

T and a diagonal matrix 𝚿. Since 𝚺 𝑓 is unknown, this decomposition has an infinite
number of solutions because we can always right-multiply 𝑩 and multiply 𝚺 𝑓 on both sides
by an arbitrary invertible matrix. Thus, without loss of generality, we will assume that the
factors are zero-mean and normalized (i.e., 𝝁 𝑓 = 0 and 𝚺 𝑓 = 𝑰).

A heuristic formulation follows from first computing the sample covariance matrix �̂� and
then approximating it with the desired structure (Sardarabadi & van der Veen, 2018):

minimize
𝑩,𝝍

∥�̂� −
(
𝑩𝑩T + Diag(𝝍)

)
∥2F.

Alternatively, we can directly formulate the ML estimation of the parameters (similarly
to Section 3.4) but imposing such a structure. Suppose that the returns 𝒙𝑡 , factors 𝒇𝑡 , and
residuals 𝝐𝑡 follow a Gaussian distribution, then the ML estimation can be formulated as

minimize
𝜶,𝚺,𝑩,𝝍

log det(𝚺) + 1
𝑇

𝑇∑︁
𝑡=1

(𝒙𝑡 − 𝜶)T𝚺−1(𝒙𝑡 − 𝜶)

subject to 𝚺 = 𝑩𝑩T + Diag(𝝍).
(3.16)

Unfortunately, due to the nonconvex nature of the structural constraint, this problem is difficult
to solve. Iterative algorithms were developed in Santamaria et al. (2017) and Khamaru and
Mazumder (2019).

Even better, we can depart from the unrealistic Gaussian assumption and formulate the ML
estimation under a heavy-tailed distribution, making the problem even more complicated. An
iterative MM-based algorithm was proposed for this robust formulation in Zhou et al. (2020).

Another extension to this problem formulation comes from introducing additional structure
commonly observed in financial data such as nonnegative asset correlation (see Section 2.5 in
Chapter 2) as considered in Zhou et al. (2022).
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Principal Component Analysis (PCA)
High-dimensional data can be challenging to analyze and model; as a consequence it has
been widely studied by researchers in both statistics and signal processing. In most practical
applications, high-dimensional data have most of their variation in a lower-dimensional
subspace that can be found using dimension reduction techniques. The most popular one is
principal component analysis (PCA), which can be used as an approximated way to solve the
statistical factor model fitting in (3.16). We will now introduce the basics of PCA; for more
information, the reader is referred to standard textbooks such as Jolliffe (2002), Hastie et al.
(2009), and G. James et al. (2013).

PCA tries to capture the direction 𝒖 of maximum variance of the vector-valued random
variable 𝒙 by maximizing the variance, Var(𝒖T𝒙) = 𝒖T𝚺𝒖, whose solution is given by
the eigenvector of 𝚺 corresponding to the maximum eigenvalue. This procedure can be
repeated by adding more directions of maximum variance provided they are orthogonal to the
previously found ones, which reduces to an eigenvalue decomposition problem. Let 𝑼𝑫𝑼T

be the eigendecomposition of matrix 𝚺, where 𝑼 contains the (orthogonal) eigenvectors
along the columns and 𝑫 is a diagonal matrix containing the eigenvalues in decreasing order,
𝜆1 ≥ · · · ≥ 𝜆𝑁 . Then, the best low-rank approximation of matrix 𝚺 can be easily obtained
using the strongest eigenvector-eigenvalues. That is, the best approximation with rank 𝐾
is 𝚺 ≈ 𝑼 (𝐾 )𝑫 (𝐾 )𝑼 (𝐾 ) T, where matrix 𝑼 (𝐾 ) contains the first 𝐾 columns of 𝑼 and 𝑫 (𝐾 )

is a diagonal matrix containing the largest 𝐾 diagonal elements. The larger the number of
components 𝐾 , the better the approximation will be but with the risk of overfitting. In practice,
choosing 𝐾 is critical, as a relatively small value of 𝐾 may already capture a large percentage
of the energy.

Using PCA to approximate the solution to (3.16) is simple. First, start by computing the sample
covariance matrix (i.e., ignoring the structure). At this point, if we were to approximate this
matrix with its 𝐾 principal components 𝑼 (𝐾 )𝑫 (𝐾 )𝑼 (𝐾 ) T, we would be missing the diagonal
matrix component 𝚿. A simple heuristic approximates this diagonal matrix by a scaled
identity matrix 𝜅𝑰, where 𝜅 is the average of the 𝑁 − 𝐾 smallest eigenvalues. Summarizing,
the approximate solution is

𝑩 = 𝑼 (𝐾 )Diag
(√︁
𝜆1 − 𝜅, . . . ,

√︁
𝜆𝐾 − 𝜅

)
,

𝚿 = 𝜅𝑰,

where 𝜅 = 1
𝑁−𝐾

∑𝑁
𝑖=𝐾+1 𝐷𝑖𝑖. This finally leads to the estimator

�̂� = 𝑼Diag (𝜆1, . . . , 𝜆𝐾 , 𝜅, . . . , 𝜅)𝑼T.

Interestingly, what PCA has achieved in this case is some kind of noise averaging of the
smallest eigenvalues. This idea of noise cleaning is reminiscent of the concept of shrinkage
from Section 3.6.1.

Numerical Experiments
For illustration purposes, we now evaluate the estimation of the covariance matrix under the
factor model assumption following the formulation in (3.16). It is important to emphasize that
if the actual data do not comply with the assumed factor model structure, then the estimation
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under the formulation in (3.16) may produce worse results than the plain sample covariance
matrix. Therefore, the choice of employing the factor model structure in the estimation process
has to be carefully made at the risk of the user. Trading strategies based on factor modeling
are discussed in detail in Fabozzi et al. (2010).

Figure 3.14 shows the estimation error of the covariance matrix estimated under the factor
model structure in (3.16) for different numbers of principal components, compared to the
benchmark sample covariance matrix, as a function of the number of observations 𝑇 for
synthetic Gaussian data with a covariance matrix that complies with the factor model structure
with 𝐾 = 3. We can observe that when the estimation method uses the true value of 𝐾 , then the
estimation becomes slightly better than the sample covariance matrix (as expected). However,
using the wrong choice of 𝐾 can have drastic consequences (such as 𝐾 = 1).
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Figure 3.14 Estimation error of covariance matrix under factor modeling vs. number
of observations (with 𝑁 = 100).

3.6.3 Black–Litterman Model
The Black–Litterman model was proposed in 1991 (Black & Litterman, 1991) and has become
standard material in finance as described in many textbooks, such as Fabozzi et al. (2010) and
Meucci (2005). It is a mathematical technique that combines parameter estimation based on
historical observation of the past 𝑇 samples 𝒙1, . . . , 𝒙𝑇 with some prior information on these
parameters.

The Black–Litterman model considers the following two components:

• Market equilibrium: One source of information for 𝝁 is the market, for example, the sample
mean �̂� = 1

𝑇

∑𝑇
𝑡=1 𝒙𝑡 . We can explicitly write this estimate 𝝅 = �̂� in terms of the actual 𝝁
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and the estimation error:
𝝅 = 𝝁 + 𝝐 , (3.17)

where the error component 𝝐 is assumed zero-mean and with covariance matrix 𝜏𝚺. The
parameter 𝜏 can be selected via cross-validation or simply chosen as 𝜏 = 1/𝑇 (i.e., the
more observations the less uncertainty on the market equilibrium).

• Investor’s views: Suppose we have 𝐾 views summarized from investors written in the form

𝒗 = 𝑷𝝁 + 𝒆, (3.18)

where 𝒗 ∈ R𝐾 and 𝑷 ∈ R𝐾×𝑁 characterize the absolute or relative views, and the error
term 𝒆, which is assumed zero-mean with covariance 𝛀, measures the uncertainty of the
views. Exactly how to obtain such views is the secret of each investor.

Example 3.1 (Quantitative investor’s views) Suppose there are 𝑁 = 5 stocks and two
independent views on them (Fabozzi et al., 2010):

• Stock 1 will have a return of 1.5% with standard deviation of 1%.
• Stock 3 will outperform Stock 2 by 4% with a standard deviation of 1%.

Mathematically, we can express these two views as[
1.5%
4%

]
=

[
1 0 0 0 0
0 −1 1 0 0

]
𝝁 + 𝒆,

with the covariance of 𝒆 given by 𝛀 =

[
1%2 0

0 1%2

]
.

On some occasions, the investor may only have qualitative views (as opposed to quantitative
ones), that is, only matrix 𝑷 is specified while the views 𝒗 and the uncertainty 𝛀 are undefined.
Then, one can choose them as follows (Meucci, 2005):

𝑣𝑖 = (𝑷𝝅)𝑖 + 𝜂𝑖
√︁
(𝑷𝚺𝑷T)𝑖𝑖 𝑖 = 1, . . . , 𝐾,

where 𝜂𝑖 ∈ {−𝛽,−𝛼, +𝛼, +𝛽} defines “very bearish,” “bearish,” “bullish,” and “very bullish”
views, respectively (typical choices are 𝛼 = 1 and 𝛽 = 2); as for the uncertainty,

𝛀 =
1
𝑐
𝑷𝚺𝑷T,

where the scatter structure of the uncertainty is inherited from the market volatilities and
correlations, and 𝑐 ∈ (0,∞) represents the overall level of confidence in the views.

An alternative to the previous market equilibrium 𝝅 = �̂� can be derived from the CAPM
model in (3.13) as

𝝅 = 𝜷
(
IE

[
𝑓 mkt]

]
− 𝑟f

)
.

Merging the Market Equilibrium with the Views
The combination of the market equilibrium and the investor’s views can be mathematically
formulated in a variety of ways, ranging from least squares formulations, through maximum
likelihood, and even different Bayesian formulations. Interestingly, the solution is the same
(or very similar) as we briefly discuss next in three particular formulations.
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• Weighted least squares formulation: First, we rewrite the equations (3.17) and (3.18) in a
more compact way as

𝒚 = 𝑿𝝁 + 𝒏,

where 𝒚 =

[
𝝅
𝒗

]
, 𝑿 =

[
𝑰
𝑷

]
, and the covariance matrix of the noise term 𝒏 is given by

𝑽 =

[
𝜏𝚺 0
0 𝛀

]
. Then we can formulate the problem as a weighted least squares problem

(Feng & Palomar, 2016):

minimize
𝝁

(𝒚 − 𝑿𝝁)T 𝑽−1 (𝒚 − 𝑿𝝁) ,

with solution
𝝁BL =

(
𝑿T𝑽−1𝑿

)−1
𝑽−1𝒚

=
(
(𝜏𝚺)−1 + 𝑷T𝛀−1𝑷

)−1 (
(𝜏𝚺)−1𝝅 + 𝑷T𝛀−1𝒗

)
,

(3.19)

which has covariance matrix

Cov(𝝁BL) =
(
(𝜏𝚺)−1 + 𝑷T𝛀−1𝑷

)−1
. (3.20)

• Original Bayesian formulation: The original formulation (Black & Litterman, 1991)
assumes prior Gaussian distributions. In particular, the returns are modeled as 𝒙 ∼ N(𝝁,𝚺),
where 𝚺 is assumed known but now 𝝁 is modeled as random with a Gaussian distribution:

𝝁 ∼ N(𝝅, 𝜏𝚺),

where 𝝅 represents the best guess for 𝝁 and 𝜏𝚺 is the uncertainty of this guess. Note that
this implies that 𝒙 ∼ N(𝝅, (1 + 𝜏)𝚺). The views are also modeled as following a Gaussian
distribution:

𝑷𝝁 ∼ N(𝒗,𝛀).

Then, the posterior distribution of 𝝁 given 𝒗 and 𝛀 follows from Bayes’ formula as

𝝁 | 𝒗,𝛀 ∼ N (𝝁BL,𝚺BL) ,

where the posterior mean is exactly like the previous LS solution in (3.19) and 𝚺BL =

Cov(𝝁BL) + 𝚺 with Cov(𝝁BL) in (3.20). By using the matrix inversion lemma, we can
further rewrite the Black–Litterman estimators for the mean and covariance matrix as

𝝁BL = 𝝅 + 𝜏𝚺𝑷T (
𝜏𝑷𝚺𝑷T +𝛀

)−1 (𝒗 − 𝑷𝝅),

𝚺BL = (1 + 𝜏)𝚺 − 𝜏2𝚺𝑷T (
𝜏𝑷𝚺𝑷T +𝛀

)−1
𝑷𝚺.

(3.21)

• Alternative Bayesian formulation: It is worth mentioning a variation of the original
Bayesian formulation in Meucci (2005), where the views are modeled on the random
returns, 𝒗 = 𝑷𝒙 + 𝒆, unlike (3.18) where the views are on 𝝁. In this case, one can similarly
derive the posterior distribution of the returns with a result similar to (3.21).

As a final observation, it is insightful to consider the two extremes:
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• 𝜏 = 0: We give total accuracy to the market equilibrium and, as expected, we get

𝝁BL = 𝝅.

• 𝜏 → ∞: We give no value at all to the market equilibrium and, therefore, the investor’s
views dominate:

𝝁BL =
(
𝑷T𝛀−1𝑷

)−1 (
𝑷T𝛀−1𝒗

)
.

In the general case with 0 < 𝜏 < ∞, 𝝁BL is a weighted combination of these two extreme
cases, which is actually related to the concept of shrinkage explored in Section 3.6.1.

3.7 Summary
Countless models have been put forth in the literature for financial data. The i.i.d. model may
be a rough approximation of reality, but it is functional and widely used by academics and
practitioners. Some key points of the i.i.d. model for financial data include:

• Sample estimators perform poorly: This is not unexpected since the sample mean and sample
covariance matrix are optimal estimators under the assumption of Gaussian-distributed
data, which does not hold in practice.

• Robust estimators are necessary: The spatial median and Tyler estimator are examples of
robust estimators against outliers for the mean vector and covariance matrix, respectively.

• Heavy-tailed estimators are well suited to financial data: Estimators derived under the
assumption of heavy-tailed distributed data are naturally robust and fit financial data well.
In addition, simple iterative algorithms can be used to compute them in practice.

• Estimating the mean vector from historical data is extremely noisy: Practitioners typically
obtain factors from data providers (at a high premium) and then use them for regression;
using just historical data is the “poor man’s” substitute and it is not without its risks.

• Prior information should be used when available: This can be, among others, in the form of
a shrinkage target, factor modeling, or information fusion via the Black–Litterman model
(or similar).

Exercises
3.1 (Unbiasedness and consistency of sample mean estimator) Consider a univariate
Gaussian-distributed i.i.d. time series with mean 0.01 and variance 1, 𝑥𝑡 ∼ N(0.01, 1), 𝑡 =
1, . . . , 𝑇 .

a. Generate data for 𝑇 = 10 and compute the sample mean. Repeat the experiment multiple
times and plot the histogram of the estimated mean value. Confirm that the expected value
of the histogram coincides with the true mean value.

b. Now repeat the experiment with 𝑇 = 20 observations and compare the histograms (also
compute the standard deviation of each histogram).

c. Finally, repeat the experiment multiple times, for different numbers of observations
𝑇 = 10, 20, . . . , 100, and plot the mean squared error of the estimation as a function of 𝑇.
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3.2 (Bias of sample covariance matrix) Suppose we have𝑇 i.i.d. 𝑁-dimensional observations
𝒙1, . . . , 𝒙𝑇 distributed as 𝒙𝑡 ∼ N(𝝁,𝚺).

a. Derive the following expected value based on the true 𝝁:

IE

[
𝑇∑︁
𝑡=1

(𝒙𝑡 − 𝝁) (𝒙𝑡 − 𝝁)T
]
.

b. Derive the following expected value based now on the sample mean �̂� = 1
𝑇

∑𝑇
𝑡=1 𝒙𝑡 :

IE

[
𝑇∑︁
𝑡=1

(𝒙𝑡 − �̂�) (𝒙𝑡 − �̂�)T
]
.

c. Discuss the appropriate normalization factor, 1/(𝑇 −1) or 1/𝑇 , to be used in the expression
of the sample covariance matrix.

3.3 (Location estimators) Consider a two-dimensional (𝑁 = 2) Gaussian-distributed i.i.d.
time series with zero mean and identity covariance matrix, 𝒙𝑡 ∼ N(0, 𝑰), 𝑡 = 1, . . . , 𝑇 .

a. Generate data for 𝑇 = 20 and estimate the mean vector 𝝁 via the sample mean, the median,
and the spatial median. Visualize the results in a scatter plot.

b. Repeat the experiment multiple times, for different numbers of observations 𝑇 =

10, 20, . . . , 100, and plot the mean squared error as a function of 𝑇 .

3.4 (Location estimators with outliers) Consider a two-dimensional (𝑁 = 2) Gaussian-
distributed i.i.d. time series with zero mean and identity covariance matrix, 𝒙𝑡 ∼ N(0, 𝑰), 𝑡 =
1, . . . , 𝑇 .

a. Generate data for 𝑇 = 20 and estimate the mean vector 𝝁 via the sample mean, the median,
and the spatial median. Visualize the results in a scatter plot. Repeat the experiment
multiple times and compute the mean squared error of the estimators.

b. Then, add some small percentage of outliers in the observations, for example, distributed
as 𝒙𝑡 ∼ N(0.1 × 1, 𝑰), and compute again the mean squared error of the estimators.

c. Finally, repeat the experiment multiple times and plot the estimation error as a function of
the percentage of outliers. Observe the robustness of the three estimators against outliers
and discuss.

3.5 (Derivation of sample mean as location estimator) Given the observations 𝒙𝑡 , 𝑡 =
1, . . . , 𝑇 , the sample mean can be derived as the solution to the following optimization
problem:

minimize
𝝁

𝑇∑︁
𝑡=1

∥𝒙𝑡 − 𝝁∥22.

a. Is this problem convex? What class of optimization problem is it?
b. Derive the solution in closed form by setting the gradient with respect to 𝝁 to zero.

3.6 (Computation of spatial median as location estimator) Given the observations 𝒙𝑡 , 𝑡 =
1, . . . , 𝑇 , the spatial median can be derived as the solution to the following optimization
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problem:

minimize
𝝁

𝑇∑︁
𝑡=1

∥𝒙𝑡 − 𝝁∥2.

a. Is this problem convex? What class of optimization problem is it?
b. Can a closed-form solution be obtained as in the case of the sample mean?
c. Develop an iterative algorithm to compute the spatial median by solving a sequence of

weighted sample means. Hint: find a majorizer of the ℓ2-norm in the form of a squared
ℓ2-norm and then employ the majorization–minimization framework.

3.7 (ML estimation of covariance matrix) Consider an 𝑁-dimensional i.i.d. time series with
zero mean and identity covariance matrix, 𝒙𝑡 ∼ N(0, 𝑰), 𝑡 = 1, . . . , 𝑇 .

a. Generate Gaussian data for 𝑁 = 10 and 𝑇 = 50 and estimate the covariance matrix 𝚺
via the Gaussian ML estimator and the heavy-tailed ML estimator. Run the experiment
multiple times and compute the mean squared error of the estimators.

b. Now repeat the whole experiment but generating instead heavy-tailed data (e.g., following
a 𝑡 distribution) with the same mean and covariance matrix. Observe the robustness of the
two estimators against heavy tails and discuss.

3.8 (Derivation of Gaussian ML estimators) Given𝑇 𝑁-dimensional observations 𝒙1, . . . , 𝒙𝑇 ,
the Gaussian ML estimation for 𝝁 and 𝚺 is formulated as

minimize
𝝁,𝚺

log det(𝚺) + 1
𝑇

𝑇∑︁
𝑡=1

(𝒙𝑡 − 𝝁)T𝚺−1(𝒙𝑡 − 𝝁).

Derive the estimators by setting the gradient of the objective function with respect to 𝝁 and
𝚺−1 to zero.

3.9 (Derivation of heavy-tailed ML estimators) Given 𝑇 𝑁-dimensional observations
𝒙1, . . . , 𝒙𝑇 , the heavy-tailed ML estimation (under the 𝑡 distribution with degrees of freedom
𝜈) for 𝝁 and 𝚺 is formulated as

minimize
𝝁,𝚺

log det(𝚺) + 𝜈 + 𝑁
𝑇

𝑇∑︁
𝑡=1

log
(
1 + 1

𝜈
(𝒙𝑡 − 𝝁)T𝚺−1(𝒙𝑡 − 𝝁)

)
.

Derive the fixed-point equations characterizing the estimators by setting the gradient of the
objective function with respect to 𝝁 and 𝚺−1 to zero.

3.10 (Shrinkage James–Stein estimator for the sample mean) Consider a Gaussian-distributed
i.i.d. 𝑁-dimensional time series with zero mean and identity covariance matrix, 𝒙𝑡 ∼
N(0, 𝑰), 𝑡 = 1, . . . , 𝑇 .

a. Generate data for 𝑁 = 10 and 𝑇 = 20, and estimate the mean vector with the sample mean
and with the shrinkage James–Stein estimator.

b. Run the experiment multiple times and compute the mean squared error of the estimators.
c. Finally, repeat the experiment multiple times, for different numbers of observations
𝑇 = 10, 20, . . . , 100, and plot the mean squared error as a function of 𝑇 .
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3.11 (Shrinkage sample covariance matrix estimator) Consider a Gaussian-distributed i.i.d.
𝑁-dimensional time series with zero mean and identity covariance matrix, 𝒙𝑡 ∼ N(0, 𝑰), 𝑡 =
1, . . . , 𝑇 .

a. Generate data for 𝑁 = 10 and 𝑇 = 20, and estimate the covariance matrix with the sample
covariance matrix and with the shrinkage Ledoit–Wolf estimator.

b. Run the experiment multiple times and compute the mean squared error of the estimators.
c. Finally, repeat the experiment multiple times, for different numbers of observations
𝑇 = 10, 20, . . . , 100, and plot the mean squared error as a function of 𝑇 .

3.12 (Factor model estimator) Consider a Gaussian-distributed i.i.d. 𝑁-dimensional time
series with zero mean and covariance matrix with a single-factor structure 𝚺 = 𝜷𝜷T + 𝑰 (e.g.,
with 𝜷 = 1), 𝒙𝑡 ∼ N(0,𝚺), 𝑡 = 1, . . . , 𝑇 .

a. Generate data for 𝑁 = 10 and 𝑇 = 20, and estimate the covariance matrix with the sample
covariance matrix and with the single-factor model structure (e.g., with PCA).

b. Run the experiment multiple times and compute the mean squared error of the estimators.
c. Finally, repeat the experiment multiple times, for different numbers of observations
𝑇 = 10, 20, . . . , 100, and plot the mean squared error as a function of 𝑇 .
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4

Financial Data: Time Series Modeling

“It is very hard to predict, especially the future.”

— Niels Bohr

The efficient-market hypothesis states that the price of a security already contains all the
publicly available information about the future (Fama, 1970). From that, it makes sense to
model a sequence of prices as a random walk (Malkiel, 1973) or, equivalently, to model
returns as a sequence of independent and identically distributed (i.i.d.) random variables as
explored in Chapter 3. This is a widely adopted model by practitioners and academics.

Nevertheless, another line of thought precisely supports the opposite view in favor of inefficient
and irrational markets (Shiller, 1981) under so-called behavioral finance (Shiller, 2003).
Indeed, it is undeniable that financial data exhibit some temporal structure that could be
potentially modeled and exploited (Lo & Mackinlay, 2002). One of the most noticeable
structural aspects is the volatility clustering (described in Chapter 2). This chapter examines
the temporal structure in financial time series in the form of mean models and variance (or
volatility) models with an emphasis on the Kalman filter.

4.1 Temporal Structure
From the exploratory analysis of financial data and stylized facts in Chapter 2, one can either
assume the i.i.d. model, as pursued in detail in Chapter 3, or try to incorporate some temporal
structure in the model, as this chapter attempts.

The i.i.d. model can be motivated by Fama’s efficient-market hypothesis (Fama, 1970), which
holds that one cannot forecast future prices since the price of a security already contains all
the publicly available information. On the other hand, an equally popular line of thought in
finance supports inefficient and irrational markets (Shiller, 1981) under behavioral finance
(Shiller, 2003).1 Under this premise, the market is predictable to some degree and perhaps

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.

1 It is somewhat interesting that both Robert J. Shiller and Eugene F. Fama were awarded the 2013 Sveriges
Riksbank Prize in Economic Sciences in Memory of Alfred Nobel, when they support opposing views on the
nature of financial markets, namely, the inefficiency of markets and the efficient-market hypothesis, respectively.
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it may move in trends so that the study of past prices can be used to forecast future price
direction.

Thus, rather than assuming the random walk model (Malkiel, 1973), we will focus on
nonrandom walk models (Lo & Mackinlay, 2002). Suppose we have 𝑁 securities or tradable
assets and let 𝒙𝑡 ∈ R𝑁 be the random returns of the assets at time 𝑡. Instead of using the
i.i.d. model for the returns, 𝒙𝑡 = 𝝁 + 𝝐𝑡 as in (3.1), we will now transition to a more general
model in which the returns, 𝒙𝑡 , are modeled conditioned on the past observations, denoted by
F𝑡−1 ≜ {. . . , 𝒙𝑡−2, 𝒙𝑡−1}, and then write

𝒙𝑡 = 𝝁𝑡 + 𝝐𝑡 , (4.1)

where 𝝁𝑡 ∈ R𝑁 is the conditional expected return

𝝁𝑡 = IE [𝒙𝑡 | F𝑡−1]

and 𝝐𝑡 ∈ R𝑁 denotes the error in the model (also called innovation or residual) with zero
mean and conditional covariance matrix

𝚺𝑡 = IE
[
(𝒙𝑡 − 𝝁𝑡 ) (𝒙𝑡 − 𝝁𝑡 )T | F𝑡−1

]
.

The i.i.d. model in (3.1) from Chapter 3 can be obtained with the particular choice 𝝁𝑡 = 𝝁
and 𝚺𝑡 = 𝚺, which remain fixed over time.

Modeling the returns 𝒙𝑡 conditioned on the historical data F𝑡−1 is precisely one of the
objectives in the field of econometrics, which integrates statistical and mathematical models to
formulate theories or test existing hypotheses in economics, as well as to predict future trends
based on historical data. Figure 4.1 shows an example of a synthetic univariate Gaussian
AR(1) time series (model described later), where we can observe some temporal structure.
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AR(1) time series

Figure 4.1 Example of a synthetic Gaussian AR(1) time series.

Some accessible textbooks that cover financial data modeling include Tsay (2010) and Ruppert
and Matteson (2015), with more emphasis on the multivariate case in Lütkepohl (2007) and
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Tsay (2013). Some excellent survey papers are also available, such as Bollerslev et al. (1992),
Taylor (1994), and Poon and Granger (2003).

This chapter deviates slightly from the conventional econometric modeling approaches, which
typically revolve around autoregressive models and “GARCH” volatility models. Instead,
the emphasis is placed on the simplicity of models combined with the versatile Kalman
filter (often underutilized in financial literature, although still covered in Tsay (2010) and
Lütkepohl (2007)). Additionally, stochastic volatility modeling is emphasized here, which
frequently does not receive the attention it deserves in favor of more popular “GARCH”
models. Specifically, after an introduction to Kalman filtering in Section 4.2, the following
two families of models are presented:

• mean models: for the conditional expected return 𝝁𝑡 = IE [𝒙𝑡 | F𝑡−1] in Section 4.3; and

• variance models: for the conditional covariance matrix𝚺𝑡 = IE
[
(𝒙𝑡 − 𝝁𝑡 ) (𝒙𝑡 − 𝝁𝑡 )T | F𝑡−1

]
in Section 4.4.

4.2 Kalman Filter
State-space modeling provides a unified framework for treating a wide range of problems in
time series analysis. It can be thought of as a universal and flexible modeling approach with a
very efficient algorithm: the Kalman filter. The basic idea is to assume that the evolution of
the system over time is driven by a series of unobserved or hidden values, which can only be
measured indirectly through observations of the system output. This modeling can be used
for filtering, smoothing, and forecasting.

The Kalman filter is named after Rudolf E. Kalman, who was one of the primary developers of
the theory (Kalman, 1960). It is sometimes called the Kalman–Bucy filter or even Stratonovich–
Kalman–Bucy filter, because Richard S. Bucy also contributed to the theory and Ruslan
Stratonovich earlier proposed a more general nonlinear version. Arguably, some of the most
comprehensive and authoritative classical references for state-space models and Kalman
filtering include the textbooks Anderson and Moore (1979) and Durbin and Koopman (2012),
which was originally published in 2001. Other textbook references on time series and the
Kalman filter include Brockwell and Davis (2002), Shumway and Stoffer (2017), Harvey
(1989) and, in particular, for financial time series, Zivot et al. (2004), Tsay (2010), Lütkepohl
(2007), and Harvey and Koopman (2009).

The Kalman filter, which was employed by NASA during the 1960s in the Apollo program,
now boasts a vast array of technological applications. It is commonly utilized in the guidance,
navigation, and control of vehicles, including aircraft, spacecraft, and maritime vessels. It has
also found applications in time series analysis, signal processing, and econometrics. More
recently, it has become a key component in robotic motion planning and control, as well as
trajectory optimization.

Currently, the software implementation of Kalman filtering is widespread and numerous
libraries are available in most programming languages, for example Tusell (2011), Petris and
Petrone (2011), Helske (2017), and Holmes et al. (2012) for the R programming language.
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4.2.1 State-Space Model
Mathematically, the Kalman filter is based on the following linear Gaussian state-space model
with discrete time 𝑡 = 1, . . . , 𝑇 (Durbin & Koopman, 2012):

𝒚𝑡 = 𝒁𝜶𝑡 + 𝝐𝑡
𝜶𝑡+1 = 𝑻𝜶𝑡 + 𝜼𝑡

(observation equation),
(state equation),

(4.2)

where 𝒚𝑡 denotes the observations over time with observation matrix 𝒁, 𝜶𝑡 represents the
unobserved or hidden internal state with state transition matrix 𝑻, and the two noise terms 𝝐𝑡
and 𝜼𝑡 are Gaussian distributed with zero mean and covariance matrices 𝑯 and 𝑸, respectively,
that is, 𝝐𝑡 ∼ N(0,𝑯) and 𝜼𝑡 ∼ N(0,𝑸). The initial state can be modeled as 𝜶1 ∼ N(𝒂1, 𝑷1).
Mature and efficient software implementations of the model in (4.2) are readily available, for
example Helske (2017).2

It is worth mentioning that an alternative notation widespread in the literature for the state-
space model (4.2) is to shift the time index in the state equation by one: 𝜶𝑡 = 𝑻𝜶𝑡−1 + 𝜼𝑡 . This
change in notation only has a slight effect on the initial point of the system, which is now 𝜶0
(corresponding to the time before the first observation) instead of 𝜶1 (corresponding to the
same time as the first observation); other than that, it is just a notational preference.

The parameters of the state-space model in (4.2) (i.e., 𝒁, 𝑻, 𝑯, 𝑸, 𝒂1, and 𝑷1) can be provided
by the user (if known). Otherwise, they can be inferred from the data with algorithms based
on maximum likelihood estimation. Again, mature and efficient software implementations are
available for parameter fitting (Holmes et al., 2012).3 In order to build some intuition about
state-space models, let us look at a simple yet illustrative example.

Example 4.1 (Tracking via state-space model) Suppose we want to track an object in one
dimension over time, 𝑥𝑡 , from noisy measurements 𝑦𝑡 = 𝑥𝑡 + 𝜖𝑡 measured at time intervals Δ𝑡.
We provide four different ways to model this system, from the simplest to the most advanced,
based on the state-space model in (4.2).

1. If we define the internal state simply as the position, 𝛼𝑡 = 𝑥𝑡 , then (4.2) simply becomes

𝑦𝑡 = 𝑥𝑡 + 𝜖𝑡 ,
𝑥𝑡+1 = 𝑥𝑡 + 𝜂𝑡 ,

where it is tacitly assumed that the position 𝑥𝑡 does not change much.

2. If now we incorporate the velocity 𝑣𝑡 in the internal state, 𝜶𝑡 =
[
𝑥𝑡
𝑣𝑡

]
, then the state-space

model becomes

𝑦𝑡 =
[
1 0

] [
𝑥𝑡
𝑣𝑡

]
+ 𝜖𝑡 ,[

𝑥𝑡+1
𝑣𝑡+1

]
=

[
1 Δ𝑡

0 1

] [
𝑥𝑡
𝑣𝑡

]
+ 𝜼𝑡 ,

2 The R package KFAS implements the Kalman filter for the model (4.2) (Helske, 2017). The Python package
filterpy provides Kalman methods.

3 The R package MARSS implements algorithms for fitting the unknown parameters of the state-space model (4.2)
based on observed time series data (Holmes et al., 2012).

https://cran.r-project.org/package=KFAS
https://github.com/rlabbe/filterpy
https://cran.r-project.org/package=MARSS
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where now the position is better modeled thanks to also modeling the velocity.

3. We can further include the acceleration 𝑎𝑡 in the internal state, 𝜶𝑡 =

𝑥𝑡
𝑣𝑡
𝑎𝑡

 , leading to the

state-space model

𝑦𝑡 =
[
1 0 0

] 
𝑥𝑡
𝑣𝑡
𝑎𝑡

 + 𝜖𝑡 ,
𝑥𝑡+1
𝑣𝑡+1
𝑎𝑡+1

 =


1 Δ𝑡 0
0 1 Δ𝑡

0 0 1



𝑥𝑡
𝑣𝑡
𝑎𝑡

 + 𝜼𝑡 .
4. Finally, we can further improve the model, especially if the sampling rate is not high

enough, by including the acceleration in the position equation, 𝑥𝑡+1 = 𝑥𝑡 + Δ𝑡𝑣𝑡 + 1
2Δ𝑡

2𝑎𝑡 ,
leading to

𝑦𝑡 =
[
1 0 0

] 
𝑥𝑡
𝑣𝑡
𝑎𝑡

 + 𝜖𝑡 ,
𝑥𝑡+1
𝑣𝑡+1
𝑎𝑡+1

 =


1 Δ𝑡 1

2Δ𝑡
2

0 1 Δ𝑡

0 0 1



𝑥𝑡
𝑣𝑡
𝑎𝑡

 + 𝜼𝑡 .
It is important to emphasize that the state-space model in (4.2) is not the most general one.
One trivial extension is to allow the parameters 𝒁, 𝑻, 𝑯, and 𝑸 to change over time: 𝒁𝑡 , 𝑻𝑡 ,
𝑯𝑡 , and 𝑸𝑡 . More generally, one can relax the two key assumptions in (4.2), by (i) allowing
nonlinear functions of 𝜶𝑡 (instead of the linear functions 𝒁𝜶𝑡 and 𝑻𝜶𝑡 ) and (ii) not assuming
the noise distributions to be Gaussian. This leads to extensions proposed in the literature such
as the extended Kalman filter, the unscented Kalman filter, and even the more general (albeit
more computationally demanding) particle filtering (Durbin & Koopman, 2012).

4.2.2 Kalman Filtering and Smoothing
The Kalman filter is a very efficient algorithm to optimally solve the state-space model in (4.2),
which is linear and assumes Gaussian distributions for the noise terms. Its computational cost
is manageable to the point that it was even used in the Apollo program by NASA in the 1960s:
it was quite remarkable that it could be implemented in a tiny and rudimentary computer
(2 KB of magnetic core RAM, 36 KB of core rope memory (ROM), CPU built from ICs with
a clock speed under 100 kHz).

The objective of Kalman filtering is to characterize the distribution of the hidden state at
time 𝑡, 𝜶𝑡 , given the observations up to (and including) time 𝑡, 𝒚1, . . . , 𝒚𝑡 , that is, in a causal
manner. Since the distribution of the noise terms is Gaussian, it follows that the conditional
distribution of 𝜶𝑡 is also Gaussian; therefore, it suffices to characterize the conditional mean
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and conditional covariance matrix:
𝒂𝑡 |𝑡 ≜ IE [𝜶𝑡 | (𝒚1, . . . , 𝒚𝑡 )] ,
𝑷𝑡 |𝑡 ≜ Cov [𝜶𝑡 | (𝒚1, . . . , 𝒚𝑡 )] .

For forecasting purposes, one is really interested in the distribution of the hidden state at time
𝑡 + 1, 𝜶𝑡+1, given the observations up to (and including) time 𝑡, denoted by 𝒂𝑡+1 |𝑡 and 𝑷𝑡+1 |𝑡 .
These filtering and forecasting quantities can be efficiently computed using a “forward pass”
algorithm that goes from 𝑡 = 1 to 𝑡 = 𝑇 in a sequential way, so that it can operate in real time
(Durbin & Koopman, 2012).

On the other hand, the objective of Kalman smoothing is to characterize the distribution of
the hidden state at time 𝑡, 𝜶𝑡 , given all the observations, 𝒚1, . . . , 𝒚𝑇 , that is, in a noncausal
manner. Such a distribution is also Gaussian and it is fully characterized by the following
conditional mean and conditional covariance matrix:

𝒂𝑡 |𝑇 ≜ IE [𝜶𝑡 | (𝒚1, . . . , 𝒚𝑇 )] ,
𝑷𝑡 |𝑇 ≜ Cov [𝜶𝑡 | (𝒚1, . . . , 𝒚𝑇 )] .

Interestingly, these quantities can also be efficiently computed using a “backward pass”
algorithm that goes from 𝑡 = 𝑇 to 𝑡 = 1 (Durbin & Koopman, 2012). Since this requires all
observations, it is naturally a batch-processing algorithm rather than an online one.

Overall, the full characterization of the hidden states executes both forward and backward
passes very efficiently. The choice of filtering vs. smoothing depends on whether the application
requires a causal approach (real time) or noncausal (batch processing). Obviously, the hidden
state characterization of smoothing is much better than filtering as it uses more information.

Figure 4.2 shows the result of Kalman filtering and Kalman smoothing for the four different
state-space models in Example 4.1 (properly fitting the variances of the noise terms via
maximum likelihood). In general, the more accurate the model, the better the performance.
In this specific example, however, the differences are minimal. On the other hand, Kalman
smoothing significantly outperforms Kalman filtering because it has access to all observations
simultaneously.

4.3 Mean Modeling
In econometrics, we are interested in forecasting the future values of a financial time series
given past observations. A first choice we need to make is whether to focus on the time series
of the prices or the returns. Of course they are trivially related to each other, but it is not clear
a priori which one is more manageable: the returns tend to be more constant and are easier to
model, whereas the prices tend to present a trend. Recall that the log-prices are denoted as
𝒚𝑡 = log 𝒑𝑡 and the log-returns as 𝒙𝑡 = 𝒚𝑡 − 𝒚𝑡−1 (see Chapter 3 for the random walk model).

Unless otherwise stated, we will focus on the univariate case (single asset) for simplicity. In
fact, in most practical cases, the multivariate case can be treated on an asset-by-asset basis.
Thus, the objective is to compute the expectation of the future value of the time series at time
𝑡 based on the past observations F𝑡−1 with the hope of extracting any structural information,
that is, either IE[𝑦𝑡 | F𝑡−1] for the log-prices or IE[𝑥𝑡 | F𝑡−1] for the log-returns.
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Figure 4.2 Example of Kalman position tracking under the four different models
from Example 4.1.

Readers should be aware that there might not be any significant temporal structural information
to leverage. In such cases, the i.i.d. model from Chapter 3 would suffice. In fact, this is
partly supported by the exploratory data analysis in Section 2.4 of Chapter 2, where the
autocorrelation of the returns appears to be insignificant. Ultimately, this depends on the
nature of the data and, specifically, on the frequency of the data observations.

4.3.1 Moving Average (MA)
Inspired by the i.i.d. model for the returns 𝑥𝑡 = 𝜇 + 𝜖𝑡 in (3.1), the simplest way to estimate 𝜇
is by taking the average of several observations in order to reduce the effect of the noise or
innovation component 𝜖𝑡 .
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The moving average (MA) of order 𝑞, denoted by MA(𝑞), is

𝑥𝑡 =
1
𝑞

𝑞∑︁
𝑖=1

𝑥𝑡−𝑖, (4.3)

where 𝑞 denotes the lookback and determines the amount of averaging. Since this sample
mean is computed for each value of 𝑡 on a rolling-window basis, it is also commonly referred
to as rolling means. A noncausal variation (appropriate for smoothing but not for forecasting)
considers a centered version of the moving average by using past and future samples around
𝑥𝑡 .

Observe that, under the i.i.d. model 𝑥𝑡 = 𝜇 + 𝜖𝑡 , the moving average is indeed estimating 𝜇 by
averaging the noise:

𝑥𝑡 = 𝜇 +
1
𝑞

𝑞∑︁
𝑖=1

𝜖𝑡−𝑖,

where the averaged noise component has a variance reduced by a factor of 𝑞. If, instead of
the i.i.d. model, 𝜇𝑡 is allowed to change over time, the effect of the moving average is to
approximate this slowly changing value.

It is insightful to explore the interpretation of the moving average on the log-returns from the
perspective of log-prices. Using 𝑥𝑡 = 𝑦𝑡 − 𝑦𝑡−1, the moving average in (4.3) can be rewritten
as

𝑥𝑡 =
1
𝑞
(𝑦𝑡−1 − 𝑦𝑡−𝑞−1).

This shows that it is effectively computing the trend of the log-prices in the form of a slope.

Alternatively, the moving average operation can be implemented on the log-prices instead of
log-returns:

�̂�𝑡 =
1
𝑞

𝑞∑︁
𝑖=1

𝑦𝑡−𝑖 . (4.4)

This is widely employed in the context of “charting” or “technical analysis” (Malkiel,
1973), where it is typically performed directly on the prices 𝑝𝑡 (without the log operation).
However, this does not seem to have any solid mathematical foundation apart from the visual
interpretation of “smoothing” the noisy time series.

Figure 4.3 illustrates the effect of forecasting via moving averages performed on the log-prices
and log-returns. As expected from the theoretical analysis, the MA on the log-prices is much
worse, albeit being widely used in the “charting” community. Note that the difference of using
prices instead of log-prices or using returns instead of log-returns is insignificant and not
reported. Table 4.1 reports the mean squared error of the forecasting and it shows that, again,
averaging the log-returns makes more sense (the lookback value 𝑞 can be more carefully
selected for improved performance).
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Figure 4.3 Forecasting with moving average.

Table 4.1 Comparison of moving average forecasting in terms of mean squared error.

MSE

MA(20) on log-prices 0.004 032
MA(20) on log-returns 0.000 725

4.3.2 EWMA
The simple moving average in Section 4.3.1 essentially computes the average of the past
observations. However, one can argue that the more recent observations should be weighted
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more than the less recent ones. This can be conveniently achieved with the exponentially
weighted moving average (EWMA), or simply exponential moving average (EMA), with the
recursive computation

𝑥𝑡 = 𝛼𝑥𝑡−1 + (1 − 𝛼)𝑥𝑡−1, (4.5)

where 𝛼 (with 0 ≤ 𝛼 ≤ 1) determines the exponential decay or memory.

We can easily see that this recursion is effectively implementing exponential weights (hence
the name):

𝑥𝑡 = 𝛼𝑥𝑡−1 + 𝛼(1 − 𝛼)𝑥𝑡−2 + 𝛼(1 − 𝛼)2𝑥𝑡−3 + 𝛼(1 − 𝛼)3𝑥𝑡−4 + · · ·

4.3.3 ARMA Modeling
The “bread and butter” modeling and forecasting techniques in finance are extensions of the
basic MA and EMA models previously described. These classical methods are essentially
autoregressive models that attempt to capture any existing linear structure in the return time
series. These models have been extensively explored for the past five decades and have reached
a good level of maturity. We now summarize the basic ideas without going into any level
of detail; more information can be found in the many comprehensive textbooks (Lütkepohl,
2007; Ruppert & Matteson, 2015; Tsay, 2010, 2013).

The most basic autoregressive (AR) model is of order 1, denoted by AR(1), given as

𝑥𝑡 = 𝜙0 + 𝜙1𝑥𝑡−1 + 𝜖𝑡 ,

where 𝜙0 and 𝜙1 (as well as the variance 𝜎2 of the noise term 𝜖𝑡 ) are the parameters of the
model to be determined via a fitting procedure on historical data. This model attemps to capture
any linear dependency between the consecutive returns. More generally, an autoregressive
model of order 𝑝, AR(𝑝), is given by

𝑥𝑡 = 𝜙0 +
𝑝∑︁
𝑖=1

𝜙𝑖𝑥𝑡−𝑖 + 𝜖𝑡 ,

which now contains more parameters, 𝜙0, . . . , 𝜙𝑝 and 𝜎2, to be fitted (also, the order 𝑝 has to
be determined).

Similarly, we have the moving average models that attempt to exploit any linear dependency
from past noise terms by averaging the last 𝑞 values. Combining both components leads us to
the popular autoregressive moving average (ARMA) models. In particular, an ARMA model
of orders 𝑝 and 𝑞, denoted by ARMA(𝑝, 𝑞), is written as

𝑥𝑡 = 𝜙0 +
𝑝∑︁
𝑖=1

𝜙𝑖𝑥𝑡−𝑖 + 𝜖𝑡 −
𝑞∑︁
𝑗=1

𝜓 𝑗𝜖𝑡− 𝑗 , (4.6)

where now the parameters are 𝜙0, . . . , 𝜙𝑝, 𝜓1, . . . , 𝜓𝑞 and 𝜎2.

Under the ARMA model in (4.6), the forecast of 𝑥𝑡 is given by the conditional expected return

𝑥𝑡 ≜ 𝜇𝑡 = IE[𝑥𝑡 | F𝑡−1] = 𝜙0 +
𝑝∑︁
𝑖=1

𝜙𝑖𝑥𝑡−𝑖,
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with conditional variance

𝜎2
𝑡 = IE[(𝑥𝑡 − 𝜇𝑡 )2 | F𝑡−1] = 𝜎2,

where 𝜎2 is the (constant) variance of the noise term 𝜖𝑡 . Thus, ARMA modeling can properly
deal with time-varying mean models; however, the variance is still constant. Time-varying
variance models are considered in Section 4.4.

The ARMA model is defined on the log-returns 𝑥𝑡 , which are stationary (the first and second
moments are time invariant), as opposed to the log-prices 𝑦𝑡 , which are nonstationary (e.g., a
random walk). That is, the original log-price time series cannot be modeled directly and we
have to compute the first-order difference to get 𝑥𝑡 = 𝑦𝑡 − 𝑦𝑡−1. In general, for other types of
time series, we may need to take the 𝑑th-order difference before employing an ARMA model
(Tsay, 2010). This is precisely what is termed the autoregressive integrated moving average
(ARIMA) model, denoted by ARIMA(𝑝, 𝑑, 𝑞), and is given by

𝑥𝑡 = 𝜙0 +
𝑝∑︁
𝑖=1

𝜙𝑖𝑥𝑡−𝑖 + 𝜖𝑡 −
𝑞∑︁
𝑗=1

𝜓 𝑗𝜖𝑡− 𝑗 ,

where 𝑥𝑡 is obtained by differencing the original time series 𝑦𝑡 𝑑 times. Thus, an ARIMA
model (with 𝑑 = 1) on the log-prices is equivalent to an ARMA model on the log-returns.

ARMA models require the appropriate coefficients to properly fit the data. Mature and efficient
software implementations are readily available in most programming languages for ARMA
modeling, including the fitting process.4

All the previous models require order selection. The order of a model is characterized by the
integers 𝑝 and 𝑞 that indicate the number of parameters. In practice, the order of a model is
unknown and also has to be determined from historical data (Lütkepohl, 2007). The higher
the order, the more parameters the model contains to better fit the data; however, this comes
with the danger of overfitting, that is, fitting the historical data (including the noise) too well
at the expense of not being able to fit the future data appropriately. The topic of overfitting
is discussed in Chapter 8 in the context of backtesting. There are two main approaches to
choosing the model order:

• cross-validation: based on splitting the historical data into a training part and a cross-
validation part, the latter being used to test the model trained with different values of orders;
and

• penalization methods: based on taking into account the number of parameters of the model
with a penalty term in the assessment of the model, which has led to many methods, such
as AIC, BIC, SIC, HQIC, and so on (Lütkepohl, 2007).

Figure 4.4 illustrates the effect of forecasting via ARMA modeling based on some specific
choices of the orders, namely, i.i.d. model, AR(1), MA(1), and ARMA(1,1). Table 4.2 reports
the mean squared error of the forecasts, from which we can infer that the i.i.d. modeling gives
the best fit (not unexpected given the lack of strong autocorrelations in the returns).

4 The R package rugarch implements algorithms for fitting a wide range of different ARMA models to time
series data (Ghalanos, 2022). Many other packages are also available in R. The Python package statsmodels
contains a number of statistical data modeling methods.

https://cran.r-project.org/package=rugarch
https://github.com/statsmodels/statsmodels
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Figure 4.4 Forecasting with ARMA models.

Table 4.2 Comparison of ARMA forecasting in terms of mean squared error.

MSE

i.i.d. 0.000 754
AR(1) 0.000 793
MA(1) 0.000 805
ARMA(1,1) 0.000 914
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4.3.4 Seasonality Decomposition
In a structural time series model, the observed time series is viewed as a sum of unobserved
components such as a trend, a seasonal component, and an irregular component (Durbin &
Koopman, 2012; Lütkepohl, 2007). For example, the random walk model for the log-prices,
𝑦𝑡 = 𝑦𝑡−1 + 𝜇 + 𝜖𝑡 , can be extended to include the seasonal component 𝛾𝑡 as

𝑦𝑡 = 𝜇𝑡 + 𝛾𝑡 + 𝜖𝑡 ,

where 𝜇𝑡 is the trend that can be modeled, for example, as 𝜇𝑡 = 𝜇𝑡−1 + 𝜂𝑡 , and the seasonal
component 𝛾𝑡 (with 𝑠 seasons in a period) as 𝛾𝑡 = −

∑𝑠−1
𝑗=1 𝛾𝑡− 𝑗 + 𝜔𝑡 so that the sum over a

full period is approximately zero (𝜔𝑡 is a small white noise term).

The topic of time series decomposition has received a lot of attention and a wide variety of
models have been proposed since the 1950s (Hyndman et al., 2008). They are often referred
to as exponential smoothing methods since they are sophisticated versions of the EWMA
described in Section 4.3.2 combined with the idea of decomposition of the observed time
series into a variety of terms such as trend, seasonality, cycle, and so on. These methods can
be extremely useful if the time series indeed contains such seasonality and cyclic components.
For example, intraday financial data clearly contains specific components that change with
some pattern during the day, such as the so-called “volatility smile” pattern, which refers
to the volatility being higher at the beginning and end of the day, while being low during
the middle of the day. Interestingly, the intraday volatility decomposition can be efficiently
modeled via a state-space representation and implemented with the Kalman algorithm (Chen
et al., 2016; Xiu & Palomar, 2023).

4.3.5 Kalman Modeling
The random walk model for the log-prices, 𝑦𝑡 = 𝑦𝑡−1 + 𝜇+ 𝜖𝑡 with 𝜖𝑡 ∼ N(0, 𝜎2), is equivalent
to the i.i.d. model for the log-returns, 𝑥𝑡 = 𝜇 + 𝜖𝑡 , and the results of Chapter 3 can be used
to fit the time series. Realistically, the drift parameter 𝜇 (as well as the volatility 𝜎2) will
surely be time-varying. The state-space model (4.2) and the Kalman algorithm, described
in Section 4.2, can be effectively used precisely to allow some time variation on the drift
by treating it as a hidden state that evolves over time. In addition, it allows a more precise
separation of the noise into observational noise and drift noise as described next.

The simple moving average used in (4.3) on the log-returns follows naturally from the i.i.d.
model 𝑥𝑡 = 𝜇+𝜖𝑡 as a way to estimate 𝜇. That is, we can reinterpret (4.3) in terms of estimating
the drift 𝜇 based on the historical data up to time 𝑡 − 1,

�̂�𝑡 =
1
𝑚

𝑚∑︁
𝑖=1

𝑥𝑡−𝑖,

and then forecasting the value at time 𝑡 as 𝑥𝑡 = �̂�𝑡 . Instead, we can conveniently use a
state-space model to allow the drift to slowly change over time by modeling the drift as the
hidden state, 𝛼𝑡 = 𝜇𝑡 , that evolves over time. This is the so-called local level model (Durbin
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& Koopman, 2012):
𝑥𝑡 = 𝜇𝑡 + 𝜖𝑡

𝜇𝑡+1 = 𝜇𝑡 + 𝜂𝑡 ,
(4.7)

where the noise term 𝜂𝑡 allows 𝜇𝑡 to evolve over time. This model is expected to be more
accurate than the simple moving average in (4.3). In addition, there is no parameter 𝑞 to
be chosen like in the MA(𝑞) in (4.3). Of course, this model still requires the values of the
variances of the noise terms, which can be chosen a priori or learned automatically via
maximum likelihood.

Alternatively, the moving average was used in (4.4) on the log-prices in a rather heuristic way
to smooth the otherwise noisy time series. We can again use a state-space model to improve
the modeling. For example, if we define the hidden state 𝛼𝑡 as a noiseless version of the
log-prices, 𝛼𝑡 = �̃�𝑡 , we can write

𝑦𝑡 = �̃�𝑡 + 𝜖𝑡 ,
�̃�𝑡+1 = �̃�𝑡 + 𝜇 + 𝜂𝑡 ,

(4.8)

which allows for some observation noise via 𝜖𝑡 and some noise in the state transition via
𝜂𝑡 . We can also allow the drift to be time-varying, 𝜇𝑡 , by augmenting the hidden state as

𝜶𝑡 =

[
�̃�𝑡
𝜇𝑡

]
, leading to the so-called local linear trend model (Durbin & Koopman, 2012):

𝑦𝑡 =
[
1 0

] [
�̃�𝑡
𝜇𝑡

]
+ 𝜖𝑡 ,[

�̃�𝑡+1
𝜇𝑡+1

]
=

[
1 1
0 1

] [
�̃�𝑡
𝜇𝑡

]
+ 𝜼𝑡 .

(4.9)

Figure 4.5 illustrates the effect of forecasting via Kalman filtering based on the previous three
models, namely, Kalman on log-returns (with dynamic drift 𝜇𝑡 ), Kalman on log-prices (with
static drift 𝜇), and Kalman on log-prices (with dynamic drift 𝜇𝑡 ). The difference is small.
Table 4.3 reports the mean squared error of the forecasts, from which we can appreciate
that as the models become more accurate the performance improves. Nevertheless, from a
practical standpoint, one has to make a decision of complexity vs. meaningful performance.
As a final remark, note that the performance of Kalman modeling is better than the previously
explored models, namely, MA, EWMA, and ARMA.

Table 4.3 Comparison of Kalman forecasting in terms of mean squared error.

MSE

Kalman on log-returns (dynamic) 0.000 632
Kalman on log-prices (static) 0.000 560
Kalman on log-prices (dynamic) 0.000 557

It is worth mentioning that Kalman filtering can be employed in the context of ARMA
modeling from Section 4.3.3 simply by rewriting the ARMA model in (4.6), 𝑥𝑡 = 𝜙0 +
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Figure 4.5 Forecasting with Kalman.

∑𝑝

𝑖=1 𝜙𝑖𝑥𝑡−𝑖 + 𝜖𝑡 −
∑𝑞

𝑗=1 𝜓 𝑗𝜖𝑡− 𝑗 , in terms of the state-space model in (4.2). This can be done in
a multitude of ways (Durbin & Koopman, 2012; Lütkepohl, 2007; Tsay, 2010; Zivot et al.,

2004). For example, an AR(𝑝) can be modeled by defining the hidden state as 𝜶𝑡 =


𝑥𝑡
...

𝑥𝑡−𝑝+1

 ,
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leading to
𝑥𝑡 =

[
1 0 . . . 0

]
𝜶𝑡 ,

𝜶𝑡+1 =


𝜙0
0
...

0


+


𝜙1 . . . 𝜙𝑝−1 𝜙𝑝
1 . . . 0 0
...

. . .
...

...

0 . . . 1 0


𝜶𝑡 +


𝜖𝑡
0
...

0


.

4.3.6 Extension to the Multivariate Case
In practice, we typically deal with 𝑁 assets, so the previous univariate mean modeling
approaches need to be extended to the multivariate case, which is quite straightforward. In fact,
the simple MA and EWMA models from Sections 4.3.1 and 4.3.2 can be directly applied to
each of the assets separately. We will next briefly describe the extension for ARMA modeling
and for the state-space representation of Kalman modeling.

VARMA
The ARMA model in Section 4.3.3 can be straightforwardly extended to the multivariate case
by using matrix coefficients instead of scalar coefficients. Similarly to the ARMA(𝑝, 𝑞) model
in (4.6), a vector ARMA (VARMA) model of orders 𝑝 and 𝑞, denoted by VARMA(𝑝, 𝑞),
becomes

𝒙𝑡 = 𝝓0 +
𝑝∑︁
𝑖=1

𝚽𝑖𝒙𝑡−𝑖 + 𝝐𝑡 −
𝑞∑︁
𝑗=1

𝚿 𝑗𝝐𝑡− 𝑗 , (4.10)

where now the parameters are 𝝓0 ∈ R𝑁 , 𝚽1, . . . ,𝚽𝑝 ∈ R𝑁×𝑁 , 𝚿1, . . . ,𝚿𝑞 ∈ R𝑁×𝑁 , and
𝚺 ∈ R𝑁×𝑁 is the covariance matrix of 𝝐𝑡 .

While this extension looks trivial on paper, it quickly becomes impractical due to the exploding
number of parameters. For the ARMA(𝑝, 𝑞) model in (4.6) the number of parameters is simply
1+ 𝑝+𝑞+1, whereas in the VARMA(𝑝, 𝑞) case it increases to 𝑁 + (𝑝+𝑞) ×𝑁2 +𝑁 (𝑁 −1)/2,
which grows as 𝑁2. In other words, the number of parameters quickly explodes quadratically
with the number of assets. The danger of fitting a model with such a large number of parameters
is overfitting. This can be mitigated by either having a large number of observations in the
historical data (which is rarely the case in financial applications) or by reducing the number
of parameters, for example by forcing the matrix coefficients to be sparse. Note that if the
matrix coefficients are forced to be diagonal matrices, then the model trivially reduces to
asset-by-asset ARMA modeling.

VECM
Interestingly, in the multivariate case, a new model emerges based on the concept of
cointegration, termed the vector error correction model (VECM) (Engle & Granger, 1987).
The VECM model was proposed as a way to apply the ARMA model on the log-prices
instead on the log-returns as in Section 4.3.3. The danger of modeling directly the log-prices
is the lack of stationarity, which is why the safe approach is to differentiate first to obtain the
log-returns prior to any modeling. However, the process of differentiating may potentially
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destroy some structure in the time series. Applying a VAR(𝑝) model on the log-prices 𝒚𝑡 and
using 𝒙𝑡 = 𝒚𝑡 − 𝒚𝑡−1, the model can be finally written in terms of the log-returns as

𝒙𝑡 = 𝝓0 +𝚷𝒚𝑡−1 +
𝑝−1∑︁
𝑖=1

�̃�𝑖𝒙𝑡−𝑖 + 𝝐𝑡 ,

where the matrix coefficients �̃�𝑖 can be straightforwardly related to 𝚽𝑖 in (4.10) (Tsay, 2013).

Even though this model is written in terms of the log-returns 𝒙𝑡 , there is a new term that
contains the log-prices: 𝚷𝒚𝑡−1. As it turns out, the matrix 𝚷 is of utmost importance: by
decomposing it as 𝚷 = 𝜶𝜷T, the matrix 𝜷 ∈ R𝑁×𝑟 , with 𝑟 being the number of columns,
reveals that the nonstationary log-prices 𝒚𝑡 become stationary after multiplication with 𝜷T, that
is, they are cointegrated. This cointegration relationship is key in the design of mean-reverting
time series in the context of pairs trading or statistical arbitrage considered in Chapter 15.

Multivariate Kalman Modeling
Finally, we can consider a state-space model for Kalman filtering, as in Section 4.3.5, properly
extended to the vector case. For simplicity, we focus on the local trend model in (4.7). If we
apply it on an asset-by-asset basis for 𝑖 = 1, . . . , 𝑁 , we simply obtain

𝑥𝑖,𝑡 = 𝜇𝑖,𝑡 + 𝜖𝑖,𝑡 ,
𝜇𝑖,𝑡+1 = 𝜇𝑖,𝑡 + 𝜂𝑖,𝑡 ,

where 𝜖𝑖,𝑡 ∼ N(0, ℎ𝑖) is the observation noise and 𝜂𝑖,𝑡 ∼ N(0, 𝑞𝑖) is the drift noise. However,
if we allow the noise terms for the different assets to be correlated, then we can write the more
general vector model

𝒙𝑡 = 𝝁𝑡 + 𝝐𝑡 ,
𝝁𝑡+1 = 𝝁𝑡 + 𝜼𝑡 ,

where now the observation noise vector is 𝝐𝑡 ∼ N(0,𝑯) and the drift noise vector is
𝜼𝑖,𝑡 ∼ N(0,𝑸), both of which can model the asset correlation.

4.4 Volatility/Variance Modeling
Volatility clustering is a stylized fact of financial data that refers to the observation that
large price changes tend to be followed by large price changes (ignoring the sign), whereas
small price changes tend to be followed by small price changes (Fama, 1965; Mandelbrot,
1963). This phenomenon of volatility clustering, showcased in the exploratory data analysis in
Section 2.4 of Chapter 2, clearly reveals temporal structure that can potentially be exploited
through proper modeling.

Section 4.3 has focused on using the temporal structure for the purpose of mean modeling or
modeling of the conditional expected return 𝝁𝑡 in (4.1) under a constant conditional variance.
We now explore a variety of models to exploit the temporal structure in the modeling of the
conditional variance 𝚺𝑡 .

Unless otherwise stated, we will focus on the univariate case (single asset) for simplicity.
Therefore, the objective is to compute the expectation of the future variance of the time series
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at time 𝑡 based on the past observations F𝑡−1, that is, Var[𝜖𝑡 | F𝑡−1] = IE[𝜖2
𝑡 ] in (4.1), where

𝜖𝑡 = 𝑥𝑡 − 𝜇𝑡 is the forecasting error or innovation term. In practice, since the magnitude of 𝜇𝑡
is much smaller than that of the observed noisy data 𝑥𝑡 , one can also focus, for simplicity and
with a negligible effect in accuracy, on IE[𝑥2

𝑡 | F𝑡−1]. Note that the volatility is not a directly
observable quantity (although meaningful proxies can be used) and defining an error measure
requires some careful thought (Poon & Granger, 2003); alternatively, a visual inspection of
the result is also of practical relevance.

The topic of volatility modeling or variance modeling is standard material in many textbooks
(Lütkepohl, 2007; Ruppert & Matteson, 2015; Tsay, 2010), as well as some specific overview
papers (Bollerslev et al., 1992; Poon & Granger, 2003; Taylor, 1994).

4.4.1 Moving Average (MA)
Under the i.i.d. model in (3.1), the residual is distributed as 𝜖𝑡 ∼ N(0, 𝜎2) and the simplest way
to estimate its variance 𝜎2 = IE[𝜖2

𝑡 ] is by taking the average of the squared values. In practice,
the variance and volatility are slowly time-varying, denoted by 𝜎2

𝑡 and 𝜎𝑡 , respectively. The
volatility envelope precisely refers to the time-varying volatility 𝜎𝑡 .

To allow for a slowly time-varying variance, we can use a moving average or rolling means
(like in Section 4.3.1) on the squared residuals:

�̂�2
𝑡 =

1
𝑞

𝑞∑︁
𝑖=1

𝜖2
𝑡−𝑖 . (4.11)

Figure 4.6 illustrates the volatility envelope computed via MAs of different lengths.
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Figure 4.6 Volatility envelope with moving averages.
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4.4.2 EWMA
Similarly to Section 4.3.2, we can put more weight on the recent observations. One option is
to use exponential weights, which can be efficiently computed recursively as

�̂�2
𝑡 = 𝛼𝜖2

𝑡−1 + (1 − 𝛼)�̂�2
𝑡−1, (4.12)

where 𝛼 (0 ≤ 𝛼 ≤ 1) determines the exponential decay or memory.

Figure 4.7 shows the volatility envelope computed via EWMAs of different memory. Whenever
there is a large residual spike, the subsequent exponential decay of the volatility can be
observed.
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Figure 4.7 Volatility envelope with EWMA.

4.4.3 GARCH Modeling
Heteroskedasticity is the technical term that refers to the phenomenon of a time-varying
variance. The autoregressive conditional heteroskedasticity (ARCH) model is one of the
earliest models to deal with heteroskedasticity and, in particular, the volatility clustering
effect.

The (linear) ARCH model of order 𝑞, denoted by ARCH(𝑞), was proposed by Engle (1982)5

and it is defined as
𝜖𝑡 = 𝜎𝑡 𝑧𝑡 ,

𝜎2
𝑡 = 𝜔 +

𝑞∑︁
𝑖=1

𝛼𝑖𝜖
2
𝑡−𝑖,

(4.13)

where 𝜖𝑡 is the innovation to be modeled, 𝑧𝑡 is an i.i.d. random variable with zero mean and
unit variance, 𝜎𝑡 is the slowly time-varying volatility envelope (expressed as a moving average
of the past squared residuals), and the parameters of the model are 𝜔 > 0 and 𝛼1, . . . , 𝛼𝑞 ≥ 0.

5 Robert F. Engle was awarded the 2003 Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred
Nobel “for methods of analyzing economic time series with time-varying volatility (ARCH).”
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An important limitation of the ARCH model is that the high volatility is not persistent enough
(unless 𝑞 is chosen very large) to capture the phenomenon of volatility clustering. This can be
overcome by the generalized ARCH (GARCH) model proposed by Bollerslev (1986).

The (linear) GARCH model of orders 𝑝 and 𝑞, denoted by GARCH(𝑝, 𝑞), is

𝜖𝑡 = 𝜎𝑡 𝑧𝑡 ,

𝜎2
𝑡 = 𝜔 +

𝑞∑︁
𝑖=1

𝛼𝑖𝜖
2
𝑡−𝑖 +

𝑝∑︁
𝑗=1

𝛽 𝑗𝜎
2
𝑡− 𝑗 ,

(4.14)

where now the parameters are 𝜔 > 0, 𝛼1, . . . , 𝛼𝑞 ≥ 0, and 𝛽1, . . . , 𝛽𝑝 ≥ 0 (one technical
condition to guarantee stationarity is

∑𝑞

𝑖=1 𝛼𝑖 +
∑𝑝

𝑗=1 𝛽 𝑗 < 1). This is formally an ARMA
model on 𝜖2

𝑡 . The recursive component in 𝜎𝑡 allows the volatility to be more persistent in time.

Since the ARCH and GARCH models were proposed in the 1980s, a wide range of extensions
and variations, including nonlinear recursions and non-Gaussian distributed innovations, have
appeared in the econometric literature, cf. Bollerslev et al. (1992), Lütkepohl (2007), Tsay
(2010), and Ruppert and Matteson (2015). In the case of intraday financial data, the model is
extended to include the intraday pattern, the so-called “volatility smile” (Engle & Sokalska,
2012; Xiu & Palomar, 2023).

GARCH models require the appropriate coefficients to properly fit the data and this is
typically done in practice via maximum likelihood procedures. Mature and efficient software
implementations are readily available in most programming languages.6

Figure 4.8 shows the volatility envelope computed via different ARCH and GARCH models.
As in the EWMA case, whenever a large spike appears, a subsequent exponential decay of the
volatility can be observed.
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Figure 4.8 Volatility envelope with GARCH models.

6 The R packages rugarch and fGarch implement algorithms for fitting a wide range of different GARCH
models to time series data (Ghalanos, 2022; Wuertz et al., 2022).

https://cran.r-project.org/package=rugarch
https://cran.r-project.org/package=fGarch
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Criticism of GARCH Models
GARCH models are extremely popular and well-researched in econometrics. Nevertheless,
one has to admit that they are essentially “glorified” exponentially weighted moving averages.
Indeed, taking the GARCH variance modeling in (4.14) and setting, for simplicity, 𝑝 = 𝑞 = 1,
𝜔 = 0, and 𝛽1 = 1 − 𝛼1, we obtain

𝜎2
𝑡 = 𝛼1𝜖

2
𝑡−1 + (1 − 𝛼1)𝜎2

𝑡−1,

which looks exactly like the EWMA in (4.12). In words, GARCH models attempt to represent
the volatility as a series of (unpredictable) spikes that decay exponentially over time. As a
consequence, the volatility curve looks rugged and composed of overlapping exponential
curves. Arguably this is not how a slowly time-varying envelope is expected to look, but
nevertheless these models have enjoyed an unparalleled popularity.

In addition, the estimation of the GARCH parameters (model fitting) is extremely “data
hungry.” That is, unless the number of observations is really large, estimation of the parameters
becomes unreliable as illustrated with the following numerical example.7 Figure 4.9 shows a
scatter plot with 1000 Monte Carlo random simulations of the parameter estimation values of a
GARCH(1,1) model with 𝜔 = 0, 𝛼1 = 0.07, and 𝛽1 = 0.925 based on 𝑇 = 1000 observations.
The variation in the estimated parameters is around 0.1, which is quite large even though
1000 observations were used (4 years of daily data).
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Figure 4.9 Instability in GARCH model fitting.

4.4.4 Stochastic Volatility Modeling
In 1982, Taylor proposed in a seminal work to model the volatility probabilistically via a
state-space model termed the stochastic volatility (SV) model (Taylor, 1982). Even though

7 Patrick Burns delivered an insightful presentation at the Imperial College Algorithmic Trading Conference on
8-December, 2012, exposing the limitations of GARCH models in favor of stochastic volatility models.
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SV and GARCH were proposed in the same year, SV modeling has not enjoyed the same
popularity as GARCH modeling in econometrics. One possible reason is that the fitting
process is theoretically more involved and computationally demanding; in fact, a maximum
likelihood optimization cannot be exactly formulated for SV (Kim et al., 1998; Poon &
Granger, 2003). Nevertheless, as explored in later in Section 4.4.5, Kalman filtering can be
efficiently used as a good practical approximation (Harvey et al., 1994; Ruiz, 1994).

The SV model is conveniently written in terms of the log-variance, ℎ𝑡 = log(𝜎2
𝑡 ), as

𝜖𝑡 = exp(ℎ𝑡/2)𝑧𝑡 ,
ℎ𝑡 = 𝛾 + 𝜙ℎ𝑡−1 + 𝜂𝑡 ,

(4.15)

where the first equation is equivalent to that in the ARCH and GARCH models, 𝜖𝑡 = 𝜎𝑡 𝑧𝑡 , and
the second equation models the volatility dynamics with parameters 𝛾 and 𝜙 in a stochastic
way via the residual term 𝜂𝑡 .

To gain more insight, we can rewrite the volatility state transition equation from (4.15) in
terms of 𝜎2

𝑡 as
log(𝜎2

𝑡 ) = 𝛾 + 𝜙 log(𝜎2
𝑡−1) + 𝜂𝑡 ,

which allows a clearer comparison with a GARCH(1,1) model:

𝜎2
𝑡 = 𝜔 + 𝛽1𝜎

2
𝑡−1 + 𝛼1𝜖

2
𝑡−1.

As we can observe, the main difference (apart from modeling the log variance instead of
the variance, which has also been done in the exponential GARCH model) appears in the
noise term 𝜂𝑡 in the volatility state transition equation. This difference may seem tiny and
insignificant, but it actually makes it fundamentally different to GARCH models where the
time-varying volatility is assumed to follow a deterministic instead of stochastic evolution.

SV models, albeit not having received the same attention as GARCH models, are still covered
in some excellent overview papers (Harvey et al., 1994; Kim et al., 1998; Poon & Granger,
2003; Ruiz, 1994; Taylor, 1994) and standard textbooks (Tsay, 2010).

SV modeling requires the appropriate coefficients to properly fit the data. Unlike GARCH
models, this coefficient estimation process is mathematically more involved and computa-
tionally more demanding. Typically, computationally intensive Markov chain Monte Carlo
(MCMC) algorithms are employed (Kim et al., 1998).8 In the next section, we consider an
efficient quasi-likelihood method via Kalman filtering (Harvey et al., 1994; Ruiz, 1994).

Figure 4.10 displays the volatility envelope calculated using the SV model. As can be observed,
the envelope appears smooth, contrasting with the rugged overlap of decaying exponential
curves observed in GARCH modeling.

4.4.5 Kalman Modeling
The SV model can be written with a state-space representation and approximately solved via
the Kalman filtering as described next (Harvey et al., 1994; Ruiz, 1994; Zivot et al., 2004).

8 The R package stochvol implements an MCMC algorithm for fitting SV models (Kastner, 2016). The Python
package PyMC contains a MCMC methods that can be used for SV modeling.

https://cran.r-project.org/package=stochvol
https://www.pymc.io/
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Figure 4.10 Volatility envelope with SV modeling via MCMC.

Taking the logarithm in the SV squared observation equation in (4.15), 𝜖2
𝑡 = exp(ℎ𝑡 )𝑧2

𝑡 , gives

log(𝜖2
𝑡 ) = ℎ𝑡 + log(𝑧2

𝑡 ),

where log(𝑧2
𝑡 ) is a non-Gaussian i.i.d. process. If a Gaussian distribution 𝑧𝑡 ∼ N(0, 1)

is assumed, then the mean and variance of log(𝑧2
𝑡 ) are 𝜓(1/2) − log(1/2) ≈ −1.27 and

𝜋2/2, respectively, where 𝜓(·) denotes the digamma function. Similarly, if a heavy-tailed
𝑡 distribution is assumed with 𝜈 degrees of freedom, then the mean is approximately
−1.27 − 𝜓(𝜈/2) + log(𝜈/2) and the variance 𝜋2/2 + 𝜓′ (𝜈/2), where 𝜓′ (·) is the trigamma
function.

Thus, under the Gaussian assumption for 𝑧𝑡 , the SV model in (4.15) can be approximated as

log(𝜖2
𝑡 ) = −1.27 + ℎ𝑡 + 𝜉𝑡 ,
ℎ𝑡 = 𝛾 + 𝜙ℎ𝑡−1 + 𝜂𝑡 ,

(4.16)

where 𝜉𝑡 is a non-Gaussian i.i.d. process with zero mean and variance 𝜋2/2, and the parameters
of the model are 𝛾, 𝜙, and the variance 𝜎2

𝜂 of 𝜂𝑡 . This model fits the state-space representation
in (4.2); however, since 𝜉𝑡 is not Gaussian then Kalman filtering will not produce optimal
results.

One particular case of (4.16) is the random walk plus noise model with 𝛾 = 0 and 𝜙 = 1:

log(𝜖2
𝑡 ) = −1.27 + ℎ𝑡 + 𝜉𝑡 ,
ℎ𝑡 = ℎ𝑡−1 + 𝜂𝑡 ,

(4.17)

with the single remaining parameter 𝜎2
𝜂 .

It is important to realize that the different choices of model will produce different volatility
envelopes. Since the volatility is unobservable, it is not clear how to choose the best model.
In some cases, however, it is possible to observe the volatility, called “realized volatility,” and
then the model can be fitted in a better way. One example is when higher-frequency data
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is available and can be used to compute the realized volatility during the slower-frequency
period, for example, hourly data can be used to estimate the daily volatility.

Figure 4.11 shows the volatility envelope forecast according to the SV model via Kalman
filtering. If a noncausal envelope is allowed, then we can instead use Kalman smoothing as
in Figure 4.12, which clearly produces much smoother and more accurate envelopes at the
expense of using noncausal data.
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Figure 4.11 Volatility envelope with SV modeling via Kalman filter.
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Figure 4.12 Volatility envelope with SV modeling via Kalman smoother.

4.4.6 Extension to the Multivariate Case
All the previous (univariate) volatility models can be applied to 𝑁 assets on an asset-by-asset
basis. Nevertheless, it may be advantageous to use a multivariate model that can better model
the common volatility clustering observed in market data.
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Multivariate EWMA
To start with, following the univariate EMWA volatility modeling from Section 4.4.2, we can
easily extend the univariate estimation in (4.12) to the multivariate case as

�̂�𝑡 = 𝛼𝝐𝑡−1𝝐
T
𝑡−1 + (1 − 𝛼)�̂�𝑡−1,

where 𝝐𝑡 = 𝒙𝑡 − 𝝁𝑡 ∈ R𝑁 is the forecasting error vector and 𝛼 is the smoothing parameter that
determines the exponential decay or memory. This model can easily be extended so that each
asset has a different smoothing parameter (Tsay, 2013).

Multivariate GARCH
Numerous attempts have been made to extend the univariate GARCH models (see Section 4.4.3)
to the multivariate case (Bollerslev et al., 1992; Lütkepohl, 2007; Tsay, 2013). Similarly to
the univariate cases in (4.13) and (4.14), the forecasting error vector can be conveniently
decomposed as

𝝐𝑡 = 𝚺1/2
𝑡 𝒛𝑡 ,

where 𝒛𝑡 ∈ R𝑁 is a zero-mean random vector with identity covariance matrix and the volatility
is modeled by the matrix 𝚺1/2

𝑡 ∈ R𝑁×𝑁 , which is the square-root matrix of 𝚺𝑡 (satisfying
𝚺T/2
𝑡 𝚺1/2

𝑡 = 𝚺𝑡 ). In other words, 𝚺𝑡 is the covariance matrix that generalizes the variance 𝜎2
𝑡

in the univariate case and 𝚺1/2
𝑡 is the matrix generalization of the volatility 𝜎𝑡 .

The complication arises when modeling the dynamics of the volatility matrix 𝚺1/2
𝑡 , particularly

due to the significant increase in the number of parameters when transitioning from univariate
to multivariate analysis. As always, the problem with a large number of parameters is that the
model will inevitably suffer from overfitting in a practical setting. A wide range of models have
been proposed in the literature trying to cope with this issue; see the overview in Bollerslev
et al. (1992). A naive extension is the multivariate GARCH model, which simply follows
from the univariate GARCH model by vectorizing all the matrix terms (each of dimension
𝑁2) resulting in model coefficients in the form of huge matrices of dimension 𝑁2 × 𝑁2.
Subsequent proposals attempted to reduce the number of parameters by incorporating some
structure in the matrix coefficients, such as enforcing diagonal matrices. However, the number
of parameters remains on the order of 𝑁2, which is still too large to prevent overfitting.

The constant conditional correlation (CCC) model addresses the dimensionality issue by
modeling the heteroskedasticity in each asset with univariate models (asset by asset) combined
with a constant correlation matrix for all the assets (Bollerslev, 1990). Mathematically, the
model is

𝚺𝑡 = 𝑫𝑡𝑪𝑫𝑡 ,

where 𝑫𝑡 = Diag(𝜎1,𝑡 , . . . , 𝜎𝑁,𝑡 ) represents the time-varying conditional volatilities of each
of the assets and the matrix 𝑪 is the constant correlation matrix. This model is very convenient
in practice because it avoids the explosion of the number of parameters. Basically, the volatility
envelope of each asset is first modeled individually and removed from the data as 𝝐𝑡 = 𝑫−1

𝑡 𝝐𝑡 ,
and then the correlation structure of the multivariate data 𝝐𝑡 (with approximately constant
volatility) is obtained. A disadvantage of this model is the fact that the correlation structure is
fixed.
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The dynamic conditional correlation (DCC) model precisely addresses the drawback of the
CCC model and allows the correlation matrix to change over time, but using a single scalar
parameter to avoid overfitting (Engle, 2002). To be precise, the time-varying correlation
matrix 𝑪𝑡 is obtained via an exponentially weighted moving average of the data with removed
volatility 𝝐𝑡 ,

𝑸𝑡 = 𝛼𝝐𝑡−1𝝐
T
𝑡−1 + (1 − 𝛼)𝑸𝑡−1,

with an additional normalization step in case a correlation matrix is desired (with diagonal
elements equal to one):

𝑪𝑡 = Diag(𝑸𝑡 )−1/2𝑸𝑡Diag(𝑸𝑡 )−1/2.

One disadvantage of this model is that it forces all the correlation coefficients to have the same
memory via the same 𝛼, which could be further relaxed at the expense of more parameters.

Thus, the recommended procedure for building DCC models is (Tsay, 2013):

1. Use any of the mean modeling techniques from Section 4.3 to obtain a forecast 𝝁𝑡 and
then compute the residual or error vector of the forecast 𝝐𝑡 = 𝒙𝑡 − 𝝁𝑡 .

2. Apply any of the univariate volatility models from Section 4.4 to obtain the volatility
envelopes for the 𝑁 assets (𝜎1,𝑡 , . . . , 𝜎𝑁,𝑡 ).

3. Standardize each of the series with the volatility envelope, 𝝐𝑡 = 𝑫−1
𝑡 𝝐𝑡 , so that a series

with approximately constant envelope is obtained.

4. Compute either a fixed covariance matrix of the multivariate series 𝝐𝑡 or an exponentially
weighted moving average version.

It is worth mentioning that copulas are another popular approach for multivariate modeling
that can be combined with DCC models (Ruppert & Matteson, 2015; Tsay, 2013).

Multivariate SV
The multivariate extension of the SV observation equation 𝜖𝑡 = exp(ℎ𝑡/2)𝑧𝑡 in (4.15) is

𝝐𝑡 = Diag (exp(𝒉𝑡/2)) 𝒛𝑡 ,

where now 𝒉𝑡 = log(𝝈2
𝑡 ) denotes the log-variance vector and 𝒛𝑡 is a random vector with

zero mean and fixed covariance matrix 𝚺𝑧 . The covariance matrix modeled in this way can
be expressed as 𝚺𝑡 = Diag (exp(𝒉𝑡/2)) 𝚺𝑧Diag (exp(𝒉𝑡/2)), which has the same form as
the CCC model, that is, the covariance matrix can be decomposed into the time-varying
volatilities and the fixed matrix that models the fixed correlations.

Similarly to (4.16), taking the logarithm of the observation equation leads to the following
approximated state-space model (Harvey et al., 1994):

log
(
𝝐2
𝑡

)
= −1.27 × 1 + 𝒉𝑡 + 𝝃𝑡 ,

𝒉𝑡 = 𝜸 + Diag (𝝓) 𝒉𝑡−1 + 𝜼𝑡 ,
(4.18)

where now 𝝃𝑡 is a non-Gaussian i.i.d. vector process with zero mean and a covariance
matrix 𝚺𝜉 that can be obtained from 𝚺𝑧 (Harvey et al., 1994). In particular, if 𝚺𝑧 = 𝑰 then
𝚺𝜉 = 𝜋2/2 × 𝑰, which then reduces to an asset-by-asset model.
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Similarly, the multivariate version of the random walk plus noise model in (4.17) is

log
(
𝝐2
𝑡

)
= −1.27 × 1 + 𝒉𝑡 + 𝝃𝑡

𝒉𝑡 = 𝒉𝑡−1 + 𝜼𝑡 .
(4.19)

Other extensions of SV, including common factors and heavy-tailed distributions, have also
been considered (Harvey et al., 1994).

4.5 Summary
Hundreds of models have been proposed over the past decades for financial time series
attempting to incorporate temporal structure, both for mean modeling, 𝝁𝑡 , and variance
modeling, 𝚺𝑡 , with the following takeaways:

• Mean models range from simple moving averages to more sophisticated ARMA models
(or even VECM). However, it is debatable whether they can outperform the simple i.i.d.
model, particularly considering the small autocorrelation exhibited by typical financial
time series. Nonetheless, the conclusion may greatly depend on the nature and frequency
of the financial data.

• Variance (or volatility) models are undoubtedly practical, as financial data clearly displays
a significant degree of temporal structure in variance (or volatility). Two main approaches
exist: GARCH modeling, which is by far the most popular direction in econometrics,
and stochastic volatility modeling, which arguably produces a more desirable volatility
envelope. Interestingly, stochastic volatility has not gained the same popularity as GARCH
models, perhaps due to its higher computational complexity (although this can be remedied
via Kalman filtering).

• State-space modeling provides a general and convenient framework for financial time
series. In fact, it embraces most of the common models for the mean and it approximates
reasonably well the variance models, such as stochastic volatility modeling.

• The Kalman filter is an efficient algorithm for fitting financial time series that can be
represented as a state-space model. Moreover, it enables time-varying modeling, which
is essential for financial data. However, its usage does not seem to be as widespread as it
deserves within the financial community, despite being covered in standard time series
textbooks.

Exercises
Choose one or several assets (e.g., stocks or cryptocurrencies) for the following exercises.

Mean Modeling
4.1 (Autocorrelation function of returns) Choose one asset and plot the autocorrelation
function of the log-returns at different frequencies.
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4.2 (MA modeling) Choose one asset and try the MA(𝑞) model on the log-returns and
log-prices for different values of the lookback 𝑞. Compute the mean squared error of the
forecast.

4.3 (EWMA modeling) Choose one asset and try the EWMA model on the log-returns
and log-prices for different values of the memory 𝛼. Compute the mean squared error of the
forecast.

4.4 (ARMA modeling) Choose one asset and experiment with ARMA(𝑝, 𝑞) models with
different values of 𝑝 and 𝑞. Compute the mean squared error of the forecast.

4.5 (Kalman for mean modeling) Choose one asset and experiment with different state-space
models together with Kalman filtering. Compute the mean squared error of the forecast.

4.6 (Kalman for ARMA modeling) Choose one asset and compare the results of a direct
ARMA model with the corresponding state-space model via Kalman filtering.

4.7 (VARMA modeling) Choose several assets and compare the results of asset-by-asset
ARMA modeling and VARMA modeling. Discuss the results.

4.8 (Kalman for multivariate mean modeling) Choose several assets and compare the results
of asset-by-asset Kalman modeling and vector Kalman modeling. Discuss the results.

Volatility Envelope Modeling
4.9 (Autocorrelation function of absolute returns) Choose one asset and plot the autocorre-
lation function of the absolute value of the log-returns at different frequencies.

4.10 (MA volatility modeling) Choose one asset and try the MA(𝑞) model on the squared
log-returns for different values of the lookback 𝑞. Plot the volatility envelope.

4.11 (EWMA volatility modeling) Choose one asset and try the EWMA model on the
squared log-returns for different values of the memory 𝛼. Plot the volatility envelope.

4.12 (ARCH volatility modeling) Choose one asset and experiment with ARCH(𝑞) models
with different values of 𝑞. Plot the volatility envelope.

4.13 (GARCH volatility modeling) Choose one asset and experiment with GARCH(𝑝, 𝑞)
models with different values of 𝑝 and 𝑞. Plot the volatility envelope.

4.14 (SV modeling) Choose one asset and experiment with the SV model. Plot the volatility
envelope and compare with the GARCH modeling.

4.15 (Kalman SV modeling) Choose one asset and experiment with the SV model via
Kalman filtering. Try the AR(1) model and the random walk model. In addition, compare the
models under the Gaussian distribution and the heavy-tailed 𝑡 distribution.

4.16 (Multivariate GARCH modeling) Choose several assets and compare the results
of asset-by-asset GARCH modeling and multivariate GARCH modeling via the constant
conditional correlation model. Discuss the results.
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4.17 (Kalman for multivariate SV modeling) Choose several assets and compare the results
of asset-by-asset Kalman SV modeling and vector Kalman SV modeling (including correlation
among assets). Discuss the results.
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5

Financial Data: Graphs

“Mankind invented a system to cope with the fact that we are so intrinsically lousy at manipulating numbers.
It’s called the graph.”

— Charlie Munger

Graphs provide a convenient and compact way to represent data while highlighting the
relationships between entities of a network. They constitute a powerful mathematical tool with
broad applicability in numerous fields, such as biology, brain modeling, finance, statistical
physics, management, behavioral modeling, machine learning, social networks, and data
science in general. Given the recent availability of large amounts of data collected in a variety
of application domains, graph-based analysis plays a fundamental role in understanding
and analyzing the structure of large networks that generate data. In practical scenarios, the
underlying graph structure that represents the network is often unknown and has to be inferred
from the data. Many graph learning algorithms have been proposed in recent decades, with
increased interest in the past few years. This chapter explores a broad range of graph estimation
algorithms, emphasizing recent advances specifically tailored to financial data.

5.1 Graphs
Graphs have become a fundamental and ubiquitous mathematical tool for modeling data
in a variety of application domains and for understanding the structure of large networks
that generate data (Kolaczyk, 2009; Lauritzen, 1996). By abstracting the data as graphs, we
can better capture the geometry of data and visualize high-dimensional data. Some iconic
examples of graphs, illustrated in Figure 5.1, include the following:

• Social media graphs: These model the behavioral similarity or influence between individuals,
with the data consisting of online activities such as tagging, liking, purchasing, and so on.

• Brain activity graphs: These represent the correlation among sensors examining the brain,
with the data being the measured brain activity known as fMRI (functional magnetic
resonance imaging).

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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• Financial stock graphs: These capture the interdependencies among financial companies
in stock markets, with the data consisting of measured economic quantities such as stock
prices, volumes, and so on.

• Financial currency graphs: These summarize the interdependencies among currencies in
foreign exchange markets, with the data comprising measured economic quantities like
spot prices, volumes, and so on.

• Financial cryptocurrency graphs: Similarly to currency graphs, these model the interde-
pendencies among cryptocurrencies in crypto markets.

Social media graph Brain activity graph

Financial stock graph Financial currency graph

Figure 5.1 Examples of graphs in different applications.

5.1.1 Terminology
The basic elements of a graph (see Figure 5.2) are
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• nodes: corresponding to the entities or variables; and
• edges: encoding the relationships between entities or variables.

Figure 5.2 Illustration of a graph with nodes and edges.

A graph is a simple mathematical structure described by G = (V, E,𝑾), where
the set V = {1, 2, 3, . . . , 𝑝} contains the indices of the nodes, the set of pairs
E = {(1, 2), (1, 3), . . . , (𝑖, 𝑗), . . .} contains the edges between any pair of nodes (𝑖, 𝑗), and
the weight matrix 𝑾 encodes the strength of the relationships.

5.1.2 Graph Matrices
Several matrices are key in characterizing graphs.

• The adjacency matrix 𝑾 is the most direct way to fully characterize a graph, where each
element𝑊𝑖 𝑗 contains the strength of the connectivity, 𝑤𝑖 𝑗 , between node 𝑖 and node 𝑗 :

[𝑾]𝑖 𝑗 =

𝑤𝑖 𝑗 if (𝑖, 𝑗) ∈ E,
0 if (𝑖, 𝑗) ∉ E,
0 if 𝑖 = 𝑗 .

We tacitly assume 𝑊𝑖 𝑗 ≥ 0 and 𝑊𝑖𝑖 = 0 (no self-loops). If 𝑊𝑖 𝑗 = 𝑊 𝑗𝑖 (symmetric matrix
𝑾), then the graph is called undirected.

• The connectivity matrix 𝑪 is a particular case of the adjacency matrix containing elements
that are either 0 or 1:

[𝑪]𝑖 𝑗 =


1 if (𝑖, 𝑗) ∈ E,
0 if (𝑖, 𝑗) ∉ E,
0 if 𝑖 = 𝑗 .

It describes the connectivity pattern of the adjacency matrix. In fact, for some graphs the
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adjacency matrix is already binary (with no measure of strength) and coincides with the
connectivity matrix.

• The degree matrix 𝑫 is defined as the diagonal matrix containing the degrees of the nodes
𝒅 = (𝑑1, . . . , 𝑑𝑝) along the diagonal, where the degree of a node 𝑖, 𝑑𝑖 , represents its overall
connectivity strength to all the nodes, that is, 𝑑𝑖 =

∑
𝑗𝑊𝑖 𝑗 . In other words,

𝑫 = Diag(𝑾1).

• The Laplacian matrix of a graph is defined as

𝑳 = 𝑫 −𝑾 .

It is also referred to as the combinatorial Laplacian matrix to distinguish it from other
variations in the definition of 𝑳.

The Laplacian matrix may appear unusual at first; however, it possesses numerous valuable
properties that make it a fundamental matrix in graph analysis. It satisfies the following
mathematical properties:

• it is symmetric and positive semidefinite: 𝑳 ⪰ 0;
• it has a zero eigenvalue with corresponding eigenvalue the all-one vector 1: 𝑳1 = 0;
• the degree vector is found along its diagonal: diag(𝑳) = 𝒅;
• the number of zero eigenvalues corresponds to the number of connected components of the

graph (i.e., clusters);
• it defines a measure for the smoothness or variance of graph signals.

To further elaborate on the smoothness property of the Laplacian matrix, let 𝒙 = (𝑥1, . . . , 𝑥𝑝)
denote a graph signal (i.e., one observation of the signal on all the nodes of the graph).
Ignoring the graph, one way to measure the variance of this signal 𝒙 is with the quantity∑
𝑖, 𝑗 (𝑥𝑖 − 𝑥 𝑗)2. Now, to take into account the graph information in this computation, it makes

sense to compute the variance between signals 𝑥𝑖 and 𝑥 𝑗 only if these two nodes are connected,
for example, by weighting the variance between each pair of nodes with the connectivity
strength as

∑
𝑖, 𝑗𝑊𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗)2. This finally leads us to the connection between the Laplacian

matrix and a measure of smoothness or variance of the graph signal as

𝒙T𝑳𝒙 =
1
2

∑︁
𝑖, 𝑗

𝑊𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗)2. (5.1)

Proof

𝒙T𝑳𝒙 = 𝒙T𝑫𝒙 − 𝒙T𝑾𝒙 =
∑︁
𝑖

𝑑𝑖𝑥
2
𝑖 −

∑︁
𝑖, 𝑗

𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗 =
∑︁
𝑖, 𝑗

𝑤𝑖 𝑗𝑥
2
𝑖 −

∑︁
𝑖, 𝑗

𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗 .

□

Example 5.1 (Graph matrices for a toy example) Figure 5.3 shows a simple toy undi-
rected graph G = (V, E,𝑾) with four nodes characterized by V = {1, 2, 3, 4}, E =

{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (2, 4), (4, 2)}, and weights 𝑤12 = 𝑤21 = 2, 𝑤13 =

𝑤31 = 2, 𝑤23 = 𝑤32 = 3, 𝑤24 = 𝑤42 = 1.
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Figure 5.3 Toy graph.

The connectivity, adjacency, and Laplacian graph matrices are

𝑪 =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

 , 𝑾 =


0 2 2 0
2 0 3 1
2 3 0 0
0 1 0 0

 , 𝑳 =


4 −2 −2 0
−2 6 −3 −1
−2 −3 5 0
0 −1 0 1

 .

5.2 Learning Graphs
In some applications, the graph structure can be readily obtained, such as in a social network
where the nodes are the users and the connectivity can be measured by friendship relationships.
In many other practical scenarios, however, the underlying graph structure is not directly
observable and has to be inferred from the data, such as in a gene graph, brain activity graph,
or a financial graph.

Numerous methods for learning graphs have been proposed in recent decades, ranging from
heuristic techniques based on the physical interpretation of graphs to more statistically sound
approaches that build upon well-established results from estimation theory.

The starting point in a graph learning method from data is the data matrix,

𝑿 = [𝒙1, 𝒙2, . . . , 𝒙𝑝] ∈ R𝑛×𝑝, (5.2)

where each column contains the signal of one variable or node, 𝑝 is the number of variables or
nodes, and 𝑛 is the length of the signal or number of observations. In the context of financial
time series, the number of observations is often denoted by 𝑇 instead of 𝑛, and the number
of nodes or assets is often denoted by 𝑁 instead of 𝑝. Each row of matrix 𝑿 represents one
observation of the signal on the graph, called the graph signal.

The goal in graph learning is to transition from the data matrix 𝑿 to the graph description
G = (V, E,𝑾) as illustrated in Figure 5.4. A simple example of graph learning from data
is depicted in Figure 5.5, where the nodes are points in R2 sampled from the “two-moon”
dataset, and the resulting graph clearly comprises two components corresponding to the two
moons.

The field of graph learning has experienced significant growth in recent years, with numerous



114 Financial Data: Graphs

Figure 5.4 Learning a graph from data.

Figure 5.5 Illustration of graph learning for a toy example.

studies introducing enhanced graph estimation techniques in terms of both quality and
computational efficiency.

• In what appears to be a pioneering effort, the seminal paper of Mantegna (1999) was the
first to implement data-driven graphs in financial markets, employing a straightforward
correlation graph.

• For a comprehensive understanding of graph theory, the standard textbooks Lauritzen
(1996) and Kolaczyk (2009) provide excellent coverage.

• For introductory and overview articles on graph learning, refer to Mateos et al. (2019) and
Dong et al. (2019).

• Basic graph learning algorithms are found in Lake and Tenenbaum (2010), Egilmez et al.
(2017), and Zhao et al. (2019).

• Structured graph learning: A general approach via spectral constraints is proposed in Kumar



5.2 Learning Graphs 115

et al. (2019) and Kumar et al. (2020), graphs with sparsity are studied in Ying et al. (2020),
and a convex formulation for bipartite graphs is developed in Cardoso et al. (2022b).

• Graph learning with financial data: General guidelines for financial time series are
considered in Cardoso and Palomar (2020), learning under heavy tails is explored in
Cardoso et al. (2021), and the application of bipartite-structured graphs for clustering is
considered in Cardoso et al. (2022b); an overview is given in Cardoso et al. (2022a).

• A comprehensive overview of the literature on financial graphs in the past two decades can
be found in Marti et al. (2021).

5.2.1 Learning Graphs from Similarity Measures
The simplest methods to infer a graph from data are based on computing each element of
the adjacency matrix 𝑾 (either weighted or 0–1 connectivity) by measuring the connectivity
strength between each pair of nodes one by one. To measure the strength, a wide variety of
similarity functions or scoring functions can be used (Kolaczyk, 2009), leading to totally
different graphs.

For illustration purposes, a few simple methods are listed next based on the data matrix
𝑿 ∈ R𝑛×𝑝 defined in (5.2), where the 𝑖th column 𝒙𝑖 ∈ R𝑛 corresponds to the signal at node 𝑖:

• Thresholded distance graph: Nodes 𝑖 and 𝑗 are connected (𝑤𝑖 𝑗 = 1) if the corresponding
signals satisfy ∥𝒙𝑖 − 𝒙 𝑗 ∥2 ≤ 𝛾, where 𝛾 is a threshold; otherwise not connected (𝑤𝑖 𝑗 = 0).

• Gaussian graph: Set every pair of points 𝑖 ≠ 𝑗 as connected with the Gaussian weights

𝑤𝑖 𝑗 = exp
(
−
∥𝒙𝑖 − 𝒙 𝑗 ∥2

2𝜎2

)
,

where 𝜎2 controls the size of the neighborhood.

• 𝑘-nearest neighbors (𝑘-NN) graph: Nodes 𝑖 and 𝑗 are connected (𝑤𝑖 𝑗 = 1) if 𝒙𝑖 is one of
the 𝑘 closest points to 𝒙 𝑗 or vice versa; otherwise not connected (𝑤𝑖 𝑗 = 0).

• Feature correlation graph: Simply use pairwise feature correlation for 𝑖 ≠ 𝑗 :

𝑤𝑖 𝑗 = 𝒙T
𝑖 𝒙 𝑗 .

It is worth noting that if the signals are normalized (i.e., ∥𝒙𝑖 ∥2 = 1), then the Euclidean
distance used in the Gaussian weights is directly related to the correlation: ∥𝒙𝑖 − 𝒙 𝑗 ∥2 =
2 × (1 − 𝒙T

𝑖 𝒙 𝑗).

However, because the connectivity of each pair is measured independently of the others, these
heuristic methods do not provide holistic measures and may not perform well in practice,
especially for time series data. In principle, it is better to measure the connectivity of all pairs
all at once in a joint manner, as explored in the next sections.
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5.2.2 Learning Graphs from Smooth Signals
We will now derive a family of graph learning methods based on the measure of smoothness
or variance of a graph signal defined in (5.1). To recall, given a 𝑝-dimensional graph signal
𝒙 (defined on a graph with 𝑝 nodes), a natural measure of its variance on the graph is
𝒙T𝑳𝒙 = 1

2
∑
𝑖, 𝑗𝑊𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗)2.

Suppose now we have 𝑛 observations of graph signals contained in the data matrix 𝑿 ∈ R𝑛×𝑝
defined in (5.2), where the 𝑖th column 𝒙𝑖 ∈ R𝑛 corresponds to the signal at node 𝑖 and the 𝑡-th
observation of the graph signal 𝒙 (𝑡 ) ∈ R𝑝 is contained along the 𝑡-th row.

The overall variance corresponding to the 𝑛 observations contained in the data matrix 𝑿 can
be written in terms of the Laplacian matrix 𝑳 as

𝑛∑︁
𝑡=1

(𝒙 (𝑡 ) )T𝑳𝒙 (𝑡 ) = Tr
(
𝑿𝑳𝑿T)

or, equivalently, in terms of the adjacency matrix 𝑾 as
𝑛∑︁
𝑡=1

1
2

∑︁
𝑖, 𝑗

𝑊𝑖 𝑗

(
𝑥
(𝑡 )
𝑖
− 𝑥 (𝑡 )

𝑗

)2
=

1
2

∑︁
𝑖, 𝑗

𝑊𝑖 𝑗 ∥𝒙𝑖 − 𝒙 𝑗 ∥2 =
1
2

Tr(𝑾𝒁),

where the matrix 𝒁 contains the squared Euclidean distances between signals: 𝑍𝑖 𝑗 ≜ ∥𝒙𝑖−𝒙 𝑗 ∥2.

Now that we have expressed the variance of a collection of signals on a graph, we are ready
to formulate the graph learning problem. The key observation is that if a signal has been
generated by a graph, then it is expected to have a small variance as measured on that graph.
This is a natural assumption because if two nodes are strongly connected, then the signals
on these two nodes should be similar; alternatively, if two nodes are not connected, then the
corresponding signals can be totally different.

Based on this assumption on the signal smoothness measured on the generating graph, suppose
we collect some graph signals in the data matrix 𝑿 with the hypothesis that they could have
been generated either by graph G1 or G2, with corresponding Laplacian matrices 𝑳1 and
𝑳2, respectively. Then, to determine which graph has generated the data, we simply have to
compute the signal variance on each of the two graphs, Tr

(
𝑿𝑳1𝑿

T)
and Tr

(
𝑿𝑳2𝑿

T)
, and

choose the one with the smaller variance.

We can now take the previous problem of choosing a graph among a set of possible alternatives
to the next level. Suppose again we collect some graph signals in the data matrix 𝑿 and want
to determine the graph G that best fits the data in the sense of producing a minimum signal
variance. That is, we want to determine the graph (either in terms of 𝑳 or 𝑾) that gives the
minimum signal variance on that graph. In addition, for practical purposes, we may want to
include a regularization term on the estimated graph to control some other graph properties,
such as sparsity, energy, or volume.

Thus, the simplest problem formulation in terms of the Laplacian matrix 𝑳 is

minimize
𝑳⪰0

Tr
(
𝑿𝑳𝑿T)

+ 𝛾ℎ𝐿 (𝑳)
subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 ,

(5.3)
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where 𝛾 is a hyper-parameter to control the regularization level and ℎ𝐿 (𝑳) is a regularization
function, e.g., ∥𝑳∥1, ∥𝑳∥2F, or volume(𝑳). Observe that this formulation incorporates as
constraints the structural properties that the Laplacian matrix is supposed to satisfy (see
Section 5.1.2).

Similarly, the simplest problem formulation in terms of the adjacency matrix 𝑾 is

minimize
𝑾

1
2 Tr(𝑾𝒁) + 𝛾ℎ𝑊 (𝑾)

subject to diag(𝑾) = 0, 𝑾 = 𝑾T ≥ 0,
(5.4)

where ℎ𝑊 (𝑾) is a regularization function for the adjacency matrix. As before, this formulation
incorporates as constraints the structural properties that the adjacency matrix is supposed to
satisfy (see Section 5.1.2).

It is worth noting that these formulations are convex provided that the regularization terms
are convex functions. It may seem that the formulation in terms of the Laplacian matrix in
(5.3) has a higher complexity than (5.4) due to the positive semidefinite matrix constraint
𝑳 ⪰ 0. However, this is not the case because 𝑳 ⪰ 0 is implied by the other two sets of linear
constraints, 𝑳1 = 0 and 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0 for 𝑖 ≠ 𝑗 (Ying et al., 2020).

Controlling the Degrees of the Nodes
Controlling the degrees of the nodes in a graph is important to avoid the problem of unbalanced
graphs or even isolated nodes in the graph. Recall from Section 5.1.2 that the degrees of the
nodes in a graph are given by 𝒅 = 𝑾1.

Some examples of graph learning with degree control include:

• Sparse graphs with fixed degrees: The formulation in (5.4) was adopted in Nie et al. (2016)
with the regularization term ∥𝑾∥2F to control the sparsity of the graph and the constraint
𝑾1 = 1 to control the degrees of the nodes.

• Sparse graphs with regularized degrees: An alternative to fixing the degrees as 𝑾1 = 1 is
to include a regularization term in the objective such as −1Tlog(𝑾1) (Kalofolias, 2016).

• Robust graphs against noisy data: Since observations are often noisy, a robust version of
the smoothness term Tr

(
𝑿𝑳𝑿T)

in (5.3) was proposed in Dong et al. (2015) by combining
the term Tr

(
𝒀𝑳𝒀T)

with ∥𝑿 − 𝒀 ∥2F, where 𝒀 attempts to remove the noise in 𝑿.

5.2.3 Learning Graphs from Graphical Model Networks
In the previous sections, the data matrix 𝑿 was assumed to contain the graph data without
any statistical modeling. Alternatively, the graph learning process can be formulated in a
more sound way as a statistical inference problem. We will now assume that the graph signals
contained along the rows of 𝑿, denoted by 𝒙 (𝑡 ) , 𝑡 = 1, . . . , 𝑇, where 𝑇 is the number of
observations, follow some multivariate distribution such as the Gaussian distribution,

𝒙 (𝑡 ) ∼ N(𝝁,𝚺),

where 𝝁 is the mean vector and 𝚺 the covariance matrix of the observations. Later, in
Section 5.4, more realistic heavy-tailed distributions will be considered.
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Recall that, in practice, the covariance matrix 𝚺 is typically estimated via the sample
covariance matrix

𝑺 =
1
𝑇

𝑇∑︁
𝑡=1

(𝒙 (𝑡 ) − 𝝁) (𝒙 (𝑡 ) − 𝝁)T =
1
𝑇

(
𝑿 − �̄�

)T (
𝑿 − �̄�

)
,

where the matrix �̄� contains 𝝁 along each row (see Chapter 3 for more details on the estimation
of covariance matrices).

The topic of estimation of graphical models goes back at least to the 1970s, when the inverse
sample covariance matrix 𝑺−1 was proposed to determine a graph (Dempster, 1972). Some
paradigmatic examples of network graph construction include the following:

• Correlation networks: The correlation between two random variables characterizes the
similarity between them (at least in a linear sense). Therefore, it can be used as a way to
measure how similar two nodes are and, hence, as a way to characterize a graph (Kolaczyk,
2009; Lauritzen, 1996). Nevertheless, a big drawback of using correlations is that two
nodes may have a high correlation through a dependency on other nodes. For example, in
the context of financial data, it is well known that all the stocks are significantly driven
by a few factors. As a consequence, they all exhibit a high correlation that does not really
characterize the similarity between stocks once the factors are accounted for.

• Partial correlation networks: The correlation measures the direct dependency between two
nodes but ignores the other nodes. A more refined version is to measure the dependency
but conditioned on the other nodes, that is, factoring out the effect of other nodes. For
example, height and vocabulary of children are not independent, but they are conditionally
independent conditioned on age.

Interestingly, all the information of partial correlation and dependency conditioned on the
rest of the graph is contained in the so-called precision matrix defined as 𝚯 = 𝚺−1, that
is, the inverse covariance matrix. To be precise, the correlation between nodes 𝑖 and 𝑗 ,
conditioned on the rest of the nodes of the network, is equal to −Θ𝑖 𝑗/

√︁
Θ𝑖𝑖Θ 𝑗 𝑗 (Kolaczyk,

2009; Lauritzen, 1996). As a consequence, two nodes 𝑖 and 𝑗 are conditionally independent
if and only if Θ𝑖 𝑗 = 0.

A graph defined by the precision matrix is called a partial correlation network or conditional
dependence graph. In such a graph, nonzero off-diagonal entries of the precision matrix 𝚯
correspond to the edges of the graph.

• Graphical LASSO (GLASSO): This method tries to estimate a sparse precision matrix
(Banerjee et al., 2008; Friedman et al., 2008). Assuming a multivariate Gaussian distribution
function for the data, the regularized maximum likelihood estimation of the precision
matrix 𝚯 = 𝚺−1 can be formulated (refer to Section 3.4 in Chapter 3) as

maximize
𝚯≻0

log det(𝚯) − Tr(𝚯𝑺) − 𝜌∥𝚯∥1,off, (5.5)

where ∥ · ∥1,off denotes the elementwise ℓ1-norm of the off-diagonal elements and the
hyper-parameter 𝜌 controls the level of sparsity of the precision matrix. The regularization
term ∥𝚯∥1,off enforces learning a sparse precision matrix.
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• Laplacian-structured GLASSO: The precision matrix plays a role in graphs similar to the
Laplacian matrix in the context of Gaussian Markov random fields (GMRFs) (Rue & Held,
2005). Under that setting, the GLASSO formulation in (5.5) can be reformulated to include
the Laplacian constraints (Egilmez et al., 2017; Lake & Tenenbaum, 2010; Zhao et al.,
2019) as1

maximize
𝑳⪰0

log gdet(𝑳) − Tr(𝑳𝑺) − 𝜌∥𝑳∥1,off

subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 ,
(5.6)

where gdet denotes the generalized determinant defined as the product of nonzero eigenval-
ues (this is necessary because, differently from 𝚯 ≻ 0 in (5.5), the Laplacian 𝑳 is singular
due to the constraint 𝑳1 = 0).

• Sparse GMRF graphs: The Laplacian-structured GLASSO in (5.6) is an improvement over
the vanilla GLASSO in (5.5). However, rather surprisingly, the ℓ1-norm regularization
term ∥𝑳∥1,off produces dense graphs instead of sparse ones (Ying et al., 2020). Thus, a
more appropriate formulation for sparse GMRF graphs is (Kumar et al., 2020; Ying et al.,
2020) 2

maximize
𝑳⪰0

log gdet(𝑳) − Tr(𝑳𝑺) − 𝜌∥𝑳∥0,off

subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 .
(5.7)

The sparsity regularization term ∥𝑳∥0,off is a difficult function to deal with, being nonconvex,
nondifferentiable, and noncontinuous. In practice, it can be approximated with a smooth
concave function

∑
𝑖 𝑗 𝜙(𝐿𝑖 𝑗), with 𝜙 concave, such as 𝜙(𝑥) = log(𝜖 + |𝑥 |), where the

parameter 𝜖 is a small positive number, and then this concave function can be successively
approximated by a convex weighted ℓ1-norm (via the majorization–minimization method
(Sun et al., 2017), see Section B.7 in Appendix B for details), leading to the so-called
reweighted ℓ1-norm regularization method (Candès et al., 2008), which has been successfully
employed for sparse graph learning (Cardoso et al., 2022a; Kumar et al., 2020; Ying et al.,
2020).

5.2.4 Numerical Experiments
For the empirical analysis, we use three years’ worth of stock price data (2016–2019) from
the following three sectors of the S&P 500 index: Industrials, Consumer Staples, and Energy.
The data matrix 𝑿 ∈ R𝑇×𝑁 is created with the log-returns of the 𝑁 assets.

Since different assets can show widely different volatilities, it is convenient to normalize them
so that each has volatility one (normalizing the data is equivalent to using the correlation
matrix in lieu of the covariance matrix). In fact, in machine learning it is almost always the
case that data is normalized prior to the application of any method; this is to avoid problems
arising from different dynamic ranges in the data or even different units of measurement.

1 The R package spectralGraphTopology contains the function learn_laplacian_gle_admm() to solve
problem (5.6) (Cardoso & Palomar, 2022).

2 The R package sparseGraph contains the function learn_laplacian_pgd_connected() to solve problem
(5.7).

https://cran.r-project.org/package=spectralGraphTopology
https://github.com/convexfi/sparseGraph
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It is worth pointing out that, as previously mentioned in Section 5.2.3, financial assets typically
present a high correlation due to the market factor or other few factors (see Chapter 3). One
may be tempted to remove the effect of these factors and then learn the graph based on the
residual idiosynchratic component. However, the precision matrix (and the Laplacian matrix)
have an interpretation of partial correlation, which means that the effect of common factors
affecting other nodes is already removed.

Among all the methods explored in this section, the most appropriate for time series are
the GMRF-based methods enforcing graph sparsity either via the ℓ1-norm (the Laplacian-
structured GLASSO formulation in (5.6)) or via the ℓ0 penalty term (the sparse GMRF graph
formulation (5.7)), which in practice is solved with a reweighted ℓ1-norm iterative method.
Figure 5.6 shows the graphs obtained with these two methods, demonstrating the superior
performance of the reweighted ℓ1-norm iterative method.

GMRF graph (ℓ1-norm) GMRF graph (reweighted ℓ1-norm)

Figure 5.6 Effect of sparsity regularization term on financial graphs.

5.3 Learning Structured Graphs
The graph learning methods explored in Sections 5.2.2 and 5.2.3 can be successfully employed
in different applications. Nevertheless, in some cases, some structural property of the
unknown graph may be known and should be taken into account in the graph estimation
process. Unfortunately, learning a graph with a specific structure is an NP-hard combinatorial
problem for a general class of graphical models (Bogdanov et al., 2008) and, thus, designing
a general algorithm is challenging.

Figure 5.7 illustrates different common types of graphs of interest, namely:

• multi-component or 𝑘-component graph: contains clusters, useful for classification;
• regular graph: where each node has the same number of neighbors (alternatively, the same

degree), useful for balanced graphs;
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• modular graph: satisfies some shortest path distance properties among triplets of nodes,
useful for social network analysis;
• bipartite graph: containing two types of nodes with inter-connections and without intra-

connections;
• grid graph: the nodes are distributed following a rectangular grid or two-dimensional

lattice; and
• tree graph: undirected graph in which any two vertices are connected by exactly one path,

resulting in a structure resembling a tree where connections branch out from nodes at each
level.

Multi-component graph Regular graph Modular graph

Bipartite graph Grid graph Tree graph

Figure 5.7 Types of structured graphs.

Some of the structural constraints are not difficult to control. For example, a grid graph simply
means that each node can only be connected with a given neighborhood, that is, the adjacency
and Laplacian matrices have many elements fixed to zero a priori. Another example is that
of regular graphs where the degrees of the nodes, row sums of 𝑾, are fixed. If, instead, the
number of neighbors is to be controlled, then the cardinality of the rows of 𝑾 has to be
constrained, which is a nonconvex constraint.

However, other graph structural constraints are more complicated to control and can be
characterized by spectral properties (i.e., properties on the eigenvalues) of the Laplacian and
adjacency matrices (Chung, 1997). Such spectral properties can be enforced in the graph
learning formulations (Kumar et al., 2019, 2020; Nie et al., 2016) as discussed next.
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5.3.1 𝑘-Component Graphs
A 𝑘-component graph (i.e., a graph with 𝑘 clusters or components) is characterized by its
Laplacian matrix being low rank with 𝑘 zero eigenvalues (Chung, 1997).

More explicitly, consider the eigenvalue decomposition of the Laplacian matrix,

𝑳 = 𝑼Diag(𝜆1, 𝜆2, . . . , 𝜆𝑝)𝑼T,

where 𝑼 contains eigenvectors columnwise and 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑝 are the eigenvalues in
increasing order. Then, a 𝑘-component graph has the 𝑘 smallest eigenvalues equal to zero:

𝜆1 = · · · = 𝜆𝑘 = 0.

The opposite direction is also true: if the Laplacian matrix has 𝑘 zero eigenvalues, then it is a
𝑘-component graph. Figure 5.8 illustrates this spectral property of 𝑘-component graphs.

Graph Laplacian matrix eigenvalues

Figure 5.8 Example of a three-component graph (three clusters) with corresponding
Laplacian matrix eigenvalues (three zero eigenvalues).

The low-rank property of the Laplacian matrix, rank(𝑳) = 𝑝 − 𝑘 , is a nonconvex and difficult
constraint to handle in an optimization problem. In practice, it can be better handled by
enforcing the sum of the 𝑘 smallest eigenvalues to be zero,

∑𝑘
𝑖=1 𝜆𝑖 (𝑳) = 0, via Ky Fan’s

theorem (Fan, 1949):
𝑘∑︁
𝑖=1

𝜆𝑖 (𝑳) = min
𝑭∈R𝑝×𝑘 :𝑭T𝑭=𝑰

Tr(𝑭T𝑳𝑭),

where the matrix 𝑭 becomes a new variable to be optimized.

For convenience, the low-rank constraint can be relaxed and moved to the objective function
as a regularization term. For instance, denoting a general objective function by 𝑓 (𝑳), a
regularized formulation could be

minimize
𝑳,𝑭

𝑓 (𝑳) + 𝛾Tr(𝑭T𝑳𝑭)
subject to any constraint on 𝑳,

𝑭T𝑭 = 𝑰,



5.3 Learning Structured Graphs 123

where now the optimization variables are 𝑳 and 𝑭, making the problem nonconvex due to the
term 𝑭T𝑳𝑭. To solve this problem we can conveniently use an alternate minimization between
𝑳 and 𝑭 (see Section B.6 in Appendix B for details). The optimization of 𝑳 with a fixed 𝑭 is
basically the same problem without the low-rank structure, whereas the optimization of 𝑭
with a fixed 𝑳 is a trivial problem with a solution given by the eigenvectors corresponding to
the 𝑘 smallest eigenvalues of 𝑳.

Some illustrative and specific examples of low-rank graph estimation problems include:

• Low-rank graph approximation: Suppose we are given a graph in the form of a Laplacian
matrix 𝑳0; we can formulate the low-rank approximation problem as

minimize
𝑳⪰0,𝑭

∥𝑳 − 𝑳0∥2F + 𝛾Tr
(
𝑭T𝑳𝑭

)
subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 ,

diag(𝑳) = 1,
𝑭T𝑭 = 𝑰.

(5.8)

• Low-rank graphs from sparse GMRFs: Consider the formulation in (5.7) to learn a sparse
Laplacian matrix under a GMRF framework. We can easily reformulate it to include a
low-rank regularization term as

maximize
𝑳⪰0,𝑭

log gdet(𝑳) − Tr(𝑳𝑺) − 𝜌∥𝑳∥0,off − 𝛾Tr
(
𝑭T𝑳𝑭

)
subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 ,

diag(𝑳) = 1,
𝑭T𝑭 = 𝑰.

(5.9)

An alternative formulation based on ∥𝑳 −𝑼𝚲𝑼T∥2F as the regularization term can also be
considered (Kumar et al., 2019, 2020).3

Enforcing a low-rank Laplacian matrix will generate a 𝑘-component graph, but it may have
isolated nodes. To avoid such trivial graph solutions one can control the degrees of the nodes
with the constraint diag(𝑳) = 1 (Cardoso & Palomar, 2020).

5.3.2 Bipartite Graphs
A bipartite graph is characterized by its adjacency matrix having symmetric eigenvalues
around zero (Chung, 1997).

More explicitly, consider the eigenvalue decomposition of the adjacency matrix,

𝑾 = 𝑽Diag(𝜓1, 𝜓2, . . . , 𝜓𝑝)𝑽T,

where 𝑽 contains the eigenvectors columnwise and 𝜓1 ≤ 𝜓2 ≤ · · · ≤ 𝜓𝑝 are the eigenvalues
in increasing order. Then, a bipartite graph has symmetric eigenvalues around zero:

𝜓𝑖 = −𝜓𝑝−𝑖, ∀𝑖.
3 The R package spectralGraphTopology contains several functions to solve graph formulations with spectral

constraints (Cardoso & Palomar, 2022).

https://cran.r-project.org/package=spectralGraphTopology
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The opposite direction is also true: if the adjacency matrix has symmetric eigenvalues, then
the graph is bipartite. Figure 5.9 illustrates this spectral property of bipartite graphs.

Graph Adjacency matrix eigenvalues

Figure 5.9 Example of a bipartite graph with corresponding adjacency matrix
eigenvalues.

Enforcing symmetric eigenvalues in the adjacency matrix 𝑾 is a nonconvex and difficult
constraint to handle in an optimization problem (Kumar et al., 2019, 2020). An alternative
and more convenient characterization of a bipartite graph is via its Laplacian matrix, which
has the following structure:4

𝑳 =

[
Diag(𝑩1) −𝑩
−𝑩T Diag(𝑩T1)

]
, (5.10)

where 𝑩 ∈ R𝑟×𝑞+ contains the edge weights between the two types of nodes (with 𝑟 and 𝑞
denoting the number of nodes in each group). Note that, any Laplacian 𝑳 constructed as in
(5.10) already satisfies 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0,∀𝑖 ≠ 𝑗 .

Some illustrative and specific examples of low-rank graph estimation problems are:

• Bipartite graph approximation: Suppose we are given a graph in the form of a Laplacian
matrix 𝑳0; we can find the closest bipartite graph approximation using (5.10) as

minimize
𝑳,𝑩

∥𝑳 − 𝑳0∥2F

subject to 𝑳 =

[
Diag(𝑩1) −𝑩
−𝑩T Diag(𝑩T1)

]
,

𝑩 ≥ 0, 𝑩1 = 1.

• Bipartite graphs from sparse GMRFs: Consider now the sparse GMRF formulation in (5.7),

4 The R package finbipartite contains methods to solve problem (5.10) (Cardoso & Palomar, 2023a).

https://cran.r-project.org/package=finbipartite
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but enforcing the bipartite structure with (5.10) as follows (Cardoso et al., 2022b):

maximize
𝑳⪰0,𝑩

log gdet(𝑳) − Tr(𝑳𝑺) − 𝜌∥𝑳∥0,off

subject to 𝑳 =

[
Diag(𝑩1) −𝑩
−𝑩T Diag(𝑩T1)

]
,

𝑩 ≥ 0, 𝑩1 = 1.

(5.11)

5.3.3 Numerical Experiments
For the empirical analysis, we again use three years’ worth of stock price data (2016–2019)
from the following three sectors of the S&P 500 index: Industrials, Consumer Staples, and
Energy.

Stocks are classified and grouped together into sectors and industries. This organization
is convenient for investors in order to easily diversify their investment across different
sectors (which presumably are less correlated than stocks within each sector). However,
there are different criteria to classify stocks into sectors and industries, producing different
classifications; for example:

• production-oriented approach: by the products they produce or use as inputs in the
manufacturing process;
• market-oriented approach: by the markets they serve.

Table 5.1 lists some of the major sector classification systems in the financial industry:

• GICS (Global Industry Classification Standard): A system developed by Morgan Stanley
Capital International (MSCI) and Standard & Poor’s (S&P) in 1999 to classify companies
and stocks into industry groups, sectors, and sub-industries based on their primary business
activities.

• ICB (Industry Classification Benchmark): A classification system developed by Dow Jones
and FTSE Group that categorizes companies and securities into industries, supersectors,
sectors, and subsectors based on their primary business activities. It is used by investors,
analysts, and researchers for consistent sector analysis and performance comparison.

• TRBC (Thomson Reuters Business Classification): A proprietary classification system
developed by Thomson Reuters to categorize companies and securities into economic
sectors, business sectors, and industries based on their primary business activities. It is
used for research, analysis, and investment purposes.

In principle, each system is different and groups stocks in a different manner, although there
is some degree of similarity.
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Table 5.1 Major sector classification systems.

Level/System GICS ICB TRBC

First 11 sectors 10 industries 10 economic sectors
Second 24 industry groups 19 supersectors 28 business sectors
Third 68 industries 41 sectors 56 industry groups
Fourth 157 sub-industries 114 subsectors 136 industries

Given that there are multiple stock classifications into sectors and industries, it is not clear
which one is more relevant in terms of portfolio investment. In a more data-oriented world,
one can ignore such human-made classification systems and instead learn the graph of stocks
from data and, perhaps, even enforce a 𝑘-component graph to obtain a clustered graph
automatically.

Two-Stage vs. Joint Design of 𝑘-Component Graphs
Suppose we want to learn a 𝑘-component graph; as described in Section 5.3.1, one can employ
two approaches:

• Two-stage approach: First learn a connected graph using any formulation, such as the
GMRF design in (5.6) or (5.7). Then perform a low-rank approximation to that graph as in
(5.8).

• Joint approach: Enforce the low-rank property in the GMRF formulation as in (5.9), which
clearly must be better than the two-stage approach.

Figure 5.10 shows the effect of employing a joint design vs. the two-stage design using the
GMRF formulation ((5.7) for the two-stage case and (5.9) for the joint case). The difference is
too obvious to require any comment on the fact that a joint approach is significantly superior.
Note, however, that care has to be taken with controlling the degrees when enforcing a
low-rank graph, as discussed next.

Isolated Nodes in Low-Rank Designs for 𝑘-Component Graphs
Isolated nodes is an artifact that may happen when imposing a low-rank structure in the
Laplacian matrix to obtain a graph with clusters. Basically, if one enforces a low-rank structure
to learn a 𝑘-component graph but the graph deviates from a 𝑘-component graph, the solution
to this formulation may trivially leave some nodes without any connection to other nodes (i.e.,
isolated nodes) to artificially increase the number of clusters.

The solution to avoid isolated nodes is quite simple. As discussed in Section 5.3.1, control the
degrees of the nodes so that they are nonzero; even better if they are balanced.

Figure 5.11 clearly shows the effect of isolated nodes for the low-rank GMRF design in
(5.9) and with the additional degree control. The difference is staggering: always control the
degrees.
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Two-stage procedure Joint procedure

Figure 5.10 Effect of joint design vs. two-stage design on multi-component financial
graphs.

Without degree control With degree control

Figure 5.11 Effect of isolated nodes on low-rank (clustered) financial graphs.

5.4 Learning Heavy-Tailed Graphs
5.4.1 From Gaussian to Heavy-Tailed Graphs

The basic GMRF formulations in (5.6) or (5.7) are based on the assumption that data follow a
Gaussian distribution,

𝑓 (𝒙) = 1√︁
(2𝜋)𝑁 |𝚺 |

exp
(
−1

2
(𝒙 − 𝝁)T𝚺−1(𝒙 − 𝝁)

)
,
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leading to the maximum likelihood estimation of the Laplacian matrix 𝑳 (which plays the
role of the inverse covariance matrix 𝚺−1) formulated as

maximize
𝑳⪰0

log gdet(𝑳) − Tr(𝑳𝑺)
subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 .

(5.12)

However, in many applications, data do not follow a Gaussian distribution. Instead, a
better model for data may be a heavy-tailed distribution such as the Student 𝑡 distribution
characterized by

𝑓 (𝒙) ∝ 1√︁
|𝚺 |

(
1 + 1

𝜈
(𝒙 − 𝝁)T𝚺−1(𝒙 − 𝝁)

)−(𝑝+𝜈)/2
,

where the parameter 𝜈 > 2 determines how heavy the tails are (for 𝜈 → ∞ it becomes the
Gaussian distribution). This leads to

maximize
𝑳⪰0

log gdet(𝑳) − 𝑝 + 𝜈
𝑇

𝑇∑︁
𝑡=1

log
(
1 + 1

𝜈
(𝒙 (𝑡 ) )T𝑳𝒙 (𝑡 )

)
subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 ,

(5.13)

where the mean is assumed to be zero for simplicity.

This heavy-tailed formulation is nonconvex and difficult to solve directly. Instead, we can
employ the majorization–minimization (MM) framework (Sun et al., 2017) to iteratively solve
the problem (see Section B.7 in Appendix B for details on MM). In particular, the logarithm
upper bound log(𝑡) ≤ log(𝑡0) +

𝑡

𝑡0
− 1 leads to

log
(
1 + 1

𝜈
(𝒙 (𝑡 ) )T𝑳𝒙 (𝑡 )

)
≤ log

(
1 + 1

𝜈
(𝒙 (𝑡 ) )T𝑳0𝒙

(𝑡 )
)
+ 𝜈 + (𝒙 (𝑡 ) )T𝑳𝒙 (𝑡 )
𝜈 + (𝒙 (𝑡 ) )T𝑳0𝒙 (𝑡 )

− 1.

Thus, the surrogate problem of (5.13) can be written similarly to the Gaussian case (Cardoso
et al., 2021) as

maximize
𝑳⪰0

log gdet(𝑳) − 𝑝 + 𝜈
𝑇

𝑇∑︁
𝑡=1

(𝒙 (𝑡 ) )T𝑳𝒙 (𝑡 )
𝜈 + (𝒙 (𝑡 ) )T𝑳0𝒙 (𝑡 )

subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 .

Summarizing, the MM algorithm iteratively solves the following sequence of Gaussianized
problems5 for 𝑘 = 1, 2, . . .:

maximize
𝑳⪰0

log gdet(𝑳) − Tr(𝑳𝑺𝑘)
subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 ,

(5.14)

5 The R package fingraph, based on Cardoso et al. (2021), contains efficient algorithms to learn graphs from
heavy-tailed formulations (Cardoso & Palomar, 2023b). In particular, the function
learn_regular_heavytail_graph() solves problem (5.13) with an additional degree constraint; also, the
function learn_kcomp_heavytail_graph() further allows the specification of a 𝑘-component constraint.

https://cran.r-project.org/package=fingraph
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where 𝑺𝑘 is conveniently defined as a weighted sample covariance matrix

𝑺𝑘 =
1
𝑇

𝑇∑︁
𝑡=1

𝑤𝑘𝑡 × 𝒙 (𝑡 ) (𝒙 (𝑡 ) )T,

with weights 𝑤𝑘𝑡 =
𝑝 + 𝜈

𝜈 + (𝒙 (𝑡 ) )T𝑳𝑘𝒙 (𝑡 ) .

In words, to solve a heavy-tailed graph learning problem, instead of solving the Gaussian
formulation in (5.12), one simply needs to solve a sequence of Gaussianized formulations as
in (5.14).

5.4.2 Numerical Experiments
From Gaussian to Heavy-Tailed Graphs

We use again three years worth of stock price data (2016-2019) from the following three
sectors of the S&P 500 index: Industrials, Consumer Staples, and Energy.

Figure 5.12 shows the results for the MRF formulations under the Gaussian assumption
and under a heavy-tailed model. For the Gaussian case, the GMRF with a concave sparsity
regularizer in (5.7) is used. For the non-Gaussian case, the heavy-tailed MRF formulation
in (5.13) is employed. The conclusion is clear: heavy-tailed graphs are more convenient for
financial data.

Sparse Gaussian MRF graph Heavy-tailed MRF graph

Figure 5.12 Gaussian vs. heavy-tailed graph learning with stocks.

𝑘-Component Graphs
The effect of learning a 𝑘-component graph is that the graph will automatically be clustered.
The following numerical example illustrates this point with foreign exchange (FX) market
data (FX or forex is the trading of one currency for another). In particular, we use the 34
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most traded currencies in the period from January 2, 2019 to December 31, 2020 (a total
of 𝑛 = 522 observations). The data matrix is composed by the log-returns of the currency
prices with respect to the United States dollar (USD). Unlike for S&P 500 stocks, there is no
classification standard for currencies.

To start with, Figure 5.13 shows the graphs learned with the GMRF formulations (with the
ℓ1-norm in (5.6) and concave sparsity regularizer in (5.7)) and with the heavy-tailed MRF
formulation in (5.13). As expected, the GMRF graph with ℓ1-norm regularizer does not
give a sparse graph like the one with a concave sparsity regularizer. Also, the heavy-tailed
MRF formulation produces a much cleaner and more interpretable graph; for instance, the
expected correlation between currencies of locations geographically close to each other is
more evident, for example, {Hong Kong SAR, China}, {Taiwan, South Korea}, and {Poland,
Czech Republic}.

GMRF graph (ℓ1-norm) GMRF graph (reweighted ℓ1-norm) Heavy-tailed MRF graph

Figure 5.13 Gaussian vs. heavy-tailed graph learning with FX.

Turning now to 𝑘-component graphs, Figure 5.14 shows the equivalent graphs learned
enforcing the low-rank structure to obtain clustered graphs (in particular, nine-component
graphs). In this case, all the graphs are clearly clustered as expected. The heavy-tailed MRF
graph provides a clearer interpretation with more reasonable clusters, such as {New Zealand,
Australia} and {Poland, Czech Republic, Hungary}, which are not separated in the Gaussian-
based graphs. Observe that the heavy-tailed MRF graph in (5.13) with low-rank structure
controls the degrees of the nodes and isolated nodes are avoided (the GMRF formulations
used do not control the degrees and the graphs present isolated nodes).

5.5 Learning Time-Varying Graphs
All the aforementioned graph learning frameworks are designed towards static graphs.
However, many practical network-based systems are intrinsically dynamic in nature and static
graphs would inherently neglect the time variations of the data (Kolaczyk, 2009, Section 8.6).
For instance, financial systems are evidently dynamic and subject to various market regimes,
such as bull markets, bear markets, economic crises, bubbles, and so on.

Learning time-varying or dynamic graphs is more cumbersome than static graphs. Not
only does the formulation become more complicated but the number of variables increases
significantly. As a consequence, few works can be found in the literature.
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GMRF graph (ℓ1-norm) GMRF graph (reweighted ℓ1-norm) Heavy-tailed MRF graph

Figure 5.14 Gaussian vs. heavy-tailed multi-component graph learning with FX.

A naive approach would be to divide the available observations into 𝑇 chunks, each with 𝑛𝑡
samples, and then learn different graphs independently for each chunk: 𝑳𝑡 for 𝑡 = 1, . . . , 𝑇 .
The drawback of this approach, apart from the fact that fewer observations are available to
learn each graph, is that the graphs learned may lack time consistency, that is, they may
change abruptly rather than smoothly.

In order to learn time-varying graphs that preserve the time consistency between consecutive
graphs, a regularization term of the form 𝑑 (𝑳𝑡−1, 𝑳𝑡 ) can be employed (Kalofolias et al.,
2017); for example, the Frobenius norm, 𝑑 (𝑳𝑡−1, 𝑳𝑡 ) = ∥𝑳𝑡−1 − 𝑳𝑡 ∥2F, or the ℓ1-norm,
𝑑 (𝑳𝑡−1, 𝑳𝑡 ) = ∥𝑳𝑡−1 − 𝑳𝑡 ∥1.

The following graph learning formulation follows from the GMRF framework in (5.6) or (5.7)
but preserving the time consistency (Cardoso & Palomar, 2020):

minimize
𝑳1 ,...,𝑳𝑇

∑𝑇
𝑡=1 𝑛𝑡 × [Tr(𝑳𝑡𝑺𝑡 ) − log gdet(𝑳𝑡 )] + 𝛿

∑𝑇
𝑡=2 𝑑 (𝑳𝑡−1, 𝑳𝑡 ),

subject to
{
𝑳𝑡 ⪰ 0, 𝑳𝑡1 = 0, (𝑳𝑡 )𝑖 𝑗 = (𝑳𝑡 ) 𝑗𝑖 ≤ 0, ∀ 𝑖 ≠ 𝑗

}𝑇
𝑡=1,

where 𝑺𝑡 denotes the sample correlation matrix of chunk 𝑡 and the hyper-parameter 𝛿 controls
the level of time consistency (for 𝛿 = 0 it becomes the naive approach without time consistency
and for 𝛿→∞ tends to the static graph solution).

The solution to this problem is a dynamic graph conditioned on all the𝑇 chunks of observations
(i.e., with look-ahead bias):

�̂�𝑡 |𝑇 𝑡 = 1, . . . , 𝑇 .

Alternatively, using a rolling window approach, one can instead obtain a causal estimate
without look-ahead bias:

�̂�𝑡 |𝑡 𝑡 = 1, . . . , 𝑇 .

5.6 Summary
While the topic of estimation of graphical models goes back at least to the 1970s, the first
application in financial markets can only be found in the seminal paper of Mantegna (1999),
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where a simple correlation graph was employed. Since then, a myriad methods have been
proposed as surveyed in Marti et al. (2021).

Among the many methods described in this chapter, only a few seem to be appropriate for
financial time series and able to produce desirable graphs:

• Sparse GMRF graphs (Section 5.2.3) as formulated in (5.7) are a good start.

• Asset clustering is a data-driven alternative to handcrafted sectors or industries. For this
purpose, 𝑘-component graphs (Section 5.3.1) can be readily obtained by imposing low-rank
structure with degree control as in formulation (5.9).

• Lastly, owing to the inherent heavy-tailed nature of financial data, heavy-tailed graph
models (Section 5.4) are undoubtedly more suitable than Gaussian ones. These models are
formulated in (5.13) and can be practically solved iteratively using the simpler problems
outlined in (5.14).

Exercises
5.1 (Graph matrices) Consider a graph described by the following adjacency matrix:

𝑾 =



0 2 2 0 6 1
2 0 3 1 5 0
2 3 0 9 0 2
0 1 9 0 7 3
6 5 0 7 0 2
1 0 2 3 2 0


.

a. Calculate the connectivity matrix.
b. Calculate the degree matrix.
c. Calculate the Laplacian matrix.
d. Plot the graph showing the nodes and indicating the connectivity weights.

5.2 (Laplacian matrix of a 𝑘-connected graph) Consider a graph described by the following
adjacency matrix:

𝑾 =



0 2 0 0 2 0
2 0 0 9 3 2
0 0 0 7 0 2
0 9 7 0 0 3
2 3 0 0 0 0
0 2 2 3 0 0


.

a. Calculate the Laplacian matrix.
b. Plot the graph and describe the graph structure.
c. Compute the eigenvalue decomposition of the Laplacian matrix. What can be concluded

from its eigenvalues?

5.3 (Adjacency matrix of a bipartite graph) Consider a graph described by the following
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adjacency matrix:

𝑾 =



0 0 0 2 6 1
0 0 0 1 5 3
0 0 0 9 0 2
2 1 9 0 0 0
6 5 0 0 0 0
1 3 2 0 0 0


.

a. Calculate the Laplacian matrix.
b. Plot the graph and describe the graph structure.
c. Compute the eigenvalue decomposition of the adjacency matrix. What can be concluded

from its eigenvalues?

5.4 (Learning graphs from similarity measures) Consider the following graph:

𝑾 =



0 2 2 0 0 0
2 0 3 0 0 0
2 3 0 0 9 2
0 0 0 0 7 2
0 0 9 7 0 3
0 0 2 2 3 0


.

a. Calculate the Laplacian matrix 𝑳.

b. Generate 𝑇 = 100 observations of a graph signal 𝒙 (𝑡 ) , 𝑡 = 1, . . . , 𝑇 , by drawing each
realization from a zero-mean Gaussian distribution with covariance matrix equal to the
Moore–Penrose matrix inverse of the Laplacian matrix 𝑳† (which has inverse positive
eigenvalues but keeps the same zero eigenvalues as 𝑳), that is, 𝒙 (𝑡 ) ∼ N(0, 𝑳†).

c. Learn the following graphs based on similarity measures:

• thresholded distance graph
• Gaussian graph
• 𝑘-nearest neighbors (𝑘-NN) graph
• feature correlation graph.

d. Compare the graphs in terms of Laplacian matrix error and with graph plots.

5.5 (Learning graphs from smooth signals) Consider the following graph:

𝑾 =



0 2 2 0 0 0
2 0 3 0 0 0
2 3 0 0 9 2
0 0 0 0 7 2
0 0 9 7 0 3
0 0 2 2 3 0


.

a. Calculate the Laplacian matrix 𝑳.

b. Generate 𝑇 = 100 observations of a graph signal 𝒙 (𝑡 ) , 𝑡 = 1, . . . , 𝑇 , by drawing each
realization from a zero-mean Gaussian distribution with covariance matrix equal to the
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Moore–Penrose matrix inverse of the Laplacian matrix 𝑳† (which has inverse positive
eigenvalues but keeps the same zero eigenvalues as 𝑳), that is, 𝒙 (𝑡 ) ∼ N(0, 𝑳†).

c. Learn the following graphs:

• sparse smooth graph:

minimize
𝑾

1
2 Tr(𝑾𝒁) + 𝛾∥𝑾∥2F

subject to diag(𝑾) = 0, 𝑾 = 𝑾T ≥ 0;

• sparse smooth graph with hard degree control: same formulation but including the
constraint 𝑾1 = 1 to control the degrees of the nodes;

• sparse smooth graph with regularized degree control: same formulation again but now
including the regularization term −1Tlog(𝑾1) to control the degrees of the nodes.

d. Compare the graphs in terms of Laplacian matrix error and with graph plots.

5.6 (Learning 𝑘-component financial graphs from GRMF)

a. Download market data corresponding to 𝑁 assets (e.g., stocks or cryptocurrencies) during
a period with 𝑇 observations, and form the data matrix 𝑿 ∈ R𝑇×𝑁 .

b. Learn a sparse GMRF graph:

maximize
𝑳⪰0

log gdet(𝑳) − Tr(𝑳𝑺) − 𝜌∥𝑳∥0,off

subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 .

c. Learn a 𝑘-component sparse GMRF graph:

maximize
𝑳⪰0,𝑭

log gdet(𝑳) − Tr(𝑳𝑺) − 𝜌∥𝑳∥0,off − 𝛾Tr
(
𝑭T𝑳𝑭

)
subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 ,

diag(𝑳) = 1,
𝑭T𝑭 = 𝑰.

d. Plot the graphs and compare them.

5.7 (Learning heavy-tailed financial graphs)

a. Download market data corresponding to 𝑁 assets (e.g., stocks or cryptocurrencies) during
a period with 𝑇 observations, and form the data matrix 𝑿 ∈ R𝑇×𝑁 .

b. Learn a sparse GMRF graph:

maximize
𝑳⪰0

log gdet(𝑳) − Tr(𝑳𝑺) − 𝜌∥𝑳∥0,off

subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 .

c. Learn a heavy-tailed MRF graph by solving the following sequence of Gaussianized
problems for 𝑘 = 1, 2, . . .:

maximize
𝑳⪰0

log gdet(𝑳) − Tr(𝑳𝑺𝑘)
subject to 𝑳1 = 0, 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖 ≤ 0, ∀𝑖 ≠ 𝑗 ,
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where 𝑺𝑘 is a weighted sample covariance matrix,

𝑺𝑘 =
1
𝑇

𝑇∑︁
𝑡=1

𝑤𝑘𝑡 × 𝒙 (𝑡 ) (𝒙 (𝑡 ) )T,

with weights 𝑤𝑘𝑡 =
𝑝 + 𝜈

𝜈 + (𝒙 (𝑡 ) )T𝑳𝑘𝒙 (𝑡 ) .

d. Plot the graphs and compare.
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6

Portfolio Basics

“It is not the man who has too little, but the man who craves more, that is poor.”

— Seneca

In this chapter, we introduce fundamental concepts related to portfolios, including the
definition of portfolio weights and the notion of rebalancing. We also discuss common
portfolio constraints and performance metrics, as well as a selection of prevalent heuristic
and risk-based portfolios employed by practitioners. Examples of these portfolios include
the equal-weighted 1/𝑁 portfolio, the quintile portfolio, and the global minimum variance
portfolio.

6.1 Fundamentals
6.1.1 Data Modeling

Following Chapters 2–4 on financial data modeling, we denote the prices of a universe of 𝑁
assets by 𝒑𝑡 ∈ R𝑁 , the linear returns by

𝒓lin
𝑡 =

𝒑𝑡 − 𝒑𝑡−1

𝒑𝑡−1
=

𝒑𝑡
𝒑𝑡−1
− 1,

where the division is elementwise (with some abuse of notation), and the log-returns by

𝒓log
𝑡 = log 𝒑𝑡 − log 𝒑𝑡−1,

where the time index 𝑡 can denote any arbitrary period such as minutes, hours, days, weeks,
months, quarters, years, . . .

The goal of the different financial data econometric models in Chapter 3, for the i.i.d. case,
and Chapter 4, for time series with temporal structure, is to form a forecast or model for the
returns at time 𝑡 based on the previous historical data up to time 𝑡 − 1, denoted by F𝑡−1. This
modeling is typically done in terms of the conditional first- and second-order moments, that

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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is, the conditional mean vector and covariance matrix:

𝝁log
𝑡 ≜ IE

[
𝒓log
𝑡 | F𝑡−1

]
,

𝚺log
𝑡 ≜ Cov

[
𝒓log
𝑡 | F𝑡−1

]
= IE

[(
𝒓log
𝑡 − 𝝁log

𝑡 ) (𝒓
log
𝑡 − 𝝁log

𝑡

)T
| F𝑡−1

]
.

We remark that the majority of financial data models refer to the log-returns and not to the
linear returns; for example, the random walk model for the log-prices in Chapter 3. However,
to compute the return of a portfolio, from which its performance can be derived, it is the
linear returns of the assets that are needed. This seems to create an impasse: we prefer to
model the log-returns but what is really needed is the model of the linear returns.

In practice, since linear returns are very close to log-returns, 𝒓lin
𝑡 ≈ 𝒓log

𝑡 , for small values
of the returns (see Chapter 2), most practitioners and academics simply use the following
approximation and otherwise ignore the distinction between log- and linear returns:

𝝁lin
𝑡 ≈ 𝝁log

𝑡 ,

𝚺lin
𝑡 ≈ 𝚺log

𝑡 .

Mathematically, using the relationship between log-returns and linear returns, 𝒓log
𝑡 = log

(
1 +

𝒓lin
𝑡

)
, or, equivalently, 𝒓lin

𝑡 = exp
(
𝒓log
𝑡

)
− 1, it follows that the mean vector and covariance

matrix of the linear returns can be obtained from those of the log-returns as

𝝁lin
𝑡 = exp

(
𝝁log
𝑡 +

1
2

diag
(
𝚺log
𝑡

))
− 1,[

𝚺lin
𝑡

]
𝑖 𝑗
=

(
exp

( [
𝚺log
𝑡

]
𝑖 𝑗

)
− 1

)
×

exp
( [
𝝁log
𝑡

]
𝑖
+

[
𝝁log
𝑡

]
𝑗
+ 1

2

( [
𝚺log
𝑡

]
𝑖𝑖
+

[
𝚺log
𝑡

]
𝑗 𝑗

))
.

However, due to the inherent noise in the estimation of the mean and covariance matrix, it is
not clear that these more mathematically exact approximations give a practical advantage.

For the sake of notation, in the rest of the chapter we will drop the time dependency of the
first- and second-order moments. In fact, in many cases the adopted econometric model is the
i.i.d. one (see Chapter 3), which assumes no time dependency. In addition, we will refer to the
linear moments by default:

𝝁 = 𝝁lin
𝑡 ,

𝚺 = 𝚺lin
𝑡 .

6.1.2 Portfolio Return and Net Asset Value (NAV)
A portfolio is simply an allocation of the available budget among 𝑁 risky assets (the amount
not invested is kept as cash). The most common way to define a portfolio at time 𝑡 is via its
dollar allocation1 or capital allocation 𝒘cap

𝑡 ∈ R𝑁 , where 𝑤cap
𝑖,𝑡

denotes the dollar or capital
1 The term “dollar” is an abuse of terminology and it can, of course, refer to any currency, such as the Euro, or

even a cryptocurrency, such as Bitcoin.
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amount allocated to the 𝑖th asset. Typically we denote the cash as a separate scalar 𝑐cap
𝑡 ∈ R,

although it is also possible to include it as part of the portfolio vector 𝒘cap
𝑡 by considering it

as one extra riskless asset (however, that would produce a singular covariance matrix, which
may lead to numerical issues in the optimization part). Another way to represent a portfolio is
via the number of units held for the assets 𝒘units

𝑡 ∈ R𝑁 ; for example, in the case of a stock, a
unit represents a share of a company and, in the case of a cryptocurrency, it represents a coin
amount.

It is important to realize that if the unit amount is kept constant over time, 𝒘units
𝑡 = 𝒘units, then

the dollar amount will change as the prices of the assets change: 𝒘cap
𝑡 = 𝒘units ⊙ 𝒑𝑡 .2 To be

exact, the change in the portfolio is

𝒘cap
𝑡 = 𝒘cap

𝑡−1 ⊙ ( 𝒑𝑡 ⊘ 𝒑𝑡−1) = 𝒘cap
𝑡−1 ⊙

(
1 + 𝒓lin

𝑡

)
, (6.1)

while the cash remains constant, 𝑐cap
𝑡 = 𝑐

cap
𝑡−1, unless there is some cash contribution or

withdrawal (negative contribution), in which case it would have to be reflected as 𝑐cap
𝑡 =

𝑐
cap
𝑡−1 + contribution𝑡−1. If a fixed dollar amount over time is desired, 𝒘cap

𝑡 = 𝒘cap, then the
portfolio has to be regularly rebalanced, that is, the components of 𝒘cap

𝑡 have to be adjusted
(by buying or selling the assets) to bring them back to the originally designed positions,
incurring in transaction costs. Figure 6.1 illustrates the change of the 1/𝑁 portfolio over time
until a rebalance is executed.

0.00

0.25

0.50

0.75

1.00

Jan 2020 Feb 2020 Mar 2020 Apr 2020 May 2020 Jun 2020 Jul 2020 Aug 2020 Sep 2020

w
e
ig

h
t

stocks

AMD

MGM

AAPL

AMZN

TSCO

Weight allocation over time for portfolio 1/N

Figure 6.1 Evolution of the 1/𝑁 portfolio over time with effect of rebalancing
(vertical lines).

NAV and Return
The portfolio net asset value (NAV), commonly referred to as wealth, is defined as the value
of the portfolio at the current market valuation including cash:

NAV𝑡 ≜ 1T𝒘cap
𝑡 + 𝑐

cap
𝑡 . (6.2)

2 For convenience of notation, we denote the elementwise product between vectors by ⊙ and elementwise
division by ⊘.
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Plugging the portfolio time evolution (6.1) into (6.2) gives the NAV evolution

NAV𝑡 = 1T𝒘cap
𝑡 + 𝑐

cap
𝑡

= 1T (
𝒘cap
𝑡−1 ⊙

(
1 + 𝒓lin

𝑡

) )
+ 𝑐cap

𝑡−1

= NAV𝑡−1 +
(
𝒘cap
𝑡−1

)T
𝒓lin
𝑡 , (6.3)

which indicates that the change in NAV depends on the assets’ returns and the portfolio via
the term

(
𝒘cap
𝑡−1

)T
𝒓lin
𝑡 .

The portfolio return is then3

𝑅
portf
𝑡 ≜

NAV𝑡 − NAV𝑡−1

NAV𝑡−1
= 𝒘T

𝑡−1𝒓
lin
𝑡 , (6.4)

where

𝒘𝑡 = 𝒘cap
𝑡 /NAV𝑡 (6.5)

is the normalized portfolio with respect to the current NAV. In portfolio design or portfolio
optimization, it is precisely the normalized version 𝒘𝑡 that is obtained. The expression 𝒘T

𝑡−1𝒓
lin
𝑡

in (6.4) explains what is commonly referred to as the asset additivity property of the linear
returns (as opposed to the time additivity property of the log-returns). Figure 6.2 shows the
return and NAV of a portfolio over time.
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Figure 6.2 Return and NAV of the 1/𝑁 portfolio over time.

3 Note that if there have been cash constributions, they have to be removed in the computation of the portfolio
return: 𝑅portf

𝑡 ≜ (NAV𝑡 − NAV𝑡−1 − contribution𝑡−1 )/NAV𝑡−1 = 𝒘T
𝑡−1𝒓

lin
𝑡 .
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Care has to be taken with the definition and implication of the time index, as illustrated in
Figure 6.3. The portfolio at time 𝑡 is 𝒘𝑡 , which has used information up to time 𝑡 − 1 (since
that is the information used to estimate the moments 𝝁𝑡 and 𝚺𝑡 ) and executed at time 𝑡.4
At this point, one might be tempted to obtain the return of the portfolio by multiplying the
portfolio 𝒘𝑡 by the return at the same period 𝒓lin

𝑡 , but this would be incorrect as it would incur
a look-ahead bias (refer to Chapter 8 for the dangers of backtesting). Since 𝒘𝑡 is the portfolio
executed and held at time 𝑡, with prices 𝒑𝑡 , its return can be computed upon observing the
prices 𝒑𝑡+1, that is, as 𝒘T

𝑡 𝒓
lin
𝑡+1. Note that some authors instead define the returns with a shift in

the time index so that 𝒑𝑡 can be multiplied by 𝒓lin
𝑡 .
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t−1

(   ,    )μ Σt t

period t +1periodtperiod

Figure 6.3 Portfolio notation over time periods.

The first- and second-order moments of the portfolio return are key quantities in portfolio
optimization. For a given portfolio, the expected value and variance of the portfolio return in
(6.4) are given by

IE
[
𝑅

portf
𝑡

]
= 𝒘T

𝑡−1𝝁,

Var
[
𝑅

portf
𝑡

]
= 𝒘T

𝑡−1𝚺𝒘𝑡−1.

6.1.3 Cumulative Return
The portfolio return at each given time 𝑡 is a key quantity for assessing the portfolio
performance. However, it is also invaluable to compute the cumulative return from inception
to time 𝑡, also referred to as cumulative profit and loss (P&L).

Essentially, the cumulative return is equivalent to the NAV (or wealth), except that it is
normalized and the initial NAV (or budget) is subtracted as NAV𝑡/NAV0 − 1 (also, it does
not account for contributions or redemptions related to the strategy). A plot of the cumulative
return over time should start at zero, whereas a plot of the NAV or portfolio wealth starts at 1
(assuming it is normalized).

It is important to note that the cumulative return and NAV not only depend on the portfolio
design at each period but also on the budget invested at each period (while some of the budget
may remain as cash reserves). The amount of capital invested is often called position size. We
now consider two extreme cases: full reinvesting and constant reinvesting.

• Full reinvesting: Suppose we design a normalized portfolio 𝒘𝑡 and we fully reinvest the
4 It could be argued that it might be possible to execute the portfolio instantaneously after observing the data at

time 𝑡 − 1, although that would imply an instantaneous (or sufficiently fast) forecast, portfolio design, and
market execution.
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current NAV: 𝒘cap
𝑡 = NAV𝑡 × 𝒘𝑡 . Then, the NAV evolution in (6.3) leads to

NAV𝑡 = NAV𝑡−1 + NAV𝑡−1 × 𝒘T
𝑡−1𝒓

lin
𝑡 = NAV𝑡−1 ×

(
1 + 𝑅portf

𝑡

)
,

which corresponds to a geometric growth:

NAV𝑡 = NAV0 ×
(
1 + 𝑅portf

1

)
×

(
1 + 𝑅portf

2

)
× · · · ×

(
1 + 𝑅portf

𝑡

)
. (6.6)

• Constant reinvesting: Now, suppose we design the same normalized portfolio 𝒘𝑡 but we
keep reinvesting the same initial NAV: 𝒘cap

𝑡 = NAV0 × 𝒘𝑡 . Then, the NAV evolution in
(6.3) leads to

NAV𝑡 = NAV𝑡−1 + NAV0 × 𝒘T
𝑡−1𝒓

lin
𝑡 = NAV𝑡−1 + NAV0 × 𝑅portf

𝑡 ,

which corresponds to an arithmetic growth:

NAV𝑡 = NAV0 ×
(
1 + 𝑅portf

1 + 𝑅portf
2 + · · · + 𝑅portf

𝑡

)
. (6.7)

Figure 6.4 illustrates the difference between arithmetic and geometric cumulative returns: the
shape of the curves is similar except that the swings are bigger for the geometric case. As
previously mentioned, these curves start at 1, so strictly speaking they refer to the normalized
NAV or wealth, while the cumulative returns should be shifted down to 0. This abuse of
notation is understood in the financial context and no further comment or distinction will be
made.
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Figure 6.4 Comparison of arithmetic and geometric cumulative returns.

6.1.4 Transaction Costs
Every financial trade has an associated cost, called the transaction cost, that will diminish
the overall return of the investment. Transaction costs consists of two terms: commission fee
and slippage. The commission fee is the payment we make to our broker for completing the
transaction. There is no universal scheme for commission fees: it depends on the country
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and the specific broker. For example, the U.S. in general has lower commission fees than
European and Asian countries. Slippage refers to the difference between the expected price of
a trade and the price at which the trade is actually executed. It does not directly refer to a
negative or positive movement, as any change between the expected and actual prices can
qualify. In general, liquid5 assets have smaller slippage than illiquid assets.

Suppose the current portfolio 𝒘cap
𝑡 is rebalanced to 𝒘cap,reb

𝑡 . Then the portfolio NAV will
decrease by the transaction cost, denoted by 𝜙

(
𝒘cap
𝑡 → 𝒘cap,reb

𝑡

)
. The notation details of the

NAV computation may differ depending on whether the transaction cost is accounted after
the price change or before. Calculating the NAV after the rebalancing and the price change,
equation (6.1) is modified to

NAV𝑡 = 1T𝒘cap
𝑡 + 𝑐

cap
𝑡

= 1T
(
𝒘cap,reb
𝑡−1 ⊙

(
1 + 𝒓lin

𝑡

) )
+ 𝑐cap,reb

𝑡−1 − 𝜙
(
𝒘cap
𝑡−1 → 𝒘cap,reb

𝑡−1

)
= NAV𝑡−1 +

(
𝒘cap,reb
𝑡−1

)T
𝒓lin
𝑡 − 𝜙

(
𝒘cap
𝑡−1 → 𝒘cap,reb

𝑡−1

)
,

with the portfolio return then given by

𝑅
portf
𝑡 =

(
𝒘reb
𝑡−1

)T
𝒓lin
𝑡 − 𝜙

(
𝒘𝑡−1 → 𝒘reb

𝑡−1
)
,

where the first term corresponds to the return due to the change of prices and the second term
is the penalty due to transaction costs. Figure 6.5 shows the effect of transaction costs with
daily rebalancing and 90 basis points (bps)6 of fees.

The expected value and variance of the portfolio return in this case are given by

IE
[
𝑅

portf
𝑡

]
=

(
𝒘reb
𝑡−1

)T
𝝁 − 𝜙

(
𝒘𝑡−1 → 𝒘reb

𝑡−1
)
,

Var
[
𝑅

portf
𝑡

]
=

(
𝒘reb
𝑡−1

)T
𝚺𝒘reb

𝑡−1.

Let us focus on the form of the transaction cost function, which can be decomposed into fees
and slippage:

𝜙
(
𝒘𝑡 → 𝒘reb

𝑡

)
= 𝜙fees (

𝒘𝑡 → 𝒘reb
𝑡

)
+ 𝜙slippage (

𝒘𝑡 → 𝒘reb
𝑡

)
.

The details of 𝜙fees(·) depend on the specific broker, but it can be approximated as being
proportional to the turnover, ∥𝒘reb

𝑡 − 𝒘𝑡 ∥1 =
∑𝑁
𝑖=1 |𝑤reb

𝑖𝑡 − 𝑤𝑖𝑡 |, leading to

𝜙fees (
𝒘𝑡 → 𝒘reb

𝑡

)
≈ 𝜏fee∥𝒘reb

𝑡 − 𝒘𝑡 ∥1,

where the fee factor 𝜏fee is typically around 1 − −30 bps. Keep in mind that some brokers
include a minimum cost and may also have calculations based on shares instead of dollar
amount.7

5 Liquidity refers to the efficiency or ease with which an asset or security can be converted into ready cash
without affecting its market price. The most liquid asset of all is cash itself.

6 Basis points, denoted by bps, represents a factor of 10−4. For example, 16 bps means 0.0016 or 0.16%.
7 Fees of popular broker dealer Interactive Brokers: www.interactivebrokers.com

https://www.interactivebrokers.com/en/index.php?f=commission&p=stocks
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Figure 6.5 Effect of transaction costs on the NAV (with daily rebalancing and 90 bps
of fees).

Let us consider the costs due to slippage, 𝜙slippage (
𝒘𝑡 → 𝒘reb

𝑡

)
. Slippage can also be approxi-

mated as proportional to the turnover (assuming that the liquidity is enough to absorb the
order executed, otherwise it can significantly increase due to market impact), but the slippage
will be different for each asset:

𝜙slippage (
𝒘𝑡 → 𝒘reb

𝑡

)
≈

𝑁∑︁
𝑖=1

𝜏
slippage
𝑖

|𝑤reb
𝑖𝑡 − 𝑤𝑖𝑡 |,

where 𝜏slippage
𝑖

is the asset-dependent slippage factor. In practice, the slippage factor can be
estimated from the bid–ask spread of an asset. Although one can find various models to
estimate slippage, a simple one is the following:

𝜏slippage =
half of spread

middle of spread
=

0.5(bid − ask)
0.5(bid + ask) =

bid − ask
bid + ask

.

When assessing the performance of a portfolio via backtests, it is recommended to account for
transaction costs to get a more realistic result, as shown in Figure 6.5. Since the transaction
costs depend on the turnover, it also important to monitor the turnover of the strategy or
related measures such as return on turnover.

6.1.5 Portfolio Rebalancing
Since rebalancing a portfolio entails transaction costs, there is a fundamental trade-off: we
should rebalance the portfolio frequently (so as to match the currently held portfolio in the
market with the desired one) but not that frequently in order to keep the transaction costs low.

The simplest way to rebalance a portfolio is with a regular calendar-based scheme, such
as daily, weekly, or monthly rebalancing. There are other rebalancing schemes that decide
whether to rebalance in an adaptive fashion; for example, rebalance 𝒘𝑡 → 𝒘reb

𝑡 only if their
distance is above some small threshold, which is used to ignore unnecessary rebalancing due
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to errors in the estimation and portfolio design process. Some common ways to measure the
difference between portfolios include the turnover ∥𝒘reb

𝑡 − 𝒘𝑡 ∥1 or some measure of statistical
difference such as the squared Mahalanobis distance (𝒘reb

𝑡 − 𝒘𝑡 )T𝚺−1(𝒘reb
𝑡 − 𝒘𝑡 ) (Scherer,

2002) or the tracking error squared distance (𝒘reb
𝑡 − 𝒘𝑡 )T𝚺(𝒘reb

𝑡 − 𝒘𝑡 ) widely used in asset
management (Michaud & Michaud, 2008), where 𝚺 denotes the covariance matrix of the
assets. At the same time, the turnover ∥𝒘reb

𝑡 − 𝒘𝑡 ∥1 is typically upper-bounded or penalized in
the portfolio design process to avoid frequent and large rebalancing.

The portfolio time-index notation illustrated in Figure 6.3 does not take into account the
portfolio rebalancing process. To properly reflect that, the notation necessarily becomes more
involved. A common way is to refine the notation by considering that each period 𝑡 can be
divided into the beginning of period (bop) and the end of period (eop); for example, the
portfolio 𝒘𝑡 can be more finely separated into 𝒘bop

𝑡 and 𝒘eop
𝑡 , as shown in Figure 6.6.

p p
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wbopwt
bop wt
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weop
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t+1 t+1

Figure 6.6 Portfolio notation over time periods with rebalancing.

According to this notation, the change from 𝒘bop
𝑡 to 𝒘eop

𝑡 is due to the price change as in (6.1),

𝒘eop
𝑡 = 𝒘bop

𝑡 ⊙
(
1 + 𝒓lin

𝑡

)
,

and the change from 𝒘eop
𝑡 to 𝒘bop

𝑡+1 is due to the rebalancing which incurs a transaction cost (if
there is no rebalancing, then simply 𝒘bop

𝑡+1 = 𝒘eop
𝑡 ). For example, suppose that we rebalance

a fixed portfolio 𝒘 at each period 𝑡 and ignore the transaction cost; then, the portfolio after
rebalancing is 𝒘bop

𝑡 = 𝒘, after the prices change it becomes 𝒘eop
𝑡 = 𝒘bop

𝑡 ⊙
(
1 + 𝒓lin

𝑡

)
, and the

portfolio return from (6.4) is
𝑅

portf
𝑡 = 𝒘T𝒓lin

𝑡 . (6.8)

Figure 6.7 illustrates the effect of different reoptimization and rebalancing schemes with
transaction costs of 20 bps (rebalancing refers to executing the desired portfolio in the market,
whereas reoptimization refers to collecting new data, estimating the mean and covariance
matrix, and solving an optimization problem to design a new portfolio).

6.2 Portfolio Constraints
We now briefly describe the most commonly used constraints in portfolio design or optimiza-
tion. Some constraints are imposed by the regulators or brokers (like shorting constraints,
leverage constraints, and margin requirements), while others are optional depending on the
investor’s views (such as being market neutral or controlling the portfolio sparsity level or even
enforcing diversity). For simplicity of notation, in the following we omit the time dependency
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Figure 6.7 Backtest cumulative P&L of a portfolio with different reoptimization and
rebalancing schemes.

and express a variety of constraints in terms of the (normalized) portfolio 𝒘 defined in (6.5).
It is important to recognize whether the constraints are convex, as that means that they can be
efficiently handled later in the optimization process (see Appendix A).

6.2.1 Long-Only or No-Shorting Constraint
In financial markets, an investor or trader typically buys stocks taking what is called long
positions. Interestingly, in some financial markets, a broker may allow the investor to short
sell or short some stocks (i.e., to borrow some shares and sell them, with the commitment of
buying them back later) for a corresponding borrowing fee. This means that the corresponding
elements of 𝒘 can be negative.

If shorting is not allowed, the constraint is

𝒘 ≥ 0,

which is linear and, hence, convex.

6.2.2 Capital Budget Constraint
Assuming no shorting and no other kind of leverage, the portfolio must satisfy the budget
constraint

1T𝒘 + 𝑐 = 1,

which is linear and, hence, convex.

Alternatively, it can be rewritten without the cash variable as

1T𝒘 ≤ 1.
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If, instead, equality is imposed, the implication is that the cash is zero so that the portfolio is
fully invested in the risky assets.

In practice, this constraint needs to be used in conjunction with some other constraint such as
a no-shorting constraint or leverage constraint. Otherwise the positions may be unbounded
resulting in unrealistic large positions.

6.2.3 Holding Constraints
Practitioners always set limits on maximum positions to avoid overexposure and ensure
diversification, that is, upper bounds 𝒖 on the portfolio elements. On occasions, they may
also have minimum positions if they are sure they want to hold certain assets, that is, lower
bounds 𝒍.

Thus, holding constraints are imposed via lower and upper bounds:

𝒍 ≤ 𝒘 ≤ 𝒖,

which are linear and, hence, convex.

6.2.4 Cardinality Constraint
While the universe of assets may be large (say 500 stocks), an investor typically wants to
limit the number of active positions (i.e., positions with nonzero allocations) to simplify the
logistics of the operation and reduce the rebalancing.

Limiting the number of active positions to 𝐾 is mathematically equivalent to placing an upper
bound on the cardinality of the portfolio vector:

∥𝒘∥0 ≤ 𝐾,

where ∥ · ∥0 is the cardinality operator or ℓ0-pseudo-norm (which counts the number of
nonzero elements). This constraint is nonconvex and, therefore, difficult to handle.

6.2.5 Turnover Constraint
As discussed in Section 6.1.2, transaction costs are approximately proportional to the turnover.
Therefore, it makes sense to control the turnover when designing the portfolio.

Suppose the currently held portfolio is 𝒘0. Then the turnover constraint is of the form

∥𝒘 − 𝒘0∥1 ≤ 𝑢,

where 𝑢 denotes the maximum turnover allowed. This constraint is convex because norms are
convex functions (see Appendix A).



152 Portfolio Basics

6.2.6 Market-Neutral constraint
According to factor modeling with the market as the single factor, the returns can be expressed
as 𝒓𝑡 = 𝜶 + 𝜷 · 𝑟mkt

𝑡 + 𝝐𝑡 (see Chapter 3 for details).

Portfolio managers typically want to avoid exposure to the market, which means that they
want the portfolio orthogonal to the “beta”:

𝜷T𝒘 = 0,

which is linear and, hence, convex.

6.2.7 Dollar-Neutral Constraint
When shorting is allowed, one may want to balance the long and short positions in what is
called a dollar-neutral position:

1T𝒘 = 0.

In practice, the dollar-neutral constraint should be used in conjunction with some leverage
constraint. Some academic papers and capital asset pricing models assume, in effect, that one
can sell a security short without limit and use the proceeds to buy securities long. This is
a mathematically convenient assumption for hypothetical models of the economy, but it is
unrealistic (Jacobs et al., 2005).

6.2.8 Diversification Constraint
Some portfolio designs tend to concentrate the allocation in a few assets. The quantity
∥𝒘∥22 = 𝒘T𝒘 =

∑𝑁
𝑖=1 𝑤

2
𝑖 can be used as a diversification measure (DeMiguel, Garlappi,

Nogales, & Uppal, 2009; Goetzmann & Kumar, 2008). In fact, the quantity ∥𝒘∥22 is the
Herfindahl index of the weights of the portfolio. A lower value is indicative of a higher level
of diversification; it is lower-bounded by 1/𝑁 and upper-bounded by 1. Therefore, one can
promote diversification with the constraint:

∥𝒘∥22 ≤ 𝐷,

where 1/𝑁 ≤ 𝐷 < 1. This constraint is convex because norms are convex functions (see
Appendix A).

6.2.9 Leverage Constraint
Regulations in countries typically limit the amount that can be borrowed for long and short
positions. For example, in the U.S., the Federal Reserve System established Regulation T
(Reg T) that limits the borrowing to be no greater than 50% of the securities purchase
price. The 50% requirement is called the initial margin, but certain brokers may have stricter
requirements.

The total amount of long and short positions can be measured with the ℓ1-norm ∥𝒘∥1 =
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𝑖=1 |𝑤𝑖 | and the leverage constraint can be written mathematically as

∥𝒘∥1 ≤ 2,

where the factor of 2 indicates that 50% is being borrowed.

6.2.10 Margin Requirements
When borrowing is involved, apart from the leverage constraints imposed by regulators such
as Reg T, brokers will impose margin requirements to reserve collateral8 and ensure that the
borrower can pay back the loan later.

The capital budget constraint 1T𝒘 ≤ 1 cannot be used in isolation when borrowing is involved
since it would imply that an investor can use all the cash from short-selling to buy stocks,
which is not the case in real life (Jacobs et al., 2005).

The broker will impose margin requirements in both long and short positions. For a long
position, the broker may allow borrowing, say, 50% of the value of the position. For short
positions, by definition the investor is borrowing stocks; the cash from short-selling is
controlled by the broker as cash collateral but one is also required to have some equity as the
“initial margin” to establish the positions; usually the overall collateral is about 105%.

It is convenient to separate the positions of the portfolio into longs and shorts:

𝒘 = 𝒘+ − 𝒘−,

where 𝒘+ ≥ 0 denotes the longs and 𝒘− ≥ 0 the shorts. The margin requirement can then be
expressed as

𝑚long × 1T𝒘+ + 𝑚short × 1T𝒘− ≤ 1,

where 𝑚long and 𝑚short control how much margin is required for longs and shorts, respectively.
For example, a broker may impose 𝑚long = 0.5 and 𝑚short = 0.05.

6.3 Performance Measures
There are many ways to assess the performance of a portfolio. The key quantity in most of the
performance measures is the portfolio return over time (6.4), which for the case of a fixed
portfolio 𝒘 can be written as in (6.8): 𝑅portf

𝑡 = 𝒘T𝒓𝑡 (for the sake of notation we use 𝒓𝑡 to
denote the linear returns 𝒓lin

𝑡 ). We now list the most commonly used performance measures;
for a detailed and extensive treatment, see Bacon (2008).

6.3.1 Expected Return
The expected return of the portfolio is simply given by

IE
[
𝑅

portf
𝑡

]
= 𝒘T𝝁,

8 The term collateral refers to an asset that a lender accepts as security for a loan. The collateral acts as a form of
protection for the lender. That is, if the borrower defaults on their loan payments, the lender can seize the
collateral and sell it to recoup some or all of its losses.
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which is actually the expected return over one period 𝑡. This measure quantifies the average
benefit of the investment but ignores the risk.

In most cases, however, it is the annualized return that is reported. This simply requires
scaling with a factor equal to the number of periods over a year, 𝛾, leading to

Annualized Return = 𝛾 × 𝒘T𝝁.

Suppose the periods are days (i.e., daily prices); if we trade on the stock market then 𝛾 = 252
is typically the number of tradable days per year (excluding weekends and holidays, which
depend on the country), whereas on cryptocurrency markets 𝛾 = 365 since they operate
nonstop. Suppose now that the periods are hours (i.e., hourly prices); then the scaling factor
in cryptocurrency markets would be 𝛾 = 365 × 24 = 8760 (in stock markets it really depends
on the country, since the hours per day differ and range from 5 to 9).

Given a sequence of 𝑇 portfolio returns, the annualized return can be computed via the sample
mean,

𝛾

𝑇

𝑇∑︁
𝑡=1

𝑅
portf
𝑡 ,

which implicitly assumes the use of arithmetic chaining to aggregate the returns. If, instead,
one uses a geometric chaining to take into account compounding, the geometric mean should
be used: (

𝑇∏
𝑡=1

(
1 + 𝑅portf

𝑡

))𝛾/𝑇
− 1,

which is also termed compound annual growth rate (CAGR). Note that the geometric mean is
always smaller than the arithmetic mean (i.e., with 𝛾 = 1); however, once the annualization
with the factor 𝛾 is included, nothing can be said anymore. For example, an arbitrary sequence
of returns has arithmetic mean 0.0047 and geometric mean 0.0040, but after annualizing with
𝛾 = 100 they become 0.47 and 0.49, respectively.

6.3.2 Volatility
The volatility is the standard deviation of the portfolio return:

Std
[
𝑅

portf
𝑡

]
=
√
𝒘T𝚺𝒘.

It is the simplest measure of risk of a portfolio. For convenience, one may also use the square
of the volatility, that is, the variance of the portfolio return, as used by Markowitz in his
seminal paper (Markowitz, 1952).

To obtain the annualized volatility we need to multiply by the square root of the number of
periods per year 𝛾:

Annualized Volatility =
√
𝛾 ×
√
𝒘T𝚺𝒘.
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6.3.3 Volatility-Adjusted Returns
Comparing portfolios by looking at the cumulative returns may be misleading since each
portfolio may have a different volatility, since it is expected that a higher-volatility portfolio
will also have a higher cumulative return (assuming a bull market). To get rid of this volatility
artifact when comparing portfolios, some practitioners prefer to use the volatility-adjusted
returns defined as

�̄�
portf
𝑡 = 𝒘T𝒓𝑡 ×

𝜎target

𝜎𝑡
,

where 𝜎𝑡 denotes the volatility of 𝒘T𝒓𝑡 and 𝜎target is the desired target volatility for the
portfolio.

Figure 6.8 compares the cumulative returns of two stocks (AMD and AMZN) with and
without volatility adjustment. One can observe how from the non-adjusted version AMD may
look better than AMZN, but this is misleading because it comes with much higher volatility.
From the volatility-adjusted version, instead, it seems that AMZN has a better trade-off of
final return and volatility. In fact, this trade-off is precisely captured by the Sharpe ratio
described next.
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Figure 6.8 Cumulative returns and volatility-adjusted cumulative returns.
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6.3.4 Sharpe Ratio (SR)
The Sharpe ratio (SR) is the risk-adjusted expected excess return,

SR =
𝒘T𝝁 − 𝑟f√
𝒘T𝚺𝒘

,

where 𝑟f is the risk-free rate (e.g., the interest rate on a three-month U.S. Treasury bill). It was
proposed by William Sharpe in 1966 (Sharpe, 1966); see also Sharpe (1994).

Observe that the numerator is the excess return with respect to the risk-free rate; in practice,
one may assume 𝑟f ≈ 0 and just use the expected return. Dividing by the risk gives the
risk-adjusted return, that is, the return per unit of risk.

The annualized SR is

Annualized SR =
√
𝛾 × 𝒘T𝝁 − 𝑟f√

𝒘T𝚺𝒘
,

where 𝛾 denotes the number of periods over a year as introduced in Section 6.3.1.

For long periods of time, rather than simply computing the overall SR, it may be useful
to compute the rolling SR, which is the time series of the SR over time computed on a
rolling-window basis. Figure 6.9 shows the cumulative return and rolling annualized Sharpe
ratio (with a rolling window of one month) of the 1/𝑁 portfolio with average Sharpe ratio of
1.65 over a universe of five stocks.
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Figure 6.9 Cumulative returns and rolling annualized Sharpe ratio.

Finally, it is worth mentioning that it is common among practitioners to use the compounded
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annualized return in the numerator of the Sharpe ratio (i.e., using the geometric mean as
previously mentioned in Section 6.3.1), often referred to as the geometric Sharpe ratio.

6.3.5 Information Ratio (IR)
The Sharpe ratio uses the excess return in the numerator, that is, the portfolio return is
compared or benchmarked against the return of the risk-free asset. The information ratio (IR)
instead uses an arbitrary benchmark, for example the market index:

IR =
IE

[
𝒘T𝒓𝑡 − 𝑟b

𝑡

]
Std

[
𝒘T𝒓𝑡 − 𝑟b

𝑡

] ,
where 𝑟b

𝑡 is the return of the benchmark.

6.3.6 Downside Risk and Semi-Variance
The variance of the portfolio (the square of the volatility),

Var
[
𝒘T𝒓𝑡

]
= IE

[ (
𝒘T𝒓𝑡 − 𝒘T𝝁

)2
]
,

is widely used as a proxy to measure the risk since it measures the deviation from the
mean return. However, whereas the portfolio return underperforming the mean is clearly an
undesired event, one can argue that the portfolio overperforming the mean should actually be
welcomed and not counted as risk, as the variance does.

The downside risk precisely measures the risk of the portfolio underperforming a desired
reference level. One example of a downside risk measure is the semi-variance, already
considered by Markowitz (1959):

SemiVar
[
𝒘T𝒓𝑡

]
= IE

[( (
𝒘T𝝁 − 𝒘T𝒓𝑡

)+)2
]
,

where the operator (·)+ ≜ max(0, ·) precisely avoids penalizing when the return is above the
mean. The square root of the semi-variance, called semi-deviation or downside deviation,
plays a role equivalent to the volatility.

There are other downside risk measures, for example the more general lower partial moment
(LPM),

LPM𝛼 (𝜏) = IE
[( (
𝜏 − 𝒘T𝒓𝑡

)+) 𝛼]
,

where 𝜏 is termed the disaster level and 𝛼 reflects the investor’s feeling about the relative
consequences of falling short of 𝜏 by various amounts (namely, 𝛼 > 1 for risk-averse investors,
𝛼 = 1 for a neutral investor, and 0 < 𝛼 < 1 for risk-seeking investors). By properly choosing
the parameters 𝛼 and 𝜏 most downside measures used in practice can be formed (for example,
setting 𝛼 = 2 and 𝜏 = 𝒘T𝝁 yields the semi-variance).
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6.3.7 Gain–Loss Ratio (GLR)
The gain–loss ratio (GLR) is actually a downside risk measure that represents the relative
relationship of trades with a positive return and trades with a negative return:

GLR =

IE
[
𝑅

portf
𝑡 | 𝑅portf

𝑡 > 0
]

IE
[
𝑅

portf
𝑡 | 𝑅portf

𝑡 < 0
] .

6.3.8 Sortino Ratio
The Sortino ratio is defined similarly to the Sharpe ratio but replacing the variance in the
denominator by the semi-variance:

SoR =
𝒘T𝝁 − 𝑟f√︁

SemiVar [𝒘T𝒓𝑡 ]
.

6.3.9 Value-at-Risk (VaR)
The portfolio variance (similarly the volatility) measures the deviation from the mean value as
the risk. The semi-variance (similarly the semi-deviation) improves on this measure by only
considering the deviations below the mean return. However, the key quantity in measuring
risk is in the tail of the distribution of the random returns, simply because that is when the
investor loses large amounts and can go bankrupt. Figure 6.10 illustrates the meaning of the
most popular measures of risk in the context of the distribution of the portfolio returns.

return

pdf

VaR

0

CVaR

variance / volatility

semi-variance / semi-deviation

Figure 6.10 Illustration of distribution of returns and measures of risk.

To overcome the drawbacks of variance and semi-variance, another popular single side risk
measurement is the value-at-risk (VaR). This measure emerged as a distinct concept in the
late 1980s, but it was not until 1994 that its development was extensive at J. P. Morgan, which
published the methodology and gave free access to estimates of the necessary underlying
parameters. In words, the VaR measures the maximum loss with a specified confidence level,
such as 95%; more succinctly, it can be described as the quantile of the loss.
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Denoting by the random variable 𝜉 the loss of a portfolio over a period of time (i.e., the
negative return 𝜉𝑡 = −𝒘T𝒓𝑡 ), the VaR is defined as

VaR𝛼 = inf {𝜉0 | Pr (𝜉 ≤ 𝜉0) ≥ 𝛼}

with 𝛼 the confidence level, say, 𝛼 = 0.95 for a 95% confidence level (meaning that in 95%
of the cases the loss will be smaller than the VaR and only in 5% will the loss be larger; see
Figure 6.10 in terms of returns rather than losses.

The drawback of this risk measure is that it does not quantify the shape of the tail. In plain
words, it can tell you how often your portfolio losses will exceed $1 million, but not how
much you could lose.

A second major drawback of the VaR is that the measure is not subadditive, which is critical
for diversification. Subadditivity means that merging two portfolios cannot increase the risk,
but VaR violates this principle.

6.3.10 Conditional Value-at-Risk (CVaR)
The conditional value-at-risk (CVaR), also known as expected shortfall (ES), is defined as
the expected value of the loss tail:

CVaR𝛼 = IE [𝜉 | 𝜉 ≥ VaR𝛼] .

Thus, the CVaR improves upon the VaR by taking into account the shape of the tail (losses
exceeding the VaR) via its average value, as illustrated in Figure 6.10 in terms of returns
rather than losses.

In plain words, the CVaR can now answer not only how often your portfolio losses will exceed
$1 million, but also how much you would lose on average.

In addition, the CVaR is subadditive, which means that the measure satisfies what is expected
from diversification by merging portfolios.

6.3.11 Drawdown
The drawdown (DD) measures the decline from a historical peak of the cumulative profit or
NAV (assuming no cash contributions/redemptions):

𝐷𝑡 = HWM𝑡 − NAV𝑡 ,

where HWM𝑡 is the high-water mark of the cumulative profit, defined as

HWM𝑡 = max
𝜏∈[0,𝑡 ]

NAV𝜏 .

Similarly, we can define the normalized drawdown as

�̄�𝑡 =
HWM𝑡 − NAV𝑡

HWM𝑡

.

Figure 6.11 illustrates the drawdown corresponding to a cumulative P&L curve.



160 Portfolio Basics

0.00

0.25

0.50

0.75

Nov 2019 Jan 2020 Mar 2020 May 2020 Jul 2020 Sep 2020

Cumulative P&L

-30

-20

-10

0

Nov 2019 Jan 2020 Mar 2020 May 2020 Jul 2020 Sep 2020

%

Drawdown

Figure 6.11 Cumulative P&L and corresponding drawdown of a portfolio.

It is interesting to notice that the drawdown is a path-dependent measure, as opposed to all the
previously considered measures of performance. This means that it depends on the temporal
order in which the returns 𝒓𝑡 happen. This is in sharp contrast to the previously considered
measures which are agnostic to the ordering of the returns.

In practice, it is useful to condense the entire drawdown curve for a given period 𝑡 = 1, . . . , 𝑇
into a single numerical value. This can be done in different ways, namely:

• maximum drawdown (Max-DD):

Max-DD = max
1≤𝑡≤𝑇

�̄�𝑡 ;

• average drawdown (Ave-DD):

Ave-DD =
1
𝑇

∑︁
1≤𝑡≤𝑇

�̄�𝑡 ;

• conditional drawdown at risk (CDaR) (defined similarly to the CVaR):

CDaR𝛼 = IE
[
�̄�𝑡 | �̄�𝑡 ≥ VaR𝛼

]
,

where VaR𝛼 is the value at risk of the drawdown �̄�𝑡 with confidence level 𝛼.
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6.3.12 Calmar Ratio and Sterling Ratio
The Calmar ratio modifies the Sharpe ratio by replacing the variance in the denominator with
the maximum drawdown:

Calmar ratio =
𝒘T𝝁 − 𝑟f

Max-DD
.

The Sterling ratio is similar to the Calmar ratio except that it adds an excess risk measure to
the maximum drawdown (typically of 10%):

Sterling ratio =
𝒘T𝝁 − 𝑟f

Max-DD + 0.1
.

6.4 Heuristic Portfolios
We begin our exploration of portfolios with some heuristic portfolios that may not be formally
derived in a mathematically sound manner, but have proven to be widely used by practitioners
and can serve as benchmarks.

6.4.1 Buy and Hold Portfolio
One of the simplest investment strategies consists of selecting just one asset and allocating
the whole budget to it:

𝒘 = 𝒆𝑖, (6.9)

where 𝒆𝑖 denotes an all-zero vector with a one at the 𝑖th element. This is called single-asset
buy and hold (B&H), which lacks diversification. More generally, the B&H portfolio can be
composed of several assets or ETFs, but always with a long horizon so that the portfolio is
not adjusted over short horizons.

The belief behind such a strategy is that the asset will increase gradually in value over the
investment period. The challenge, naturally, lies in determining which asset to invest in. One
can use different methods, like fundamental analysis or technical analysis, to make the choice.

6.4.2 Global Maximum Return Portfolio (GMRP)
The B&H portfolio allocates all the budget to a single asset chosen in a discretionary (e.g.,
based on expertise, opinion, or technical analysis) or mathematical (e.g., based on fundamental
analysis or statistical analysis) manner. Interestingly, if the choice of the top-performing
asset is based on the assets’ return forecast 𝝁, then it can be formally derived as the optimal
portfolio of a poorly chosen cost function, as shown next.

Mathematically, the global maximum return portfolio (GMRP) is formulated as

maximize
𝒘

𝒘T𝝁

subject to 1T𝒘 = 1, 𝒘 ≥ 0.
(6.10)

This problem is convex (in fact, a linear program (LP)) and can be optimally solved with an
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LP solver. In this case, the solution is trivial: allocate all the budget to the asset with largest
return.

As a word of caution, one should not to be fooled by the sound and formal derivation of this
portfolio, because it lacks diversification and it will perform poorly. Note that past performance
is not a guarantee of future performance, which is related to the extremely noisy estimation of
𝝁 in practice (Chopra & Ziemba, 1993).

6.4.3 1/𝑁 Portfolio
One of the most important goals of quantitative portfolio management is to diversify the
investment across different assets in a portfolio, typically summarized as “do not put all your
eggs in the same basket.” The simplest way to achieve diversification is by allocating the
capital equally across all the 𝑁 assets:

𝒘 =
1
𝑁
× 1, (6.11)

where 1 ∈ R𝑁 denotes the all-one vector. This strategy is called the equally weighted portfolio
(EWP) or 1/𝑁 portfolio.

Historically, this strategy or philosophy has been called the “Talmudic rule” (Duchin & Levy,
2009) since the Babylonian Talmud recommended it approximately 1500 years ago: “A man
should always place his money, one third in land, a third in merchandise, and keep a third in
hand.”

It has gained much interest due to its superior historical performance and the emergence of
several equally weighted ETFs (DeMiguel, Garlappi, & Uppal, 2009). For example, Standard
& Poor has developed many S&P 500 equally weighted indices. In addition, the 1/𝑁 portfolio
has been claimed to outperform Markowitz’s mean–variance portfolio considered later in
Section 7.1 (DeMiguel, Garlappi, & Uppal, 2009), although other studies disagree with these
empirical results (Kritzman et al., 2010).

1/𝑁 Portfolio as an Optimal Robust Portfolio
The 1/𝑁 portfolio has been introduced as a common-sense heuristic portfolio for diversification.
Interestingly, it was recently shown to correspond to a formally derived optimal portfolio
robust to estimation errors in 𝝁 (Zhou & Palomar, 2020). The reader is referred to the robust
formulation in (6.13) for more details and to Chapter 14 for an extensive treatment of robust
portfolios.

6.4.4 Quintile Portfolio
The quintile portfolio is widely used by practitioners. It is similar to the 1/𝑁 portfolio in that
it allocates equally to the invested assets; however, it only uses the top-performing assets out
of the universe of 𝑁 assets. In particular, the quintile portfolio selects the top fifth (or 20%)
of the assets; however, one could select a different fraction, such as in the quartile portfolio
(one fourth or 25% of the assets) or the decile portfolio (one tenth or 10% of the assets). If
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shorting is desired, then the bottom part of the assets can be short-sold, termed a long–short
quintile portfolio.

Suppose the assets have been properly reordered from top to bottom performers (and that 𝑁
is divisible by five for the sake of notation). Then, the quintile portfolio can be expressed as

𝒘 =
1
𝑁/5



1
...

1
0
...

0



 20%

 80%

. (6.12)

The crux of the quintile portfolio lies in the ranking of the assets. One can rank the stocks in a
multitude of ways, typically based on expensive factors that investment funds purchase at a
premium price. It is also called factor investing as it mimics the returns of some common
factors (Jurczenko, 2017).

Factor models, such as the capital asset pricing model (CAPM) (Sharpe, 1964) and Fama–
French model (Fama & French, 1993), were initially introduced to explain stock returns.
Some of the factors used in these models are calculated as the excess returns of assets with
attractive characteristics. For example, five well-known factors, namely, value, low size,
low volatility, momentum, and quality, may be obtained by ranking the assets according to
book-to-price ratio, low market capitalization, low standard deviation, return, and return on
equity, respectively (Bender et al., 2013). Empirical studies show that these factors have
exhibited excess returns above the market. The quintile portfolio based on the momentum
measured by the estimated return in the past few months is one of the most famous ones. A
study found that about 77% of 155 mutual funds were actually using such a portfolio over
the 1975–1984 period (Grinblatt et al., 1995). Interestingly, some investors might prefer the
quintile portfolio based on the opposite of short-term return because they believe in short-term
reversals. It has been a widely debated mystery how these simple portfolios defeat the more
theoretical-based portfolios.

In the simplest case, if one only has access to publicly available price data, then some common
possible ways to rank the assets are according to the following readily available scores:

• expected performance:

score = 𝝁;

• Sharpe ratios:

score =
𝝁√︁

diag (𝚺)
;

• mean-variance ratios:

score =
𝝁

diag (𝚺) .
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Quintile Portfolio as an Optimal Robust Portfolio
The quintile portfolio has been introduced as a common-sense heuristic portfolio. However, it
was recently shown to correspond to a formally derived optimal portfolio robust to estimation
errors in 𝝁 (Zhou & Palomar, 2020), as briefly described. The reader is referred to Chapter 14
for an extensive treatment of robust portfolios.

Consider a robust formulation of the GMRP in (6.10):

maximize
𝒘

min
𝝁∈S

𝒘T𝝁

subject to 1T𝒘 = 1, 𝒘 ≥ 0,
(6.13)

where the objective function is the worst-case return among the possible return vectors 𝝁 ∈ S,
and the uncertainty set S is defined as an ℓ1-norm ball around the estimated value of the
returns �̂�,

S = { �̂� + 𝒆 | ∥𝒆∥1 ≤ 𝜖} ,

with 𝜖 being the size of the uncertainty region.

It turns out that for an appropriate choice of 𝜖 , the solution to the robust formulation in (6.13)
is precisely the quintile portfolio in (6.12). Furthermore, the 1/𝑁 portfolio in (6.11) can also
be obtained as the solution to the robust formulation in (6.13) for a sufficiently large value of
𝜖 . This theoretical result helps explain the good performance exhibited by the 1/𝑁 portfolio
and the quintile portfolio in practice, as they are indeed robust portfolios.

6.4.5 Numerical Experiments
We now compare the heuristic GMRP, 1/𝑁 portfolio, and quintile portfolio based on different
ranking of the stocks, namely, 𝜇, 𝜇/𝜎, and 𝜇/𝜎2. We consider eight stocks from the S&P 500
during the period 2019–2020, and perform a simple backtest using 70% of the observations
as training data while keeping 30% as test data (i.e., out of sample). More realistically, one
should do multiple rolling-window backtests (see Chapter 8 for an extensive treatment of
backtesting).

Figure 6.12 shows the normalized dollar allocation of the portfolios, where one can observe
the difference in diversification. Figure 6.13 shows the out-of-sample backtest results in terms
of cumulative P&L and drawdown. While it may initially look from the P&L that the GMRP
performs the best, this is deceiving due to the increase in volatility, as can be observed clearly
in the drawdown. The 1/𝑁 portfolio is the most diversified one and the best in terms of
drawdown in this particularly backtest.

6.5 Risk-Based Portfolios
We continue our exploration of portfolios with several risk-based portfolios that are solely
based on risk considerations, characterized by the covariance matrix 𝚺 (Ardia et al., 2017),
while totally ignoring the return forecast 𝝁, due to the extremely noisy estimation of 𝝁 in
practice (Chopra & Ziemba, 1993).
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Figure 6.13 Backtest cumulative P&L and drawdown of some heuristic portfolios.

6.5.1 Global Minimum Variance Portfolio (GMVP)
In Section 6.3, we saw that the portfolio volatility

√
𝒘T𝚺𝒘 or, similarly, the variance 𝒘T𝚺𝒘,

can be used as proxies for portfolio risk. The global minimum variance portfolio (GMVP) is
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formulated as
minimize

𝒘
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0.
(6.14)

This problem is a convex quadratic program (QP) that can be easily solved with a QP solver.

If we ignore the no-shorting constraint 𝒘 ≥ 0, then the problem admits the simple closed-form
solution

𝒘 =
1

1T𝚺−11
𝚺−11. (6.15)

This portfolio is widely used in academic papers for simplicity of evaluation, as well as for
comparison purposes when evaluating different estimators of the covariance matrix 𝚺 (while
ignoring the effect of the estimation of 𝝁).

6.5.2 Inverse Volatility Portfolio (IVolP)
The aim of the inverse volatility portfolio (IVolP) is to control the portfolio risk in a simple
way. It is defined as

𝒘 =
𝝈−1

1T𝝈−1 , (6.16)

where 𝝈2 = diag (𝚺) denotes the assets’ variances and 𝝈 are the assets’ volatilities.

This portfolio allocates smaller weights to high-volatility assets and larger weights to low-
volatility assets. It is also called equal volatility portfolio because the weighted constituent
assets have equal volatility:

Std(𝑤𝑖𝑟𝑖) = 𝑤𝑖𝜎𝑖 ∝ 1/𝑁.

It is worth comparing the IVolP with the GMVP in (6.15) when the covariance matrix is
assumed diagonal; in this case, the GVMP simplifies to

𝒘 =
𝝈−2

1T𝝈−2 ,

which, similary to (6.16), allocates smaller weights to high-volatility assets and vice versa.

6.5.3 Risk Parity Portfolio (RPP)
The risk parity portfolio (RPP), also termed equal risk portfolio (ERP), aims at equalizing
the risk contribution from the invested assets to the global portfolio risk (Qian, 2005, 2016;
Roncalli, 2013). This portfolio design is extensively treated in Chapter 11 and here we provide
a very concise summary.

The IVolP in (6.16) attempts to control the risk of each of the assets in a simple way, but
it totally ignores the assets’ correlations, that is, it implicitly assumes that the covariance
matrix 𝚺 is diagonal. The RPP can be understood as a more sound formulation of the IVolP
by properly taking the assets’ correlations into account.
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The RPP attemps to equalize the risk contributions from the assets, reminiscent of the way
the 1/𝑁 portfolio equalizes the capital allocated to the assets, as shown in Figure 6.14.

0.00

0.05

0.10

0.15

AAPL AMZN FB GOOGL MGM MSFT NFLX TSCO

w
e
ig

h
t

Portfolio weights

0.00

0.05

0.10

0.15

0.20

0.25

AAPL AMZN FB GOOGL MGM MSFT NFLX TSCO

stocks

ri
s
k

Relative risk contribution

portfolios

1/N

RPP

Figure 6.14 From dollar diversification (1/𝑁 portfolio) to risk diversification (RPP).

6.5.4 Most Diversified Portfolio (MDivP)
If markets are risk-efficient, it can be argued that assets will produce returns in proportion to
their risk (Choueifaty & Coignard, 2008). This suggests that one might use a proxy for the
assets’ risk, such as the volatilities, 𝝈, in lieu of the forecast 𝝁.

Specifically, the diversification ratio (DR) is defined similarly to the Sharpe ratio (Section 6.3)
but using 𝝈 in lieu of 𝝁:

DR =
𝒘T𝝈
√
𝒘T𝚺𝒘

.

For long-only portfolios, it can be shown that DR ≥ 1 (for a single stock, it reduces to
DR = 1).

The most diversified portfolio (MDivP) is formulated as the maximization of the DR (akin to
the maximization of the Sharpe ratio considered in Section 7.2 from Chapter 7):

minimize
𝒘

𝒘T𝝈
√
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0.
(6.17)
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6.5.5 Maximum Decorrelation Portfolio (MDecP)
The maximum decorrelation portfolio (MDecP) is defined similarly to the GMVP but using
the correlation matrix 𝑪 in lieu of the covariance matrix 𝚺 (Christoffersen et al., 2012):

minimize
𝒘

𝒘T𝑪𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0.
(6.18)

The correlation matrix 𝑪 can be interpreted as the covariance matrix of the normalized assets
such that they have unit volatility, that is,

𝑪 = Diag (𝚺)−1/2 𝚺Diag (𝚺)−1/2
,

where Diag(·) keeps the diagonal elements of the matrix argument and sets the off-diagonal
elements to zero.

The MDecP is not only related to the GMVP but also to the MDivP: when the MDecP weights
are divided by their respective assets’ volatilities and renormalized so that they sum to 1, the
MDivP weights are obtained.

6.5.6 Numerical Experiments
We now compare the following risk-based portfolios: GMVP, IVolP, RPP, MDivP, and MDecP.
We consider eight stocks from the S&P 500 during the period 2019–2020, under the same
setting as the experiments in Section 6.4.5.

Figure 6.15 shows the normalized dollar allocation of the risk-based portfolios, whereas
Figure 6.16 shows the out-of-sample backtest results in terms of cumulative P&L and
drawdown. Since all these portfolios are precisely obtained by somehow minizing the risk,
the resulting drawdowns are small (compare with the drawdowns of the heuristic portfolios in
Figure 6.13).
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6.6 Summary
• A portfolio over 𝑁 assets is conveniently represented by the 𝑁-dimensional vector 𝒘. The

portfolio return is given by 𝒘T𝒓, where 𝒓 contains the returns of the assets.

• In practice, portfolios have to be periodically rebalanced, incurring transaction costs which
erode the potential return.

• Portfolios typically need to satisfy many constraints, some imposed by the regulators or
brokers (such as shorting, leverage, and margin requirements), while others depend on the
investor’s views (such as market neutrality, portfolio diversity, sparsity level, and turnover
control). Most of these constraints are expressed as convex functions that can be easily
handled in the optimization process (a notable exception is sparsity control).

• The performance of portfolios can be measured and monitored in a multitude of ways
(such as Sharpe ratio, downside risk measures, drawdown, and CVaR). Most interesting
is when such performance measures are included in the optimization process, leading to
challenging formulations.

• Some heuristic portfolios have endured the test of time and can be easily calculated without
the need for complicated optimization methods; notable examples are the 1/𝑁 portfolio
and the family of quintile portfolios.

• Risk-based portfolios are focused on reducing the variability in the returns without
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attempting to ride the market trend; they are typically easy to compute and exhibit good
results in practice.

Exercises
6.1 (Effect of rebalancing)

a. Download market data corresponding to 𝑁 assets (e.g., stocks or cryptocurrencies) during
a period with 𝑇 observations, 𝒓1, . . . , 𝒓𝑇 ∈ R𝑁 .

b. Start with the 1/𝑁 portfolio at time 𝑡 = 1 and let the portfolio weights naturally evolve
as the assets’ prices change over time. Plot the portfolio weights and the NAV over time
(assuming transaction costs of 90 bps).

c. Repeat using a regular calendar-based rebalancing scheme.
d. Repeat using an adaptive rebalancing scheme when the difference exceeds a threshold.

6.2 (Portfolio constraints) Consider a universe of 𝑁 = 2 assets and draw the set of feasible
portfolios under the following constraints:

a. Budget and no-shorting constraints:

1T𝒘 ≤ 1, 𝒘 ≥ 0.

b. Budget fully invested and no-shorting constraints:

1T𝒘 = 1, 𝒘 ≥ 0.

c. Budget, no-shorting, and holding constraints:

1T𝒘 ≤ 1, 𝒘 ≥ 0, 𝒘 ≤ 0.6 × 1.

d. Budget and turnover constraints:

1T𝒘 ≤ 1, ∥𝒘 − 𝒘0∥1 ≤ 0.5,

with 𝒘0 denoting the 1/𝑁 portfolio.
e. Leverage constraint:

∥𝒘∥1 ≤ 1.

6.3 (Performance measures)

a. Download market data corresponding to the S&P 500 index.
b. Plot the returns and cumulative returns over time.
c. Calculate the annualized expected return with arithmetic and geometric compounding.
d. Calculate the annualized volatility.
e. Plot the volatility-adjusted returns and cumulative returns over time.
f. Calculate the annualized Sharpe ratio with arithmetic and geometric compounding.
g. Calculate the annualized semi-deviation and Sortino ratio.
h. Calculate the VaR and CVaR.
i. Plot the drawdown over time.

6.4 (Heuristic portfolios)
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a. Download market data corresponding to 𝑁 assets during a period with 𝑇 observations.
b. Using 70% of the data, compute the 1/𝑁 portfolio and quintile portfolios using different

ranking mechanisms.
c. Plot and compare the different portfolio allocations over time.
d. Using the remaining 30% of the data, assess the portfolios in terms of cumulative returns,

volatility-adjusted cumulative returns, Sharpe ratio, and drawdown.

6.5 (Risk-based portfolios) Repeat Exercise 6.4 with the following risk-based portfolios:

a. GMVP
b. IVolP
c. MDivP
d. MDecP
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7

Modern Portfolio Theory

“You must read, you must persevere, you must sit up nights, you must inquire, and exert the utmost power of
your mind. If one way does not lead to the desired meaning, take another; if obstacles arise, then still another;
until, if your strength holds out, you will find that clear which at first looked dark.”

— Giovanni Boccaccio

Modern portfolio theory (MPT) started with Harry Markowitz’s 1952 seminal paper “Portfolio
Selection” (Markowitz, 1952), for which he would receive the Nobel prize in 1990. He put forth
the idea that risk-adverse investors should optimize their portfolio based on a combination
of two objectives: expected return and risk. That idea has remained central to portfolio
optimization. In practice, however, the vanilla Markowitz portfolio formulation has some
issues and drawbacks; as a consequence most practitioners tend to combine it with several
heuristics or avoid it altogether. In this chapter, we explore the mean–variance Markowitz
portfolio in its many facets.

7.1 Mean–Variance Portfolio (MVP)
This section considers the mean–variance portfolio (MVP) proposed by Markowitz in his
1952 seminar paper (Markowitz, 1952); see also the monographs Rubinstein (2002) and Kolm
et al. (2014) with a retrospective view.

7.1.1 Return–Risk Trade-Off
While the expected return of the portfolio 𝒘T𝝁 is a relevant quantity that measures the average
or expected benefit (see Section 6.3), it leaves one key element out: the risk. An investor needs
to control the probability of going bankrupt. A risk measure precisely quantifies how risky an
investment strategy is. The most basic risk measure is the volatility

√
𝒘T𝚺𝒘 or, similarly, the

variance 𝒘T𝚺𝒘: a higher variance means that there are large peaks in the distribution of the
returns, which may cause big losses. The volatility/variance has its limitations and a number
of more sophisticated risk measures have been proposed in the literature such as downside
risk measures (e.g., semi-variance), VaR, and CVaR (see Section 6.3).

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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Precisely, Markowitz put forth the idea that risk-adverse investors should optimize their
portfolio based on a combination of two objectives: expected return and risk (Markowitz,
1952). However, there is a trade-off between these two objectives: the higher the expected
return, the higher the risk; the lower the risk, the lower the expected return. In other words, we
are dealing with a multi-objective optimization problem (see Section A.7 in Appendix A) with
its corresponding optimal trade-off curve (Pareto-optimal points), which is called the efficient
frontier in this portfolio context. Basically, the efficient frontier is a curve representing the
best possible pair values of expected return and volatility that can be achieved by any feasible
portfolio. The choice of a specific point on this trade-off curve depends on how aggressive
or risk-averse the investor is. Figure 7.1 shows the trade-off between expected return and
volatility.
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Figure 7.1 Trade-off between expected return and volatility: efficient frontier and
1,000 random feasible portfolios.

7.1.2 MVP Formulation
Markowitz’s portfolio formulation is a bi-objective optimization problem with the two
objectives being the expected return 𝒘T𝝁 and the risk measured by the volatility

√
𝒘T𝚺𝒘 or,

similarly, the variance 𝒘T𝚺𝒘. From an algorithmic perspective, it is more computationally
efficient to use the variance than the volatility, since the former involves quadratic programming
whereas the latter results in second-order cone programming (see Appendix A and, more
specifically, Section B.1 in Appendix B for algorithmic aspects of solvers).

There are several ways to formulate a bi-objective optimization problem, as discussed in
Section A.7. The most convenient way is via scalarization of the two objectives into a single



7.1 Mean–Variance Portfolio (MVP) 175

objective with a weighted sum (Markowitz, 1952):

maximize
𝒘

𝒘T𝝁 − 𝜆

2 𝒘
T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,
(7.1)

where 𝜆 is a hyper-parameter that controls how risk-averse the investor is. The two constraints
included are just for illustration purposes; in practice, one can include many of the other
constraints listed in Section 6.2, as elaborated in Section 7.1.4.

The choice of 𝜆 in the MVP in (7.1) will produce different portfolios that lie along the efficient
frontier shown in Figure 7.2. In fact, by letting 𝜆 vary from 0 to∞, one can recover the whole
efficient frontier. In particular, for 𝜆 = 0 we recover the global maximum return portfolio
(GMRP) described in Section 6.4.2 (i.e., only the expected return is considered while the
variance is ignored), whereas for 𝜆→∞ we recover the global minimum variance portfolio
(GMVP) considered in Section 6.5.1 (i.e., the expected return is not used at all). Figure 7.2
shows the efficient frontier together with these portfolios.
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Figure 7.2 Efficient frontier and common portfolios.

Problem (7.1) is a quadratic problem (QP) that can be easily solved with a QP solver (see
Appendix B). If we ignore the no-shorting constraint 𝒘 ≥ 0, then the problem admits the
simple closed-form solution

𝒘 =
1
𝜆
𝚺−1 (𝝁 + 𝜈1) ,

where 𝜈 is the optimal dual variable 𝜈 = 𝜆−1T𝚺−1𝝁

1T𝚺−11 chosen to satisfy the normalization constraint
1T𝒘 = 1.

Example 7.1 (Optimum investment sizing) Suppose we have a single asset or a fully invested
portfolio (1T𝒘 = 1) with some returns over time 𝑟1, 𝑟2, . . . The problem of investment sizing
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refers to determining how much of the budget should be allocated to this risky asset and how
much should be kept in cash. The optimal sizing can be obtained from the MVP formulation
in (7.1) particularized to 𝑁 = 1 as

maximize
𝑤

𝑤𝜇 − 𝜆

2𝑤
2𝜎2

subject to 0 ≤ 𝑤 ≤ 1,

with solution

𝑤 =

[
1
𝜆

𝜇

𝜎2

]1

0
,

where [·]10 denotes projection on the interval [0, 1]. In particular, the growth rate is maximized
when 𝜆 = 1 (see Section 7.3.1 for details) and then the optimal sizing turns out to be the
(projected) mean-to-variance ratio: 𝑤 = [𝜇/𝜎2]10.

There are two other widely used reformulations of Markowitz’s portfolio. One formulation
has the variance term as a constraint:

maximize
𝒘

𝒘T𝝁

subject to 𝒘T𝚺𝒘 ≤ 𝛼,
1T𝒘 = 1, 𝒘 ≥ 0,

(7.2)

where 𝛼 is a hyper-parameter that controls the maximum level of variance accepted. The
other formulation, instead, has the expected return as a constraint:

minimize
𝒘

𝒘T𝚺𝒘

subject to 𝒘T𝝁 ≥ 𝛽,
1T𝒘 = 1, 𝒘 ≥ 0,

(7.3)

where 𝛽 is a hyper-parameter that controls the minimum level of expected return accepted.

Similarly to what happens with formulation (7.1) as the hyper-parameter 𝜆 is varied, for-
mulations (7.2) and (7.3) can also recover the whole efficient frontier by changing the
hyper-parameters 𝛼 and 𝛽, respectively.

The hyper-parameters in formulations (7.2) and (7.3) have a more intuitive interpretation
than that in formulation (7.1), that is, maximum accepted variance and minimum accepted
expected return. On the other hand, formulations (7.2) and (7.3) may be infeasible if the
hyper-parameters are not properly chosen, whereas formulation (7.1) is always feasible
regardless of the hyper-parameter 𝜆. To avoid running into infeasibility issues, it is customary
to choose the hyper-parameters based on benchmark portfolios such as the 1/𝑁 portfolio, i.e.,
𝛼 = 1

𝑁 2 1T𝚺1 or 𝛽 = 1
𝑁

1T𝝁.

Problem (7.3) is still a QP that can be solved efficiently with a QP solver; however, problem
(7.2) is a quadratically-constrained QP (QCQP) which typically requires a higher complexity
either by using a QCQP solver or an SOCP solver (see Section B.1 for details).

Commonly used programming languages in finance offer packages specifically designed to
optimize portfolios under a wide variety of formulations and constraints, such as the popular
R package fPortfolio (Wuertz et al., 2023) and the Python library Riskfolio-Lib (Cajas,
2023).

https://cran.r-project.org/package=fPortfolio
https://riskfolio-lib.readthedocs.io


7.1 Mean–Variance Portfolio (MVP) 177

Figure 7.3 shows the portfolio allocation of the MVP in (7.1) for different values of 𝜆, from
which we can see the critical effect of the hyper-parameter in the final allocation. Figure 7.4
and Table 7.1 show the corresponding backtest results, indicating that smaller values of 𝜆
suffer from a worse Sharpe ratio and a much severe drawdown than the largest ones.
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Figure 7.3 Portfolio allocation of MVP with different values of hyper-parameter 𝜆.
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Figure 7.4 Backtest performance of MVP with different values of hyper-parameter 𝜆.
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Table 7.1 Backtest performance of MVP with different values of hyper-parameter 𝜆.

Portfolio Sharpe ratio Annual return Annual volatility Max drawdown

1/𝑁 3.34 115% 35% 14%
MVP (𝜆 = 1) 2.60 112% 43% 20%
MVP (𝜆 = 4) 2.57 106% 41% 19%
MVP (𝜆 = 16) 3.37 113% 33% 15%
MVP (𝜆 = 64) 3.65 116% 32% 14%

7.1.3 MVP as a Regression
Interestingly, the MVP formulation can be interpreted as a regression problem. The key
observation is that the variance of the portfolio can be seen as an ℓ2-norm error term. First,
we rewrite the variance as

𝒘T𝚺𝒘 = 𝒘TIE
[
(𝒓𝑡 − 𝝁) (𝒓𝑡 − 𝝁)T

]
𝒘

= IE
[
(𝒘T(𝒓𝑡 − 𝝁))2

]
= IE

[
(𝒘T𝒓𝑡 − 𝜌)2

]
,

where 𝜌 = 𝒘T𝝁. Then, we use the sample approximation for the expected value,

IE
[
(𝒘T𝒓𝑡 − 𝜌)2

]
≈ 1
𝑇

𝑇∑︁
𝑡=1

(𝒘T𝒓𝑡 − 𝜌)2 =
1
𝑇
∥𝑹𝒘 − 𝜌1∥22,

where 𝑹 ≜ [𝒓1, . . . , 𝒓𝑇 ]T.

Now we can continue by rewriting the MVP formulation (7.1) as the minimization

minimize
𝒘

𝒘T𝚺𝒘 − 2
𝜆
𝒘T𝝁

subject to 1T𝒘 = 1, 𝒘 ≥ 0

and finally substitute the variance with the ℓ2-norm expression:

minimize
𝒘,𝜌

1
𝑇
∥𝑹𝒘 − 𝜌1∥22 − 2

𝜆
𝜌

subject to 𝜌 = 𝒘T𝝁,
1T𝒘 = 1, 𝒘 ≥ 0.

(7.4)

Note that the expected return, denoted by 𝜌, is also an optimization variable. Alternatively,
one could fix 𝜌 to some predetermined value.

From the MVP formulation as a regression in (7.4), we can interpret the portfolio 𝒘 as trying
to obtain returns over time as constant as possible and equal to 𝜌. In other words, it is trying
to achieve or track the expected return 𝜌 with minimum variance as measured by the ℓ2-norm.
Interestingly, this interpretation is in fact related to the topic of index tracking in Chapter 13.
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7.1.4 MVP with Practical Constraints
The previous MVP formulations in (7.1), (7.2), and (7.3) have included the two simple
constraints 1T𝒘 = 1 and 𝒘 ≥ 0 for simplicitly of exposition. In practice, however, there is a
multitude of other constraints that an investor may want to use, as listed in Section 6.2; see
also Kolm et al. (2014).

For example, we can start with the basic MVP formulation in (7.1) that only contains the
budget and no-shorting constraints,

maximize
𝒘

𝒘T𝝁 − 𝜆

2 𝒘
T𝚺𝒘

subject to 1T𝒘 = 1 budget,
𝒘 ≥ 0 no-shorting,

and change the constraints to reflect a more realistic trading situation:

maximize
𝒘

𝒘T𝝁 − 𝜆

2 𝒘
T𝚺𝒘

subject to ∥𝒘∥1 ≤ 𝛾 leverage,
∥𝒘 − 𝒘0∥1 ≤ 𝜏 turnover,
|𝒘 | ≤ 𝒖 max positions,
𝜷T𝒘 = 0 market neutral,
∥𝒘∥0 ≤ 𝐾 sparsity,

(7.5)

where 𝛾 ≥ 1 controls the amount of shorting and leverage, 𝜏 > 0 controls the turnover (to
limit the transaction costs in the rebalancing), 𝒖 limits the position in each stock, 𝜷 denotes
the beta of the stocks, and 𝐾 controls the cardinality of the portfolio (to select a small set of
stocks from the universe).

More generally, we can write the MVP formulation with a general set of constraints, denoted
byW, as

maximize
𝒘

𝒘T𝝁 − 𝜆

2 𝒘
T𝚺𝒘

subject to 𝒘 ∈ W.
(7.6)

From the optimization perspective, as long as the constraints inW are convex the problem
will remain convex and will still be easy to solve. The only constraint that is nonconvex in
(7.5) is the cardinality constraint ∥𝒘∥0 ≤ 𝐾 .

7.1.5 Improving the MVP with Heuristics
One of the main problems of the MVP is the lack of diversification, which goes against
common practice. To address this issue, several heuristics have been proposed with good
practical results such as no-shorting constraints, upper bound constraints, and ℓ2-norm
constraints; see Kolm et al. (2014) for more details.

Imposing no-shorting constraints, 𝒘 ≥ 0, seems to have significant practical benefits in
reducing the amplification of the noise inherent in the estimated covariance matrix, even
when the constraints are wrong (Jagannathan & Ma, 2003). Surprisingly, with no-shorting
constraints, the sample covariance matrix performs as well as more sophisticated covariance
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matrix estimators based on factor models, shrinkage estimators, or higher-frequency returns.
Including upper bound constraints also has a regularization effect on the covariance matrix.

For example, if we consider the GMVP from Section 6.5.1 with constraints 1T𝒘 = 1 and
0 ≤ 𝒘 ≤ 𝒖, the optimal solution (6.15) is still valid using instead the regularized covariance
matrix

�̃� = 𝚺 + 𝝀01T + 1𝝀T
0 + 𝝀u1T + 1𝝀T

u ,

where 𝝀0 and 𝝀u are the Lagrange multipliers corresponding to the no-shorting and upper
bound constraints, respectively (Jagannathan & Ma, 2003). This regularized covariance matrix
�̃� can be interpreted as a shrunk version of 𝚺 with reduced sampling error. Interestingly, the
same result can be obtained by instead including an ℓ1-norm constraint ∥𝒘∥1 ≤ 𝛿 (DeMiguel
et al., 2009).

One way to enforce diversity is via the diversification constraint ∥𝒘∥22 ≤ 𝐷 (see Section 6.2).
The maximum diversity level 𝐷 is lower bounded by 1/𝑁 (achieved by the 1/𝑁 portfolio)
and could be chosen as the diversity achieved by some benchmark portfolio, for example, the
GMVP gives 𝐷 = 1T𝚺−21/(1T𝚺−11)2.

For example, if we consider the GMVP with constraints 1T𝒘 = 1 and ∥𝒘∥22 ≤ 𝐷, the optimal
solution (6.15) is still valid using instead the regularized covariance matrix

�̃� = 𝚺 + 𝛾𝑰,

leading to the portfolio

𝒘 =
1

1T (𝚺 + 𝛾𝑰)−1 1
(𝚺 + 𝛾𝑰)−1 1,

where 𝛾 ≥ 0 is the Lagrange multiplier corresponding to the diversification constraint
(DeMiguel et al., 2009). For 𝛾 = 0 we recover the solution (6.15), whereas for 𝛾 → ∞ we
obtain the 1/𝑁 portfolio. Interestingly, this solution is like shrinking the covariance matrix to
the identity matrix with 𝛾 being the shrinkage intensity (see Chapter 3).

Figure 7.5 illustrates the effect of two diversification heuristics on the portfolio allocation
(namely, with upper bound ∥𝒘∥∞ ≤ 0.25 and diversification constraint ∥𝒘∥22 ≤ 0.25), which
indeed improve the diversification. Figure 7.6 and Table 7.2 show the corresponding backtest
results, indicating that the more diversified MVPs have a better Sharpe ratio and drawdown.

Table 7.2 Backtest performance of MVP under two diversification heuristics (upper
bound and diversification constraint).

Portfolio Sharpe ratio Annual return Annual volatility Max drawdown

1/𝑁 3.34 115% 35% 14%
GMVP 3.67 115% 31% 14%
MVP 2.44 99% 41% 19%
MVP with upper bound 2.98 96% 32% 14%
MVP with diversific. const. 2.79 97% 35% 16%
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Figure 7.5 Portfolio allocation of MVP under two diversification heuristics (upper
bound and diversification constraint).
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Figure 7.6 Backtest performance of MVP under two diversification heuristics (upper
bound and diversification constraint).

7.2 Maximum Sharpe Ratio Portfolio
Markowitz’s mean–variance framework provides portfolios along the efficient frontier, that is,
formulations (7.1), (7.2), and (7.3), by varying the hyper-parameters 𝜆, 𝛼, and 𝛽, respectively.
The specific choice of a point on the efficient frontier depends on the risk aversion of the
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investor. Nevertheless, the most widely used performance measure is the Sharpe ratio and
there is only one portfolio on the efficient frontier that achieves the maximum value, as
indicated in Figure 7.2 under MSRP.

Precisely, in 1966, Sharpe proposed the maximum Sharpe ratio portfolio (MSRP) formulation
(Sharpe, 1966) as

maximize
𝒘

𝒘T𝝁 − 𝑟f√
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,
(7.7)

where 𝑟f is the return of the risk-free asset.

This problem is not convex, but it belongs to the class of fractional programs (FPs) for
which many solving methods are available, namely, the bisection, Dinkelbach, and Schaible
transform methods as described next (see Section A.5 in Appendix A for a description of FPs
and Section B.5 in Appendix B for more details on the algorithms).

7.2.1 Bisection Method
Concave–convex FP can be conveniently solved via a sequence of convex feasibility problems,
termed the bisection method (see Section A.4 for details). For problem (7.7), the sequence of
convex feasibility problems are of the form

find
𝒘

𝒘

subject to 𝑡
√
𝒘T𝚺𝒘 ≤ 𝒘T𝝁 − 𝑟f,

1T𝒘 = 1, 𝒘 ≥ 0,
(7.8)

where 𝑡 > 0 is a fixed parameter (not an optimization variable). This problem is convex and,
in fact, a second-order cone program (SOCP) since the volatility can be written as an ℓ2-norm,√
𝒘T𝚺𝒘 = ∥𝚺1/2𝒘∥2 (see Section A.5). Note that this convex feasibility reformulation can be

infeasible in practice (e.g., if all the elements of 𝝁 are negative), so care has to be taken for
such a case. The method is summarized in Algorithm 7.1.

Algorithm 7.1: Bisection method to solve the MSRP in (7.7).
1: Choose interval [𝑙, 𝑢] (with 𝑙 > 0) that contains the optimal Sharpe ratio, tolerance
𝜖 > 0;

2: repeat
3: 𝑡 ← (𝑙 + 𝑢)/2;
4: Solve the convex feasibility problem (7.8);
5: if feasible then
6: 𝑙 ← 𝑡 and keep solution 𝒘;
7: else
8: 𝑢 ← 𝑡;
9: end if

10: until 𝑢 − 𝑙 ≤ 𝜖 ;
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7.2.2 Dinkelbach Method
Concave–convex FPs can be solved via the Dinkelbach method (Dinkelbach, 1967) by solving
a sequence of simpler convex problems (see Section B.5.2 for details). For problem (7.7), the
sequence of convex problems is, in fact, a sequence of SOCPs of the form:

maximize
𝒘

𝒘T𝝁 − 𝑟f − 𝑦𝑘
√
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,
(7.9)

where the parameter 𝑦𝑘 is sequentially updated as

𝑦𝑘 =
(𝒘𝑘)T𝝁 − 𝑟f√︁
(𝒘𝑘)T𝚺𝒘𝑘

(7.10)

with 𝑘 the iteration index. This is summarized in Algorithm 7.2.

Algorithm 7.2: Dinkelbach method to solve the MSRP in (7.7).
1: Choose initial point 𝒘0;
2: Set 𝑘 ← 0;
3: repeat
4: Set 𝑦𝑘 as in (7.10);
5: Solve the convex problem (7.9) and keep current solution as 𝒘𝑘+1;
6: 𝑘 ← 𝑘 + 1;
7: until convergence;

7.2.3 Schaible Transform Method
Concave–convex FPs can be more efficiently solved via the Schaible transform (Schaible,
1974) without the need to resort to iterative schemes (see Section B.5.3 for details). It turns
out that problem (7.7) can be rewritten as

maximize
𝒚,𝑡

𝒚T (𝝁 − 𝑟f1)

subject to
√︁
𝒚T𝚺𝒚 ≤ 1,

𝑡 > 0,
1T𝒚 = 𝑡, 𝒚 ≥ 0,

which can be further simplified (eliminating variable 𝑡) to

maximize
𝒚

𝒚T (𝝁 − 𝑟f1)
subject to 𝒚T𝚺𝒚 ≤ 1,

1T𝒚 > 0, 𝒚 ≥ 0,
(7.11)

from which the original variable𝒘 can be easily recovered from 𝒚, and 𝑡 = 1T𝒚 as𝒘 = 𝒚/
(
1T𝒚

)
.

Note that, since 𝒚 ≥ 0, the constraint 1T𝒚 > 0 can be safely ignored when solving the problem
with an interior-point method (see Section B.4 for details).
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Interestingly, if we reformulate problem (7.7) as the minimization of
√
𝒘T𝚺𝒘/

(
𝒘T𝝁 − 𝑟f

)
,

the Schaible transform leads to

minimize
𝒚

𝒚T𝚺𝒚

subject to 𝒚T (𝝁 − 𝑟f1) ≥ 1,
1T𝒚 > 0, 𝒚 ≥ 0,

(7.12)

where the inequality 𝒚T (𝝁 − 𝑟f1) ≥ 1 can be alternatively written as equality. Observe that
the Schaible transform requires the denominator to be nonnegative, which in this case means
𝒚T (𝝁 − 𝑟f1) > 0 or 𝒘T𝝁 − 𝑟f > 0; in other words, this alternative reformulation may or may
not be feasible and care has to be taken for this case.

Problem (7.11) is a (convex) QCQP, which can be easily solved with a QCQP solver. However,
the alternative problem reformulation in (7.12) is a simpler QP, which is preferred since it
can be solved with more efficient QP solvers (see Section B.1 for details).

Example 7.2 (MSRP with return and upper bound constraints) Consider the MSRP
formulation with minimum return 𝛽 > 0 and upper bound 𝒖 constraints:

maximize
𝒘

𝒘T𝝁
√
𝒘T𝚺𝒘

subject to 𝒘T𝝁 ≥ 𝛽,
1T𝒘 = 1, 0 ≤ 𝒘 ≤ 𝒖.

After applying the Schaible transform, the problem simplifies to the QP

minimize
𝒚

𝒚T𝚺𝒚

subject to 𝒚T𝝁 ≥ 1,
0 < 1T𝒚 ≤ 𝛽−1, 0 ≤ 𝒚 ≤ 𝒖 ·

(
1T𝒚

)
,

from which the portfolio is obtained as 𝒘 = 𝒚/
(
1T𝒚

)
.

Example 7.3 (MSRP with shorting and return constraint) Consider the MSRP formulation
with minimum return 𝛽 > 0 and with shorting allowed:

maximize
𝒘

𝒘T𝝁
√
𝒘T𝚺𝒘

subject to 𝒘T𝝁 ≥ 𝛽
∥𝒘∥1 = 1.

After applying the Schaible transform, the problem simplifies to the QP

minimize
𝒚

𝒚T𝚺𝒚

subject to 𝒚T𝝁 ≥ 1
0 < ∥𝒚∥1 ≤ 𝛽−1,

from which the portfolio is obtained as 𝒘 = 𝒚/∥𝒚∥1.
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7.3 Utility-Based Portfolios
All the previous porfolio formulations in Sections 7.1 and 7.2 are based on some judicious
combination of the mean and variance of the returns 𝑅portf

𝑡 = 𝒘T𝒓𝑡 (here, 𝒓𝑡 denotes linear
returns). However, it is possible to express the interest of the investor in a more general way
via utility functions.

7.3.1 Kelly Criterion Portfolio
In 1956, a scientist working for Bell Labs, John Larry Kelly, Jr., brought together game theory
and information theory (Kelly, Jr., 1956). He showed that in order to achieve maximum growth
of wealth, a gambler should place bets that maximize the expected value of the logarithm
of the capital, usually referred to as the Kelly criterion. The Kelly criterion was applied to
portfolio design in Markowitz (1959); see also Thorp (1971) and Thorp (1997).1

Recall from (6.8) that, for a given fixed portfolio 𝒘, the returns are 𝑅portf
𝑡 = 𝒘T𝒓𝑡 . From the

geometric compounding of the portfolio wealth of NAV in (6.6), we can write the wealth
accumulated during the periods 𝑡 = 1, . . . , 𝑇 as

𝑊𝑇 = 𝑊0

𝑇∏
𝑡=1

𝑊𝑡

𝑊𝑡−1
= 𝑊0

𝑇∏
𝑡=1

(
1 + 𝒘T𝒓𝑡

)
,

where𝑊0 is the initial wealth and𝑊𝑡 the wealth at time period 𝑡.

It turns out that the wealth grows exponentially as𝑊𝑡 ∼ 𝑒𝑡×𝐺 (Cover & Thomas, 1991), where
the exponent 𝐺 is the exponential rate of growth or, simply, growth rate:

𝐺 = lim
𝑇→∞

log
(
𝑊𝑇

𝑊0

)1/𝑇

.

The growth rate can be estimated asymptotically by the law of large numbers as

𝐺 = lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

log
(
1 + 𝒘T𝒓𝑡

)
= IE

[
log

(
1 + 𝒘T𝒓

) ]
,

where 𝒓 is a random variable with the same distribution as each 𝒓𝑡 .

Maximizing the growth rate effectively maximizes the long-term wealth and it is a very
compelling choice for portfolio design. We call this formulation the Kelly criterion portfolio:

maximize
𝒘

IE
[
log

(
1 + 𝒘T𝒓

) ]
subject to 1T𝒘 = 1, 𝒘 ≥ 0.

(7.13)

Good and bad properties of the Kelly criterion are discussed in MacLean et al. (2010).

Problem (7.13) is convex since the log is a concave function and it is a maximization problem.
In practice, however, we need to find an appropriate way to deal with the expected value in

1 Edward O. Thorp was an American math professor, author, and blackjack player who wrote Beat the Dealer
(Thorp, 1962), which became a classic and was the first book to prove mathematically that the house advantage
in blackjack could be overcome by card counting.
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the objective function as we discuss next via sample averages, the exponential cone, and other
approximations.

Solving the Kelly Criterion Portfolio Directly via Sample Average
In practice, the expectation in problem (7.13) can be approximated by the sample mean:

IE
[
log

(
1 + 𝒘T𝒓

) ]
≈ 1
𝑇

𝑇∑︁
𝑡=1

log
(
1 + 𝒘T𝒓𝑡

)
.

However, finding a solver that can deal directly with the log function may be challenging.

Solving the Kelly Criterion Portfolio via Exponential Cone Programming
Interestingly, this problem can be reformulated in terms of the exponential cone (Cajas, 2021),
leading to exponential cone programming for which solvers can be found.

Consider problem (7.13) with the sample average approximation and with the additional slack
variables 𝑞𝑡 :

maximize
𝒘,{𝑞𝑡 }

1
𝑇

∑𝑇
𝑡=1 𝑞𝑡

subject to 𝑞𝑡 ≤ log
(
1 + 𝒘T𝒓𝑡

)
, 𝑡 = 1, . . . , 𝑇,

1T𝒘 = 1, 𝒘 ≥ 0.

The constraints 𝑞𝑡 ≤ log
(
1 + 𝒘T𝒓𝑡

)
can be equivalently written as exp(𝑞𝑡 ) ≤ 1 + 𝒘T𝒓𝑡 and

the Kelly portfolio can be finally written as the exponential cone program

maximize
𝒘,{𝑞𝑡 }

1
𝑇

∑𝑇
𝑡=1 𝑞𝑡

subject to (𝑞𝑡 , 1, 1 + 𝒘T𝒓𝑡 ) ∈ Kexp, 𝑡 = 1, . . . , 𝑇,
1T𝒘 = 1, 𝒘 ≥ 0,

(7.14)

where Kexp is the exponential cone (Chares, 2007) defined as

Kexp ≜
{
(𝑎, 𝑏, 𝑐) | 𝑐 ≥ 𝑏 𝑒𝑎/𝑏, 𝑏 > 0

}
∪

{
(𝑎, 𝑏, 𝑐) | 𝑎 ≤ 0, 𝑏 = 0, 𝑐 ≥ 0

}
.

Solving the Kelly Criterion Portfolio via Mean–Variance Approximations
The most common way to deal with the expectation in the objective of problem (7.13) is via a
first-order Taylor approximation2 around the point 𝒓 = 0 (Markowitz, 1959):

IE
[
log

(
1 + 𝒘T𝒓

) ]
≈ 𝒘T𝝁 − 1

2
𝒘T𝚺𝒘, (7.15)

which is a surprising and beautiful justification for the mean–variance formulation in (7.1)
(with 𝜆 = 1), that is,

maximize
𝒘

𝒘T𝝁 − 1
2𝒘

T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0.
2 The Taylor expansion of the log function around the point 𝑥 = 𝑥0 is

log(1 + 𝑥 ) = log(1 + 𝑥0 ) +
1

1 + 𝑥0
(𝑥 − 𝑥0 ) +

1
2

−1
(1 + 𝑥0 )2

(𝑥 − 𝑥0 )2 + · · ·
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It is possible to find better Taylor approximations than (7.15) around the point 𝒓 = 𝝁, such as
(Markowitz, 1959)

IE
[
log

(
1 + 𝒘T𝒓

) ]
≈ log

(
1 + 𝒘T𝝁

)
− 1

2
𝒘T𝚺𝒘

(1 + 𝒘T𝝁)2
(7.16)

or, further approximated,

IE
[
log

(
1 + 𝒘T𝒓

) ]
≈ 𝒘T𝝁 − 1

2
(𝒘T𝝁)2 − 1

2
𝒘T𝚺𝒘

1 + 2𝒘T𝝁
. (7.17)

One can also try an approximation over an interval (as opposed to the Taylor approximations,
which focus on a single point) such as the Levy-Markowitz approximation (Levy & Markowitz,
1979):

IE
[
log

(
1 + 𝒘T𝒓

) ]
≈ 1

2𝜅2 log
( (

1 + 𝒘T𝝁
)2 − 𝜅2𝒘T𝚺𝒘

)
+

(
1 − 1

𝜅2

)
log

(
1 + 𝒘T𝝁

)
, (7.18)

where 𝜅 measures the width of the approximating interval in standard deviations.

However, these other approximations may not bring any benefit in practice (Pulley, 1983) due
to the nonconvexity and the fact that the parameters 𝝁 and 𝚺 contain estimation errors an order
of magnitude larger than the potential benefit of these refined approximations. See Markowitz
(2014) for a historical perspective on mean–variance approximations. Chapter 9 explores
higher-order moments, that is, skewness and kurtosis, to obtain better approximations for
portfolio design.

7.3.2 Expected Utility Theory
The model of rational decision-making in most of economics and statistics is expected utility
theory, which was axiomatized by von Neumann and Morgenstern (1944) and Savage (1954).

In the context of portfolio design, the utility𝑈 (·) is a function of the random portfolio return
𝒘T𝒓 and the objective is the maximization of the expected utility:

maximize
𝒘

IE
[
𝑈 (𝒘T𝒓)

]
subject to 1T𝒘 = 1, 𝒘 ≥ 0.

(7.19)

The Kelly criterion portfolio in (7.13) is a particular case of the expected utility maximization
in (7.19) by choosing the log utility𝑈 (𝑥) = log (1 + 𝑥). Some (concave) utilities of interest
include:

• 𝑈 (𝑥) = log (1 + 𝑥)
• 𝑈 (𝑥) =

√
1 + 𝑥

• 𝑈 (𝑥) = −1
𝑥

• 𝑈 (𝑥) = −𝑝 1
𝑥 𝑝

for 𝑝 > 0 (as 𝑝 → 0 it converges to the log utility)
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• 𝑈 (𝑥) = − 1
√

1 + 𝑥
• 𝑈 (𝑥) = 1 − exp(−𝜆𝑥), with 𝜆 > 0 being the risk aversion parameter.

However, this general expected utility theory, while useful in theory, is an elusive concept
that may be of little practical help when faced with investment decisions, as opposed to the
statistically sound Kelly criterion. As stated in Roy (1952):

In calling in a utility function to our aid, an appearance of generality is achieved at the cost of a loss of
practical significance, and applicability in our results. A man who seeks advice about his actions will not be
grateful for the suggestion that he maximise expected utility.

Problem (7.19) is convex as long as the utility 𝑈 (·) is a concave function. Similarly to the
Kelly criterion portfolio, the expected utility portfolio formulation can be numerically solved
in a direct way or via mean–variance approximations as described next.

Solving the Expected Utility Portfolio Directly via Sample Average
In practice, problem (7.19) can be approximated by directly replacing the expectation in the
objective function by the sample mean:

IE
[
𝑈 (𝒘T𝒓)

]
≈ 1
𝑇

𝑇∑︁
𝑡=1

𝑈
(
𝒘T𝒓𝑡

)
.

However, finding a solver that can deal directly with the utility function 𝑈 (·) may be
challenging, even if it is a concave function.

Solving the Expected Utility Portfolio via Mean–Variance Approximations
Similarly to the Kelly criterion portfolio, the most common way to deal with the expectation
in the objective of problem (7.19) is via a mean–variance approximations similar to that in
(7.15); see Markowitz (2014).

We now consider some Taylor approximations around specific points3 (Markowitz, 1959) and
the Levy–Markowitz approximation along an interval (more specifically on three points of
the interval) (Levy & Markowitz, 1979).

The second-order Taylor approximation around the point 𝒓 = 0 is

IE
[
𝑈 (𝒘T𝒓)

]
≈ 𝑈 (0) +𝑈′ (0) IE

[
𝒘T𝒓

]
+ 1

2
𝑈′′ (0) IE

[
(𝒘T𝒓)2

]
= 𝑈 (0) +𝑈′ (0) 𝒘T𝝁 + 1

2
𝑈′′ (0) (𝒘T𝚺𝒘 + (𝒘T𝝁)2), (7.20)

3 The Taylor expansion of a utility function𝑈 ( ·) around the point 𝑥 = 𝑥0 is

𝑈 (𝑥 ) ≈𝑈 (𝑥0 ) +𝑈′ (𝑥0 ) (𝑥 − 𝑥0 ) +
1
2
𝑈′′ (𝑥0 ) (𝑥 − 𝑥0 )2 + · · ·
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whereas the approximation around the point 𝒓 = 𝝁 reads

IE
[
𝑈 (𝒘T𝒓)

]
≈ 𝑈 (𝒘T𝝁) +𝑈′ (𝒘T𝝁)IE

[
𝒘T(𝒓 − 𝝁)

]
+ 1

2
𝑈′′ (𝒘T𝝁)IE

[
(𝒘T(𝒓 − 𝝁)2

]
= 𝑈 (𝒘T𝝁) + 1

2
𝑈′′ (𝒘T𝝁)𝒘T𝚺𝒘. (7.21)

An approximation that fits the utility𝑈 (·) simultaneously on three points, namely, the mean
𝒘T𝝁 (like the previous Taylor approximation) and the two points 𝒘T𝝁 ± 𝜅

√
𝒘T𝚺𝒘 is Levy

and Markowitz (1979) 4

IE
[
𝑈 (𝒘T𝒓)

]
≈ 𝑈 (𝒘T𝝁)

+
𝑈

(
𝒘T𝝁 + 𝜅

√
𝒘T𝚺𝒘

)
+𝑈

(
𝒘T𝝁 − 𝜅

√
𝒘T𝚺𝒘

)
− 2𝑈

(
𝒘T𝝁

)
2𝜅2 . (7.22)

Many empirical analyses have concluded that these mean–variance approximations perform
well in practice for real data, and their difference is negligible (Levy & Markowitz, 1979;
Markowitz, 1959, 2014; Pulley, 1983). Chapter 9 explores higher-order moments, that is,
skewness and kurtosis, in these approximations for portfolio design.

7.4 Universal Algorithm
This chapter has explored a large variety of portfolio formulations with one common theme:
they are all based on different combinations of the mean and variance. Even the Kelly
criterion-based or utility-based portfolios can be well approximated in terms of the mean and
variance. Nevertheless, each of the formulations results in a different type of optimization
problem (see the taxonomy of problems in Section A.5). This implies that each formulation
requires a different numerical method or solver (see Appendix B for details on algorithms) as
listed next:

• scalarized MVP in (7.1): requires a QP solver;
• mean-constrained MVP in (7.3): also needs a QP solver;
• variance-constrained MVP in (7.2): requires a QCQP solver (with a higher computational

complexity than a QP solver);
• MSRP in (7.7): this is an FP and can be solved via bisection of SOCPs, via the Dinkelbach

sequence of SOCPs, or via the one-shot Schaible transformed QP;
• Kelly portfolio in (7.13): after the approximation in (7.15) this can be solved with a QP

solver; and
• utility-based portfolios as in (7.19): also with a QP solver after some mean–variance

approximation like in (7.20) or (7.21).

4 The Levy approximation of an expected utility around an interval of width 𝜅 standard deviations centered at the
mean is

IE [𝑈 (𝑋) ] ≈𝑈 (𝜇) + 1
2𝜅2 [𝑈 (𝜇 + 𝜅𝜎) +𝑈 (𝜇 − 𝜅𝜎) − 2𝑈 (𝜇) ] ,

where 𝑋 denotes a random variable (with mean 𝜇 and standard deviation 𝜎) and𝑈 ( ·) is the utility function.
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Interestingly, since all such different formulations can be expressed as trade-offs of the mean
and variance, the portfolios will naturally lie on the efficient frontier. This means that rather
than dealing with each of the formulations separately, an alternative is to solve the basic
mean–variance formulation with a properly chosen value of the hyper-parameter 𝜆:

maximize
𝒘

𝒘T𝝁 − 𝜆
2
𝒘T𝚺𝒘

subject to 𝒘 ∈ W,
(7.23)

whereW denotes a general set of constraints for the portfolio (assumed for convenience to
contain only linear and quadratic terms, which includes ℓ1-norms, ℓ∞-norms, and ℓ2-norms).
The challenge naturally lies in determining the appropriate value of the hyper-parameter 𝜆
(Xiu et al., 2023).

Thus, a general framework can be formulated that embraces all such mean–variance problems
as

minimize
𝒘

𝑓
(
𝒘T𝝁, 𝒘T𝚺𝒘

)
subject to 𝑔

(
𝒘T𝝁, 𝒘T𝚺𝒘

)
≤ 0,

𝒘 ∈ W,

(7.24)

where 𝑓 (𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are two functions that consider a trade-off between the two arguments
𝑥 and 𝑦, which represent the mean and the variance of the portfolio. Table 7.3 shows how
𝑓 (𝑥, 𝑦) and 𝑔(𝑥, 𝑦) particularize to the many mean–variance formulations considered in this
chapter.

Table 7.3 Portfolio formulations with the corresponding functions 𝑓 and 𝑔 in the
general mean–variance formulation (7.24).

Portfolio 𝑓 (𝑥, 𝑦) 𝑔(𝑥, 𝑦)

MVP −𝑥 + 𝜆2 𝑦 —
Mean–volatility portfolio −𝑥 + 𝜅√𝑦 —
Mean-constrained MVP 𝑦 𝛽 − 𝑥
Variance-constrained MVP −𝑥 𝑦 − 𝛼
MSRP − 𝑥 − 𝑟f√

𝑦
—

Kelly portfolio −𝑥 + 1
2 𝑦 —

Kelly portfolio −log(1 + 𝑥) + 1
2

𝑦

(1 + 𝑥)2
—

Kelly portfolio −𝑥 + 1
2 𝑥

2 + 1
2

𝑦

1 + 2𝑥
—

Kelly portfolio
−

(
1 − 1

𝜅2

)
log(1 + 𝑥)

− 1
2𝜅2 log

(
(1 + 𝑥)2 − 𝜅2𝑦

) —

Expected utility portfolio −𝑈 (0) −𝑈′ (0)𝑥 − 1
2𝑈
′′ (0) (𝑦 + 𝑥2) —

Expected utility portfolio −𝑈 (𝑥) − 1
2𝑈
′′ (𝑥)𝑦 —

Expected utility portfolio −
(
1 − 1

𝜅2

)
𝑈 (𝑥) −

𝑈 (𝑥 + 𝜅√𝑦) +𝑈 (𝑥 − 𝜅√𝑦)
2𝜅2 —

Notably, it is possible to develop a universal algorithm for mean–variance formulations as in
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(7.24) (Xiu et al., 2023) with a computational cost orders of magnitude below off-the-shelf
general-purpose QP, QCQP, or SOCP solvers. This unified formulation and algorithm provides
several practical advantages:

1. Computational efficiency: It is considerably more efficient to solve a QP than some other
more complicated class of problems such as QCQP or SOCP (see Section B.1 for details).

2. Code reusability: One can devote time and energy to implementing the proper solver
function call for problem (7.23), with the advantage that the same code can then be reused
for many different formulations as long as they are based on the mean and variance (simply
using a different choice of 𝜆).

3. Code specialization: Rather than using a general-purpose QP solver, an advanced user can
develop a tailored numerical algorithm that takes advantage of the particularities of the
specific portfolio formulation at hand (this can include the natural sparsity of the long-only
portfolio via the active set method or any other numerical trick).

The derivation of the universal algorithm to solve (7.24) is based on the successive convex
approximation (SCA) method (Scutari et al., 2014); see Section B.8 in Appendix B for details.
In particular, we will successively approximate the problem by a QP, hence the method is
called sequential QP (SQP). For the sake of exposition, we will only consider the formulation
(7.24) without the constraint function 𝑔(𝑥, 𝑦), that is,

minimize
𝒘

𝑓
(
𝒘T𝝁, 𝒘T𝚺𝒘

)
subject to 𝒘 ∈ W.

(7.25)

For the more general case (7.24), the reader is referred to Xiu et al. (2023).

The idea of SCA (or SQP in this case) is to solve (7.25) by instead solving a sequence of
simpler surrogate problems:

minimize
𝒘

𝑓
(
𝒘; 𝒘𝑘

)
+ 𝜏𝑘

2 ∥𝒘 − 𝒘𝑘 ∥22
subject to 𝒘 ∈ W,

(7.26)

where 𝑘 denotes the iteration index, the surrogate function 𝑓
(
𝒘; 𝒘𝑘

)
is a quadratic approx-

imation of 𝑓 around the previous point 𝒘𝑘 , and the last term is a quadratic proximal term
added to make sure the objective function is strongly convex for convergence reasons (Scutari
et al., 2014), which we will take as 𝜏𝑘 = 0. Solving (7.26) sequentially will produce the
iterates 𝒘0, 𝒘1, 𝒘2, . . . until some convergence criterion is satisfied.

The surrogate quadratic function 𝑓 can be easily obtained by linearizing the original function
𝑓 in terms of 𝑥 = 𝒘T𝝁 and 𝑦 = 𝒘T𝚺𝒘, leading to (ignoring the irrelevant constant terms):

𝑓
(
𝒘; 𝒘𝑘

)
= −𝛼𝑘𝒘T𝝁 + 𝛽

𝑘

2
𝒘T𝚺𝒘, (7.27)

where

𝛼𝑘 = −𝜕 𝑓
𝜕𝑥

(
𝑥𝑘 =

(
𝒘𝑘

)T
𝝁, 𝑦𝑘 =

(
𝒘𝑘

)T
𝚺𝒘𝑘

)
,

𝛽𝑘 = 2
𝜕 𝑓

𝜕𝑦

(
𝑥𝑘 =

(
𝒘𝑘

)T
𝝁, 𝑦𝑘 =

(
𝒘𝑘

)T
𝚺𝒘𝑘

)
.

(7.28)
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Table 7.4 shows the expressions of 𝛼𝑘 and 𝛽𝑘 for some of the portfolio formulations.

Table 7.4 Portfolio formulations with the corresponding expressions for 𝛼𝑘 and 𝛽𝑘 .

Portfolio 𝑓 (𝑥, 𝑦) 𝜕 𝑓

𝜕𝑥

𝜕 𝑓

𝜕𝑦
𝛼𝑘 𝛽𝑘

MVP −𝑥 + 𝜆2 𝑦 −1 𝜆/2 1 𝜆

Mean–volatility portfolio −𝑥 + 𝜅√𝑦 −1
𝜅

2√𝑦 1
𝜅√︁

(𝒘𝑘)T𝚺𝒘𝑘

MSRP − 𝑥 − 𝑟f√
𝑦

− 1
√
𝑦

𝑥 − 𝑟f
2𝑦3/2

1√︁
(𝒘𝑘)T𝚺𝒘𝑘

(𝒘𝑘)T𝝁 − 𝑟f(
(𝒘𝑘)T𝚺𝒘𝑘

)3/2

Kelly portfolio −𝑥 + 1
2 𝑦 −1 1/2 1 1

If we now plug (7.27) into (7.26), after rearranging terms we get

minimize
𝒘

−𝒘T (
𝛼𝑘𝝁 + 𝜏𝑘𝒘𝑘

)
+ 𝛽

𝑘

2
𝒘T

(
𝚺 + 𝜏𝑘

𝛽𝑘 𝑰
)
𝒘

subject to 𝒘 ∈ W,

which is clearly in the form of the basic mean–variance formulation in (7.23).

Summarizing, we have essentially accomplished our original goal of solving any mean–
variance formulation in the form of (7.25) (or, more generally, (7.24)) by solving a sequence
of problems like (7.23):

maximize
𝒘

𝒘T𝝁𝑘 − 𝜆
𝑘

2
𝒘T𝚺𝑘𝒘

subject to 𝒘 ∈ W,

(7.29)

with

𝝁𝑘 = 𝝁 + 𝜏
𝑘

𝛼𝑘
𝒘𝑘 ,

𝚺𝑘 = 𝚺 + 𝜏
𝑘

𝛽𝑘
𝑰,

𝜆𝑘 =
𝛽𝑘

𝛼𝑘
.

(7.30)

Algorithm 7.3 summarizes this SQP procedure for mean–variance formulations.

Example 7.4 (MSRP) Consider the MSRP formulation

maximize
𝒘

𝒘T𝝁 − 𝑟f√
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0.

This problem is an FP and can be solved in different ways as covered in Section 7.2.
Alternatively, it can be solved via a sequence of simple QPs with Algorithm 7.3 (using 𝜏𝑘 = 0
and 𝛾𝑘 = 1) as follows. From Table 7.4, we read the expressions for 𝛼𝑘 and 𝛽𝑘 , leading to the
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Algorithm 7.3: Universal SQP-MVP method to solve (7.25).
1: Choose initial point 𝒘0 ∈ W, sequences {𝜏𝑘} and {𝛾𝑘};
2: Set 𝑘 ← 0;
3: repeat
4: Compute 𝛼𝑘 and 𝛽𝑘 as in (7.28);
5: Compute 𝝁𝑘 , 𝚺𝑘 , and 𝜆𝑘 as in (7.30);
6: Solve the QP in (7.29) and keep solution as 𝒘𝑘+1/2;
7: Set 𝒘𝑘+1 = 𝒘𝑘 + 𝛾𝑡

(
𝒘𝑘+1/2 − 𝒘𝑘

)
;

8: 𝑘 ← 𝑘 + 1;
9: until convergence;

surrogate mean–variance problem

maximize
𝒘

𝒘T𝝁 − 𝜆
𝑘

2
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

where 𝜆𝑘 = 𝛽𝑘/𝛼𝑘 =
(𝒘𝑘)T𝝁 − 𝑟f

(𝒘𝑘)T𝚺𝒘𝑘 . Figure 7.7 shows the convergence of this numerical
method compared with the solution via the Schaible transform (see Section 7.2), from which
we can see that it converges in one to two iterations.
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Figure 7.7 Convergence of the SQP-MVP algorithm for the MSRP formulation.

Example 7.5 (Mean–volatility portfolio) Consider the mean–volatility formulation

maximize
𝒘

𝒘T𝝁 − 𝜅
√
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

where 𝜅 is a given positive number to control the risk aversion. This problem is a convex
SOCP and can be solved with an SOCP solver. Alternatively, it can be solved via a sequence
of simple QPs with Algorithm 7.3 (using 𝜏𝑘 = 0 and 𝛾𝑘 = 1) as follows. From Table 7.4, we
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obtain 𝛼𝑘 = 1 and 𝛽𝑘 = 𝜅/
√︁
(𝒘𝑘)T𝚺𝒘𝑘 , which leads to the surrogate mean–variance problem

maximize
𝒘

𝒘T𝝁 − 𝜆
𝑘

2
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

where 𝜆𝑘 = 𝛽𝑘/𝛼𝑘 = 𝜅/
√︁
(𝒘𝑘)T𝚺𝒘𝑘 . Figure 7.8 shows the convergence of this numerical

method compared with the solution via an SOCP solver; basically it converges in one iteration.
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Figure 7.8 Convergence of the SQP-MVP algorithm for the mean–volatility
formulation.

7.5 Drawbacks
Markowitz’s mean–variance portfolio, while great in theory, is dangerous in practice, so
practitioners use it with caution. It has even been referred to as the “Markowitz optimization
enigma” and sometimes the portfolio optimization is referred to as “error maximizer”
(Michaud, 1989). There are multiple reasons for this, and academics and practitioners have
proposed improvements and alternatives since Markowitz’s seminal paper (Markowitz, 1952).
As stated in Michaud (1989):

. . . it remains one of the outstanding puzzles of modern finance that MV optimization has yet to meet with
widespread acceptance by the investment community. . .

The extensions and improvements to the basic MVP are endless. To name a few: improved
parameter estimation via shrinkage estimators or Black–Litterman-style approaches, robust
portfolio optimization, alternative measures of risk, modeling of transaction costs, and
multi-period portfolio optimization (see Kolm et al. (2014)). We next elaborate on some of
these points.

Noisy Estimation of the Expected Returns
It has long been recognized that mean–variance efficient portfolios constructed using sample
means and sample covariance matrices perform poorly out of sample. The primary reason is
that the sample mean is an extremely imprecise estimator of the population mean 𝝁 (Chopra
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& Ziemba, 1993). The estimation of the covariance matrix 𝚺 also contains errors but the
magnitude of such errors (and their effect in the portfolio) is not comparable to that of the
errors in the estimation of 𝝁. For example, in Jagannathan and Ma (2003) it is stated:

The estimation error in the sample mean is so large nothing much is lost in ignoring the mean altogether when
no further information about the population mean is available. For example, the global minimum variance
portfolio has as large an out-of-sample Sharpe ratio as other efficient portfolios when past historical average
returns are used as proxies for expected returns.

Figure 7.9 illustrates how unstable the MVP is by showing several realizations of the portfolio
under different resamplings of the returns used to estimate the expected returns.
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Figure 7.9 Effect of parameter estimation noise in the MVP allocation.

This motivates the pragmatic employment of the risk-based portfolios considered in Section 6.5,
which do not make use of 𝝁 at all, or the use of the 1/𝑁 portfolio introduced in Section 6.4.3.
Alternatively, Section 7.1.5 explores several heuristic constraints that can help improve the
practical performance of the otherwise unstable MVP. Indeed, as stated in Michaud (1989):

The major problem with MV optimization is its tendency to maximize the effects of errors in the input
assumptions. Unconstrained MV optimization can yield results that are inferior to those of simple equal-
weighting schemes.

There are at least two nonexclusive ways to attempt to fix this problem of the noise in
the estimated parameters 𝝁 and 𝚺 and its effect in the portfolio: improved estimators and
robust optimization. One way is by improving the estimation process to reduce the noise as
explored in Chapter 3. This includes the use of prior information in the Black–Litterman
framework or via shrinkage, as well as employing better statistical models for the data such
as heavy-tailed distributions (as opposed to the Gaussian or normal distribution). Another
way is to embrace the fact that the parameters contain noise and employ statistical techniques
such as bootstrapping or resampling, as well as the more sophisticated robust optimization
techniques explored in Chapter 14.
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Variance or Volatility as Measure of Risk
In Markowtiz’s mean–variance portfolio, the risk is measured by the variance or, equivalently,
by the volatility (Markowitz, 1952). The rationale is that a higher variance means that there
are large peaks in the return distribution which may cause big losses. However, Markowitz
himself already recognized and stressed the limitations of mean–variance analysis (Markowitz,
1959).

To start with, the variance is not a good measure of risk in practice since it penalizes both
the unwanted losses and the desired negative losses (i.e., positive gains). Indeed, the mean–
variance portfolio framework penalizes up-side and down-side risk equally, whereas most
investors do not mind up-side risk. In addition, the variance only measures the width of the
main mode of the probability distribution, whereas the most critical part lies in the tail of big
losses (see Figure 6.10). The solution is to use alternative measures for risk such as downside
risk, semi-variance, VaR, CVaR, and drawdown (McNeil et al., 2015); see Section 6.3.

Chapter 10 explores portfolio formulations under alternative risk measures such as downside
risk, semi-variance, VaR, CVaR, and drawdown.

Single-Number Measure of Risk
Regardless of the choice of risk measure (i.e., variance, volatility, downside risk, semi-variance,
VaR, CVaR, or worst drawdown), the risk of the portfolio is measured by a single number. This
risk characterization may not be enough to properly understand the risk contribution from the
different assets, which leads us to the concept of risk diversification to avoid concentration of
risk into a few assets (e.g., as was observed during the 2008 financial crisis).

Particularly, the risk parity portfolio, considered in Chapter 11, delves into the decomposition
of the overall risk into contributions from each of the assets (Qian, 2005) and allows proper
risk diversification.

7.6 Summary
• In 1952, Markowitz published a seminal paper that initiated the era referred to as modern

portfolio theory, which postulates the design of a portfolio in terms of expected return and
variance as a measure of risk.

• This mean–variance formulation is in the form of a convex problem that can be efficiently
solved and has remained central in portfolio optimization. Rather than a unique solution, it
produces an efficient frontier of portfolios with different risk profiles.

• Unfortunately, it performs poorly in practice due to a multitude of reasons, such as the
sensitivity to errors in the parameters that characterize the market (i.e., the expected return
vector and covariance matrix) or the simplistic characterization of risk via the variance or
volatility.

• To overcome these drawbacks, practitioners have come up with a variety of tricks and
improvements, namely, adding heuristic constraints to control the solution, improving the
estimators of the market parameters (such as shrinkage estimators or robust estimators),
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using alternative measures of risk, characterizing the risk with a more refined risk-profile
vector, and so on.

• One particular solution of interest that lies on the efficient frontier is the portfolio that
maximizes the Sharpe ratio. Its formulation leads to a nonconvex problem with potentially
difficult resolution. Fortunately, a number of practical numerical methods exist that produce
the optimal solution.

• The Kelly criterion portfolio and, more generally, expected utility portfolios are general-
izations of the formulation of the trade-off between expected return and risk. In practice,
however, they are closely approximated by the mean–variance framework and efficient
numerical algorithms are available.

Exercises
7.1 (Efficient frontier)

a. Download market data corresponding to 𝑁 assets (e.g., stocks or cryptocurrencies) during
a period with 𝑇 observations, 𝒓1, . . . , 𝒓𝑇 ∈ R𝑁 .

b. Estimate the expected return vector 𝝁 and covariance matrix 𝚺.
c. Plot the mean–volatility efficient frontier computed by solving different mean–variance

formulations, namely:
• the scalarized form:

maximize
𝒘

𝒘T𝝁 − 𝜆

2 𝒘
T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0;

• the variance-constrained form:
maximize

𝒘
𝒘T𝝁

subject to 𝒘T𝚺𝒘 ≤ 𝛼,
1T𝒘 = 1, 𝒘 ≥ 0;

• the expected return-constrained scalarized form:

minimize
𝒘

𝒘T𝚺𝒘

subject to 𝒘T𝝁 ≥ 𝛽,
1T𝒘 = 1, 𝒘 ≥ 0.

d. Discuss the benefits and drawbacks of the three methods for calculating the efficient
frontier.

7.2 (Efficient frontier with practical constraints) Repeat Exercise 7.1 including different
realistic constraints and discuss the differences. In particular:

• leverage constraint: ∥𝒘∥1 ≤ 𝛾
• turnover constraint: ∥𝒘 − 𝒘0∥1 ≤ 𝜏
• max position constraint: |𝒘 | ≤ 𝒖
• market neutral constraint: 𝜷T𝒘 = 0
• sparsity constraint: ∥𝒘∥0 ≤ 𝐾.
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7.3 (Efficient frontier out of sample)

a. Download market data corresponding to 𝑁 assets during a period with 𝑇 observations.
b. Using 70% of the data:
• estimate the expected return vector 𝝁 and covariance matrix 𝚺;
• plot the mean–volatility efficient frontier by solving mean–variance formulations; and
• plot some randomly generated feasible portfolios.

c. Using the remaining 30% of the data (out of sample):
• estimate the expected return vector 𝝁 and covariance matrix 𝚺;
• plot the new mean–volatility efficient frontier; and
• re-evaluate and plot the mean and volatility of the previously computed portfolios (the

ones defining the efficient frontier and the random ones).
d. Discuss the difference between the two efficient frontiers, as well as how the portfolios

shift from in-sample to out-of-sample performance.

7.4 (Improving the mean–variance portfolio with heuristics) Repeat Exercise 7.3 including
the following heuristic constraints to regularize the mean–variance portfolios:

• upper bound constraint: ∥𝒘∥∞ ≤ 0.25
• diversification constraint: ∥𝒘∥22 ≤ 0.25.

7.5 (Computation of the MSRP)

a. Download market data corresponding to 𝑁 assets during a period with 𝑇 observations.
b. Estimate the expected return vector 𝝁 and covariance matrix 𝚺.
c. Compute the maximum Sharpe ratio portfolio

maximize
𝒘

𝒘T𝝁 − 𝑟f√
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

with the following methods:
• bisection method
• Dinkelbach method
• Schaible transform method.

7.6 (Kelly portfolio)

a. Download market data corresponding to 𝑁 assets during a period with 𝑇 observations.
b. Compute the Kelly portfolio

maximize
𝒘

IE
[
log

(
1 + 𝒘T𝒓

) ]
subject to 1T𝒘 = 1, 𝒘 ≥ 0,

with the following methods:
• sample average approximation
• mean–variance approximation
• Levy–Markowitz approximation.
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7.7 (Expected utility portfolio)

a. Download market data corresponding to 𝑁 assets during a period with 𝑇 observations.
b. Compute the expected utility portfolio

maximize
𝒘

IE
[
𝑈 (𝒘T𝒓)

]
subject to 1T𝒘 = 1, 𝒘 ≥ 0,

with different utilities such as
• 𝑈 (𝑥) = log (1 + 𝑥)
• 𝑈 (𝑥) =

√
1 + 𝑥

• 𝑈 (𝑥) = −1/𝑥
• 𝑈 (𝑥) = −𝑝/𝑥 𝑝 with 𝑝 > 0
• 𝑈 (𝑥) = −1/

√
1 + 𝑥

• 𝑈 (𝑥) = 1 − exp(−𝜆𝑥) with 𝜆 > 0.

7.8 (Universal successive mean–variance approximation method)

a. Consider the maximum Sharpe ratio portfolio,

maximize
𝒘

𝒘T𝝁 − 𝑟f√
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

and the mean–volatility portfolio,

maximize
𝒘

𝒘T𝝁 − 𝜅
√
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

both of which lie on the efficient frontier.
b. Solve them with some appropriate method.
c. Solve them via the universal successive mean–variance approximation method, which at

each iteration 𝑘 , solves the mean–variance problem

maximize
𝒘

𝒘T𝝁 − 𝜆
𝑘

2
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

with a properly chosen 𝜆𝑘 .
d. Compare the obtained solutions and the computational cost.
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8

Portfolio Backtesting

“I am a dreamer. I know so little of real life that I just can’t help re-living such moments as these in my
dreams, for such moments are something I have very rarely experienced. I am going to dream about you the
whole night, the whole week, the whole year.”

— Fyodor Dostoyevsky, White Nights

A backtest is a historical simulation of how a strategy would have performed had it been run
over a past period of time. It is an essential step prior to actual live trading with real money.
Nevertheless, backtesting is one of the least understood techniques in the quant’s toolbox.1
The reality is that backtesting is full of dangers and virtually impossible to execute properly.
This chapter will explore portfolio backtesting in detail, so that we become aware of all the
potential pitfalls.

8.1 A Typical Backtest
A backtest is a historical simulation of a strategy in some past period of time. We can see
backtest results in academic publications, fund brochures, practitioner blogs, and so on.

Since strategies typically require the estimation of some parameters, such as the assets’
expected return vector 𝝁 or covariance matrix 𝚺, the data is commonly split into an in-
sample dataset, which acts as historical data that can be used to estimate parameters, and an
out-of-sample dataset, which serves as “future” data that is used to assess the performance.

As an illustrative example, suppose we want to evaluate three portfolios: the 1/𝑁 portfolio
(see Section 6.4.3), the inverse volatility portfolio (IVolP) (see Section 6.5.2), and the global
minimum variance portfolio (GMVP) (see Section 6.5.1). Figure 8.1 shows the cumulative
P&L and drawdown of these portfolios. This gives an assessment of the behavior of the
portfolios over time. In addition, Table 8.1 provides more concrete numerical values of
different performance measures over the whole period.

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.

1 A quant is a financial professional who uses complex mathematical models, computer algorithms, and statistical
analysis to analyze markets, price securities, and identify trading opportunities.
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Figure 8.1 Example of a backtest result in the form of cumulative P&L and
drawdown plots.

Table 8.1 Example of a backtest result in the form of performance measures.

Portfolio Sharpe
ratio

Annual
return

Annual
volatility

Sortino
ratio

Max
drawdown

CVaR
(0.95)

1/𝑁 3.23 117% 36% 5.40 11% 5%
GMRP 2.19 138% 63% 4.09 19% 7%
IVolP 3.35 113% 34% 5.61 11% 4%

Of course, more detailed results could be provided, such as a rolling Sharpe ratio plot over
time (see Section 6.3.4) or a table with performance measures on a monthly basis instead
of the overall annualized values. The reader is referred to Section 6.3 for a list of common
performance measures.

The Global Investment Performance Standard (GIPS)2 is a set of standardized, industry-wide
ethical principles that apply to the way investment performance is presented to potential and
existing clients of asset managers, regulators, pension funds, financial advisers, and financial
companies from around the globe. These standards guide investment firms on how to calculate
and present their investment results to prospective clients. GIPS are standards, not laws. Firms
do not have to be GIPS compliant; however, the standards provide discipline and claiming

2 www.gipsstandards.org

https://www.gipsstandards.org
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compliance with them demonstrates a firm-wide commitment to ethical best practices and
that the firm employs strong internal control processes.

Nevertheless, the fact of the matter is that all these backtest results only provide very limited
information on the real performance of the portfolios and, even worse, most likely the results
are faulty and misleading. Indeed, this is clearly stated by notable authors, such as Harvey
et al. (2016): “Most claimed research findings in financial economics are likely false,” and
López de Prado (2018), “Most backtests published in journals are flawed, as the result of
selection bias on multiple tests.”

Sections 8.2 and 8.3 explore the many ways in which backtests are misleading and can provide
wrong results. Then, Sections 8.4 and 8.5 go over details on how to execute backtests as safe
as possible. A brief summary is then given in Section 8.6.

8.2 The Seven Sins of Quantitative Investing
In 2005, a practitioner report compiled the “Seven Sins of Fund Management” (Montier,
2005) (of which sins #1 and #5 are the most directly related to backtesting):

• Sin #1: Forecasting (Pride)
• Sin #2: The illusion of knowledge (Gluttony)
• Sin #3: Meeting companies (Lust)
• Sin #4: Thinking you can out-smart everyone else (Envy)
• Sin #5: Short time horizons and overtrading (Avarice)
• Sin #6: Believing everything you read (Sloth)
• Sin #7: Group-based decisions (Wrath).

In 2014, a team of quants at Deutsche Bank published a study under the suggestive title
“Seven Sins of Quantitative Investing” (Luo et al., 2014). These seven sins are a few basic
backtesting errors that most journal publications make routinely:

• Sin #1: Survivorship bias
• Sin #2: Look-ahead bias
• Sin #3: Storytelling bias
• Sin #4: Overfitting and data snooping bias
• Sin #5: Turnover and transaction cost
• Sin #6: Outliers
• Sin #7: Asymmetric pattern and shorting cost.

In the following we will go over these seven sins of quantitative investing with illustrative
examples.

8.2.1 Sin #1: Survivorship Bias
Survivorship bias is one of the common mistakes investors tend to make. Most people are
aware of this bias, but few understand its significance.

Practitioners tend to backtest investment strategies using only those companies that are
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currently in business and still performing well, most likely listed in some index, such as the
S&P 500 stock index. By doing that, they are ignoring stocks that have left the investment
universe due to bankruptcy, delisting, being acquired, or simply underperforming the index.

In simple words, survivorship bias happens when you do not take into account stocks that you
know in advance will not perform well in the future of the backtest period. Similarly, simply
removing stocks from the universe because they have missing values in their data may have a
misleading effect.

In fact, most available databases suffer from survivorship bias. In this context, the Center for
Research in Security Prices (CRSP)3 maintains a comprehensive database of historical stock
market data that is considered highly reliable and accurate, making it a valuable resource for
those studying finance and investment. CRSP is widely used by academic researchers and
financial professionals for conducting empirical research, analyzing historical stock market
trends, and developing investment strategies. Figure 8.2 shows the effect of survivorship bias
on the 1/𝑁 portfolio on the S&P 500 stocks over several years.
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Figure 8.2 Effect of survivorship bias on the S&P 500 stocks.

Interestingly, the concept of survivorship bias does not happen uniquely in financial investment;
it is rather a persistent phenomenon in many other areas. An illustrative example is that of
modern-day billionaires who dropped out of college and went on to become highly successful
(e.g., Bill Gates and Mark Zuckerberg). These few success stories distort people’s perceptions
because they ignore the majority of college dropouts who are not billionaires.

8.2.2 Sin #2: Look-Ahead Bias
Look-ahead bias is the bias created by using information or data that were unknown or
unavailable at the time when the backtesting was conducted. It is a very common bias in
backtesting.

3 www.crsp.org

https://www.crsp.org
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An obvious example of look-ahead bias lies in companies’ financial statement data. One has
to be certain about the timestamp for each data point and take into account release dates,
distribution delays, and backfill corrections.

A less conspicuous example of look-ahead bias comes from coding errors. This may happen,
for instance, when training the parameters of a system using future information or simply
when data is pre-processed with statistics collected from the whole block of data. Another
common error comes from time alignment errors in the backtesting code. In more detail,
computing the portfolio return as 𝑅portf

𝑡 = 𝒘T
𝑡 𝒓𝑡 would be totally incorrect (see (6.4) for the

correct expression) since the design of the portfolio 𝒘𝑡 used information up to time 𝑡 and the
returns 𝒓𝑡 = ( 𝒑𝑡 − 𝒑𝑡−1) ⊘ 𝒑𝑡−1 implicitly assume that the position was executed at time 𝑡 − 1
(of course this argument becomes invalid if the portfolio 𝒘𝑡 is assumed to use information
only up to 𝑡 − 1, or if the returns are defined with a time lag as 𝒓𝑡 = ( 𝒑𝑡+1 − 𝒑𝑡 ) ⊘ 𝒑𝑡 ). An
illustration of this issue can be found in Glabadanidis (2015) as explained in Zakamulin
(2018), where the seemingly amazing performance of a strategy based on moving-average
indicators vanishes completely under a proper backtest.

Figure 8.3 illustrates the effect of look-ahead bias (from a time alignment mistake when
computing the returns) when trading a single stock with a simple strategy based on a moving
average (to be exact, buying when the price is above the moving average of the past 10 values).
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Figure 8.3 Effect of look-ahead bias (from a time alignment mistake) trading a single
stock.

8.2.3 Sin #3: Storytelling Bias
We all love stories. It is believed that storytelling played a key role in the evolution of the
human species. In fact, most bestselling popular science books are based on anecdotal stories,
which may or may not have a corresponding solid statistical foundation. This is simply
because they appeal to the general public, while statistics do not. Indeed, one of the most
important ways to leave a deep impression with your audience is to tell stories rather than
simply repeating facts and numbers.
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Storytelling bias in financial data (or any other type of data, for that matter) happens when
we make up a story ex post (i.e., after the observation of a particular event) to justify some
random pattern. This is related to confirmation bias, which consists of favoring information
that supports one’s pre-existing beliefs and ignoring contradicting evidence. Storytelling is
pervasive in financial news, where supposed “experts” can justify any random pattern after
the fact.

The antidote to storytelling bias is the collection of more historical data to see if the story
passes a statistical test or the test of time. Unfortunately, in contrast to fields like physics,
economics and finance have a limited number of observations, which hinders the resolution
of storytelling bias.

Figure 8.4 illustrates the effect of story-telling bias by trading a single stock with a position
indicated by a random binary sequence (which might have been generated by “Paul the
Octopus”4). Before August 2018 one could be inclined to believe the story that the random
sequence was a good predictor of the stock trend; however, eventually, when more data is
collected, one has to come to the inevitable conclusion that it was a fluke.
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Figure 8.4 Effect of story-telling bias in the form of a random strategy that performs
amazingly well until August 2018, but not afterwards.

8.2.4 Sin #4: Overfitting and Data Snooping Bias
In the fields of computer science and statistics, data mining refers to the computational
process of discovering patterns in large data sets, often involving sophisticated statistical
techniques, computation algorithms, and large-scale database systems. In principle, there is
nothing negative about data mining. In finance, however, it often means manipulating data or
models to find the desired pattern that an analyst wants to show.

4 Paul the Octopus was a common octopus used to predict the results of association football matches. Accurate
predictions in the 2010 World Cup brought him worldwide attention as an animal oracle.
https://en.wikipedia.org/wiki/Paul_the_Octopus

https://en.wikipedia.org/wiki/Paul_the_Octopus
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Data snooping bias in finance (also loosely referred to as data mining bias) refers to the
behavior of extensively searching for patterns or rules so that a model fits the data perfectly.
Analysts often fine tune the parameters of their models and choose the ones that perform well
in the backtesting. This is also referred to as overfitting in the machine learning literature.

With enough data manipulation, one can almost always find a model that performs very
well on that data. This is why it is standard practice to split the data into in-sample and
out-of-sample data: the in-sample data is used to estimate or train the model and design the
portfolio, whereas the out-of-sample data is used to evaluate and test the portfolio. They are
also referred to as training data and test data, respectively.

With the separation of data into training data and test data, it seems we should be safe;
unfortunately, this is not the case. It is almost inevitable for the person or team researching a
strategy to iterate the process by which the strategy under design is evaluated with the test
data and then some adjustments are performed on the strategy. This is a vicious cycle that
leads to catastrophic results. By doing that, the test data has inadvertently been used too many
times and it has effectively become part of the training data. Unfortunately, this happens in
almost all the publications to the point that one cannot trust published results: “Most backtests
published in journals are flawed, as the result of selection bias on multiple tests” (López de
Prado, 2018).

In other words, looking long and hard enough at a given dataset will often reveal one or more
models that seems promising but are in fact spurious (White, 2000).

One piece of advice that may help avoid overfitting is to avoid fine tuning the parameters
(Chan, 2008). Even better, one could perform a sensitivity analysis on the parameters. That is,
if a small change in some parameter affects the performance drastically, it is an indication that
the strategy is too sensitive and lacks robustness. A sensitive strategy is dangerous because
one cannot assess the future behavior with new data with any degree of confidence.

An illustrative example, provided in Arnott et al. (2019), shows a strategy with an impressive
backtest result, only to reveal that the strategy is a preposterous long–short quintile portfolio
that goes long on the stocks with an “S” on the third letter of the ticker symbol and goes short
on the ones with the letter “U”.

Data snooping bias or overfitting is probably the most difficult bias to deal with. The ultimate
test after a strategy or portfolio has been designed is to trade it with new data. This can be
done in three different levels of accuracy: (i) simply wait to collect new data and then perform
a proper backtest; (ii) use paper trading offered by most brokers, which consists of a realistic
trading simulation without real money; and (iii) trade with real money, that is, live trading,
albeit typically starting with a small budget.

Figure 8.5 illustrates the effect of data snooping or overfitting by trading a single stock with a
strategy based on machine learning. In particular, a linear return forecast with a lookback
window of 10 values is trained in two scenarios: using only the training data (as it should
be) and using the training + test data (obviously, this produces overfitting). The overfitted
backtest seems to indicate prediction power in the out of sample, whereas the reality could
not be further from the truth.
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Figure 8.5 Effect of data snooping or overfitting on a backtest after tweaking the
strategy too many times.

8.2.5 Sin #5: Turnover and Transaction Cost
Backtesting is often conducted in an ideal world: no transaction cost, no turnover constraint,
unlimited long and short availability, and perfect liquidity. In reality, all investors are limited
by some constraints. We now focus on the turnover and the associated transaction cost.

Turnover refers to the overall amount of orders to be executed when rebalancing the portfolio
from 𝒘𝑡 to 𝒘reb

𝑡 , and is calculated as ∥𝒘reb
𝑡 − 𝒘𝑡 ∥1. As a first approximation, the transaction

costs can be modeled as proportional to the turnover (see Section 6.1.4 for details). However,
if the liquidity is not enough compared to the size of the turnover, then slippage may have a
significant effect. This becomes more relevant as the rebalancing frequency increases. In the
limit, simulating the transaction cost at the level of the limit order book can be extremely
challenging and the only way to be certain about the cost incurred is to actually trade.

Figure 8.6 illustrates the detrimental effect of transaction costs on the daily-rebalanced inverse
volatility portfolio on the S&P 500 stocks with fees of 60 bps. The effect of transaction costs
slowly accumulates over time.

The overall transaction cost depends on the turnover per rebalancing and the rebalancing
frequency. Portfolios with a high rebalancing frequency are more prone to have an overall
large turnover, which translates into high transaction costs. To be on the safe side, either the
rebalancing frequency should be kept to a minimum or the turnover per rebalancing should
be controlled (see Section 6.1.5). Nevertheless, having too slow a rebalancing frequency may
lead to a portfolio that fails to adapt to the changing signal. Thus, deciding the rebalancing
frequency of a strategy is a critical step in practice (see Section 6.1.5 in Chapter 6 for details).

8.2.6 Sin #6: Outliers
Outliers are events that do not fit the normal and expected behavior. They are not too
uncommon in financial data and they can happen due to different reasons. Some outliers
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Figure 8.6 Effect of transaction costs on a portfolio (with daily rebalancing and fees
of 60 bps).

reflect a reality that actually happened due to some historical event. Others may be an artifact
of the data itself, perhaps due to a momentaneous lack of liquidity of the market, or an
abnormally large execution order, or even some error in the data.

In principle, outliers cannot be predicted and one can only try to be robust to them; this is why
robust estimation methods (as in Chapter 3) and robust portfolio techniques (as in Chapter 14)
are important in practice.

The danger when it comes to backtesting is to accidentally benefit from a few outliers, because
that would distort the realistic assessment of a portfolio. More often than not, outliers are
caused by data errors or specific events that are unlikely to be repeated in the future. Thus,
one should not base the success of a portfolio on a few historical outliers, as the future
performance will then rely on the realization of similar outliers. How should we then treat
outliers in the historical data?

One way to deal with outliers is to control them so that they do not distort the backtest
results. Traditional outlier control techniques include: winsorization (capping data at certain
percentiles) and truncation/trimming/censoring (removing outliers from data sample). The
data normalization process is closely related to outlier control.

Another way to deal with outliers is to keep the outliers, but making sure the potential success
of the backtested strategies does not rely on them (unless one is actually trying to design a
strategy solely based on outliers).

Figure 8.7 illustrates the effect of outlier control in the design phase of a quintile portfolio
with hourly cryptocurrency data. In this case, outliers are removed if they are larger than 5%
(recall these are hourly returns).
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Figure 8.7 Effect of outliers on a backtest with hourly cryptocurrency data.

8.2.7 Sin #7: Asymmetric Pattern and Shorting Cost
In typical backtesting, analysts generally assume they can short any stocks at no cost or at the
same level of cost. However, we need to be aware that borrowing cost can be prohibitively high
for some stocks, while on other occasions, it could be impossible to locate the borrowing. For
certain stocks, industries, or countries, there could also be government or exchange imposed
rules that prohibit any shorting at all. Indeed, some countries do not allow short selling at all,
while others limit its extent.5

For example, in the US market, during the 2008 global financial crisis period borrowing
costs sky-rocketed – some financial stocks were even banned from being shorted, reflected by
higher percentages of expensive-to-borrow stocks during this episode.

Interestingly, the effect of short availability not only affects backtests of portfolios that actually
short sell but long positions may also suffer from the so-called “limited arbitrage” argument,
by which arbitrageurs are prevented from immediately forcing prices to fair values.

How much difference would it make if we cannot short those hard-to-borrow stocks? Figure 8.8
shows the performance of two long–short quintile portfolios: an unrealistic portfolio that
can perfectly long and short the top 20% and bottom 20% of the stocks, respectively, and a
more realistic portfolio where only some easy-to-borrow stocks can actually be shorted (the
definition of easy-to-borrow stocks used herein is a bit loose for illustration purposes).

8.3 The Dangers of Backtesting
We have learned from the “seven sins of quantitative investing” in Section 8.2 that backtesting
is a dangerous process, fraught with many potential pitfalls. In fact, there are more than these

5 In China, as of 2021, regulators only allow investors to short a portion of stocks traded on the Shanghai and
Shenzhen stock exchanges. The list of stocks changes regularly and typically only includes companies with good
fundamentals.
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Figure 8.8 Effect of shorting availability in a long–short quintile portfolio.

seven types of errors one can make: “A full book could be written listing all the different
errors people make while backtesting” (López de Prado, 2018).

Arguably, the most common mistake in backtesting involves overfitting or data snooping.
The following quote by John von Neumann about the general concept of overfitting is quite
amusing and illustrative: “With four parameters I can fit an elephant, and with five I can make
him wiggle his trunk” (Mayer et al., 2010).

Backtest Overfitting
Overfitting is a concept borrowed from machine learning and refers to the situation when a
model targets particular (noisy) observations rather than a general and persistent structure in
the data. In the context of investment strategies, it takes place when a strategy is developed to
perform well on a backtest, by monetizing random historical patterns. Because those random
patterns are unlikely to occur again in the future, the strategy so developed will fail.

This is why the performance of a strategy in the training data (in-sample data) can be
totally misleading and we need to resort to test data (out-of-sample data). However, even
the performance in the test data can also be totally misleading (Bailey, Borwein, & López
de Prado, 2016; Bailey et al., 2014). The reason is that, when a researcher is backtesting an
investment strategy, it is only natural to try to adjust some of the strategy’s parameters to
see the effect in the backtest performance. By doing this, typically over and over again, it is
inevitable that the test data has indirectly become part of the training data (or cross-validation
data) and it is not really test data anymore. This leads to the unfounded belief that a portfolio is
going to perform well only to find out when trading live that it does not live up to expectations.
This also leads to publications with backtest results that are not representative of reality.

The reality is that it takes a relatively small number of trials to identify an investment strategy
with a spuriously high backtested performance, especially for complex strategies. Bailey et al.
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(2014) argued that “Not reporting the number of trials involved in identifying a successful
backtest is a similar kind of fraud.”

Indeed, what makes backtest overfitting so hard to assess is that the probability of false
positives changes with every new test conducted on the same dataset. That information is
either unknown by the researcher or not shared with investors or referees. The only backtests
that most people share are those that portray supposedly winning investment strategies.

𝑝-Hacking
In fact, backtest overfitting due to multiple testing is related to a more general phenomenon
in statistics called “𝑝-hacking,” also known as cherry-picking, data dredging, significance
chasing, significance questing, and selective inference. The term 𝑝-hacking refers to the
misuse of data analysis to find patterns in data that can be presented as statistically significant,
thus dramatically increasing and understating the risk of false positives. This is done by
performing many statistical tests on the data and only reporting those that come back with
significant results. We next elaborate on the concepts of 𝑝-value and 𝑝-hacking.

In hypothesis testing, one wants to determine whether the data really come from some
candidate distribution, the so-called null hypothesis. This can be formally assessed via the
𝑝-value, which is the probability of obtaining the observed results under the assumption that
the null hypothesis is correct. A small 𝑝-value means that there is strong evidence to reject
the null hypothesis and accept the alternative hypothesis. Typical thresholds for determining
whether a 𝑝-value is small enough are in the range 0.01–0.05. Thus, if the 𝑝-value is smaller
than the threshold, then we can reject the null hypothesis that the data came from that
distribution. The 𝑝-value is routinely used in all scientific areas, such as physics (to determine
whether the data supports or rejects a hypothesis) or medicine (to determine the effectiveness
of new drugs).

The term “𝑝-hacking” refers to the dangerous practice of testing multiple hypotheses and only
reporting (cherry-picking) the one that produces a small 𝑝-value. For example, a researcher
may report a portfolio showing excellent results during the period 1970–2017, but does not
reveal that the same result is weaker for the period 1960–2017. Similarly, a portfolio may
look profitable using some specific universe of stocks, but it is not reported that a variation of
the universe produced a degraded performance. The problem with this practice is that, when
reporting the results, typically the number of experiments conducted is omitted. The reader
then may wrongly infer that it was a single trial.

Indeed, most of the claimed research findings in financial economics are likely false due to
𝑝-hacking (Harvey, 2017; Harvey et al., 2016). For example, some observations from Harvey
(2017) include: “Empirical research in financial economics relies too much on 𝑝-values,
which are poorly understood in the first place” and “Journals want to publish papers with
positive results and this incentivizes researchers to engage in data mining and 𝑝-hacking.”
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Backtests Are Not Experiments
Experiments, for example in physics, are conducted in a lab and can be repeated multiple
times to control for different variables. In contrast, a backtest is a historical simulation of how
a strategy would have performed in the past. Thus, a backtest is not an experiment, and it
does not prove anything.

In fact, a backtest guarantees nothing, not even achieving that Sharpe ratio if we could travel
back in time, simply because random draws would have been different and the past would not
repeat itself (López de Prado, 2018).

The Paradox of Flawless Backtests
The irony of a backtest is that, even if it is flawless, it is probably wrong (López de Prado,
2018). Indeed, suppose you have implemented a flawless backtest (i.e., everyone can reproduce
your results, you have considered more than the necessary slippage and transaction costs, etc.)
and it still shows good performance. Unfortunately, this flawless backtest is still probably
wrong. Why?

First of all, only an expert can produce a flawless backtest. This expert must have run a
myriad of backtests over the years. So we need to account for the possibility that this is a false
discovery, a statistical fluke that inevitably comes up after running multiple tests on the same
dataset (i.e., overfitting).

The maddening thing about backtesting is that the better you become at it, the more likely
false discoveries will pop up (López de Prado, 2018).

Limitations of Backtesting Insights
Backtesting provides us with very little insight into the reason why a particular strategy would
have made money (López de Prado, 2018). Just as a lottery winner may feel he has done
something to deserve his luck, there is always some ex post story.

Regarding financial data, many authors claim to have found hundreds of “alphas” and “factors,”
and there is always some convoluted explanation for them. Instead, what they have found are
the lottery tickets that won the last game. Those authors never tell us about all the tickets that
were sold, that is, the millions of simulations it took to find these “lucky” alphas.

What is the Point of Backtesting Then?
While backtesting cannot guarantee the future good performance of a strategy, it can serve
the opposite purpose, that is, to identify strategies that underperform so that we can eliminate
them.

In addition, a backtest can provide a sanity check on a number of variables, including bet
sizing, turnover, resilience to costs, and behavior under a given scenario.

Thus, the purpose of a backtest is to discard bad models, not to improve them. It may sound
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counter-intuitive, but one should not adjust the model based on the backtest results since it is
a waste of time and it is dangerous due to overfitting.

One should invest time and effort developing a sound strategy. However, by the time backtests
are performed, it is too late to modify the strategy. So never backtest until your model has
been fully specified (López de Prado, 2018).

Summarizing, a good backtest can still be extremely helpful, but backtesting well is extremely
hard to execute.

Recommendations to Avoid Overfitting
How to address backtest overfitting is arguably the most fundamental question in quan-
titative finance. While there is no easy way to prevent backtest overfitting, a number of
recommendations were compiled in López de Prado (2018) and some are listed here for
convenience:

• Develop models for entire asset classes or investment universes, rather than for specific
securities, to reduce the probability of false discoveries.

• Apply model averaging (see Chapter 14 for details) as a means to both prevent overfitting
and reduce the variance of the forecasting error.

• Do not backtest until all your research is complete (i.e., do not fall into the vicious cycle of
keeping tweaking parameters and running the backtest over and over again).

• Keep track of the number of backtests conducted on a dataset so that the probability of
backtest overfitting may be estimated and the Sharpe ratio may be properly deflated (Bailey
& López de Prado, 2014).

• Apart from backtesting on historical data, consider simulating scenarios rather than history,
such as stress tests (see Section 8.5 for details). Your strategy should be profitable under a
wide range of scenarios, not just the anecdotal historical path.

A list of best research practices for backtesting were proposed in Arnott et al. (2019), such as:

• Establish an ex ante economic foundation: following the scientific method, a hypothesis is
developed and the empirical tests attempt to find evidence inconsistent with the hypothesis.

• Beware an ex post economic foundation: it is also almost always a mistake to create an
economic story – a rationale to justify the findings – after the data mining has occurred.

• Keep track of the multiple tests tried: this is needed to assess the statistical significance of
the results; too many trials and any spurious result can be obtained.

• Define the test sample ex ante: the sample data and data transformations (such as volatility
scaling or standardization) should never change after the research begins.

• Acknowledge that out-of-sample data is not really out of sample: simply because researchers
have lived through the hold-out sample and thus understand the history, are knowledgeable
about when markets rose and fell, and associate leading variables with past experience.
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As such, no true out-of-sample data exists; the only true out of sample is the live trading
experience.

• Understand iterated out of sample is not out of sample.

• Do not ignore trading costs and fees.

• Refrain from tweaking the model.

• Beware of model complexity: pursue simplicity and regularization.

Mathematical Tools to Combat Overfitting
A number of mathematical techniques have been proposed in the past decade to combat
backtest overfitting; to name a few:

• A general framework to assess the probability of backtest overfitting was proposed in Bailey
et al. (2017).

• For the single testing case, the minimum backtest length metric was proposed in Bailey
et al. (2014) to avoid selecting a strategy with a high Sharpe ratio on in-sample data, but
zero or less on out-of-sample data. A probabilistic Sharpe ratio was proposed in Bailey
and López de Prado (2012) to calculate the probability of an estimated SR being greater
than a benchmark Sharpe ratio.

• For the multiple testing case, the deflated Sharpe ratio was developed in Bailey and López
de Prado (2014) to provide a more robust performance statistic, in particular, when the
returns follow a nonnormal distribution.

• Online tools are presented in Bailey, Borwein, López de Prado, et al. (2016) to demonstrate
how easy it is to overfit an investment strategy, and how this overfitting may affect the
financial bottom-line performance.

• Section 8.4.4 describes a way to execute multiple randomized backtests that helps the
prevention of overfitting.

8.4 Backtesting with Historical Market Data
As we have already discussed, a backtest evaluates the out-of-sample performance of an
investment strategy using past observations. These observations can be used in a multitude of
ways from the simplest method to more sophisticated versions.

One first classification is according to whether the past observations are used (i) directly to
assess the historical performance as if the strategy had been run in the past (considered in
detail in this section), or (ii) indirectly to simulate scenarios that did not happen in the past,
such as stress tests (treated in the next section). Each approach has its pros and cons; in fact,
both are useful and complement each other.

Assuming the historical data is used directly to assess the performance, we can further
differentiate four types of backtest methods:
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• vanilla (one-shot) backtest
• walk-forward backtest
• 𝑘-fold cross-validation backtest
• multiple randomized backtest.

The walk-forward backtest technique is so prevalent that, in fact, the term “backtest” has
become a de facto synonym for walk-forward “historical simulation.” We now elaborate on
these different approaches.

8.4.1 Vanilla Backtest
The simplest possible backtest, which we call a vanilla backtest, involves dividing the available
data into in-sample data and out-of-sample data. The in-sample data is used to design the
strategy and the out-of-sample to evaluate it. The reason we need two sets of data should be
clear by now: if the same data is used to design the strategy and to evaluate it, we would
obtain spectacular but unrealistic performance results that would not be representative of the
future performance with new data (this is because the strategy would overfit the data).

The in-sample data is typically further divided into training data and cross-validation (CV)
data, whereas the out-of-sample data is also called test data. The training data is used to fit
the model, that is, to choose the parameters of the model, whereas the CV data is employed
to choose the so-called hyper-parameters. Figure 8.9 illustrates the data split for this type
of vanilla backtest. Additionally, one may leave some small gap in between the in-sample
and out-of-sample data (to model the fact that one may not be able to execute the designed
portfolio immediately).

  cross-validation
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Figure 8.9 Data split in a vanilla backtest.

As an illustrative example, one may divide the available data into 70% in-sample and 30%
out-of-sample for testing. The in-sample data may be further divided into 70% for training
and 30% for cross validation. The training data may be used, for instance, to estimate the
mean vector 𝝁 and covariance matrix 𝚺, whereas the CV data may be used to choose the
hyper-parameter 𝜆 in the mean–variance portfolio formulation (see Section 7.1). One can
simply try different values of 𝜆, say, 0.1, 0.5, 1.0, and 2.0, then evaluate the performance of
each design with the CV data to choose the best-performing value of 𝜆. At this point, one
can fit the model again (i.e., estimate 𝝁 and 𝚺) using all the in-sample data (i.e., training
plus cross-validation data). Finally, one can use the test data to assess the performance of the
designed portfolio.
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The result of a vanilla backtest can be seen in Figure 8.10 in the form of cumulative P&L
and drawdown of the portfolios, as well as in Table 8.2 in the form of numerical values of
different performance measures over the whole period.
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Figure 8.10 Vanilla backtest: cumulative P&L and drawdown.

Table 8.2 Vanilla backtest: performance measures.

Portfolio Sharpe
ratio

Annual
return

Annual
volatility

Sortino
ratio

Max
drawdown

CVaR
(0.95)

1/𝑁 1.18 49% 42% 1.63 35% 7%
GMRP 1.62 105% 65% 2.58 34% 9%
IVolP 1.14 46% 41% 1.58 34% 6%

The vanilla backtest is widely used in academic publications, blogs, fund brochures, and so
on. However, it has two main problems:

1. A single backtest is performed, in the sense that a single historical path is evaluated.
2. The execution of the backtest is not representative of the way it would have been conducted

in real life, that is, the portfolio is designed once and kept fixed for the whole test period,
whereas in real life as new data becomes available the portfolio is updated (this is precisely
addressed by the walk-forward backtest).
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8.4.2 Walk-Forward Backtest
The walk-forward backtest improves the vanilla backtest by redesigning the portfolio as new
data becomes available, effectively mimicking the way it would be done in live trading. It is
therefore a historical simulation of how the strategy would have performed in the past (its
performance can be reconciled with paper trading). This is the most common backtest method
in the financial literature (Pardo, 2008).

In signal processing, this is commonly referred to as implementation on a rolling-window or
sliding-window basis. This means that at time 𝑡 one will use a window of the past 𝑘 samples
𝑡 − 𝑘, . . . , 𝑡 − 1, called the lookback window, as training data or in-sample data. As with the
vanilla backtest, one can leave a gap between the last-used observation and the time in which
the portfolio is executed (this is to be on the safe side and avoid potential issues, such as
look-ahead bias). A variation of the rolling window is the so-called expanding window (also
called anchored walk-forward backtest), by which at time 𝑡 all the previous data is used, that
is, all the samples 1, 2, . . . , 𝑡 − 1 (the window is expanding with 𝑡, hence the name).

Figure 8.11 illustrates the rolling-window split of data into in-sample and out-of-sample
corresponding to a walk-forward backtest.

in-sample data out-of-sample data

in-sample data out-of-sample data

in-sample data out-of-sample data

original data

...

in-sample data out-of-sample data

Figure 8.11 Data splitting in a rolling-window or walk-forward backtest.

The result of a walk-forward backtest with daily reoptimization can be seen in Figure 8.12 in
the form of cumulative P&L and drawdown of the portfolios, as well as in Table 8.3 in the
form of numerical values of different performance measures over the whole period.



220 Portfolio Backtesting

0.0

0.5

1.0

Jul 2018 Jan 2019 Jul 2019 Jan 2020 Jul 2020

Cumulative P&L (out of sample)

-0.4

-0.2

0.0

Jul 2018 Jan 2019 Jul 2019 Jan 2020 Jul 2020

Drawdown (out of sample)

Portfolio

1/N

GMRP

IVolP

Figure 8.12 Walk-forward backtest: cumulative P&L and drawdown.

Table 8.3 Walk-forward backtest: performance measures.

Portfolio Sharpe
ratio

Annual
return

Annual
volatility

Sortino
ratio

Max
drawdown

CVaR
(0.95)

1/𝑁 1.10 33% 30% 1.54 35% 5%
GMRP 0.54 27% 50% 0.75 53% 8%
IVolP 1.09 31% 28% 1.52 32% 4%

Thus, the walk-forward backtest mimics the way live trading would be implemented and is the
most common backtest method in finance. However, it still suffers from two critical issues:

1. It still represents a single backtest, in the sense that a single historical path is evaluated
(hence, the danger of overfitting).

2. It is not uncommon to make some mistake with the time alignment and generate leakage
(i.e., a form of look-ahead bias where future information leaks and is incorrectly used).

8.4.3 𝑘-Fold Cross-Validation Backtest
The main drawback of the vanilla backtest and the walk-forward backtest is that a single
historical path is evaluated. That is, in both cases a single backtest is performed. The idea
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in the 𝑘-fold cross-validation backtest is to test 𝑘 alternative scenarios (of which only one
corresponds to the historical sequence).

In fact, 𝑘-fold cross-validation is a common approach in machine learning (ML) applications
(James et al., 2013), composed of the following steps:

1. Partition the dataset into 𝑘 subsets.
2. For each subset 𝑖 = 1, . . . , 𝑘:

a. train the ML algorithm on all subsets excluding 𝑖; and
b. test the fitted ML algorithm on the subset 𝑖.

original data

out-of-sample dataFold 1

Fold 2

Fold 3

Fold 4

Fold 5

out-of-sample data

out-of-sample data

out-of-sample data

out-of-sample data

Figure 8.13 Data splitting in a 𝑘-fold cross-validation backtest (with 𝑘 = 5).

Figure 8.13 illustrates the 𝑘-fold cross-validation split of data for 𝑘 = 5. An implicit assumption
in 𝑘-fold cross-validation is that the order of the blocks is irrelevant. This is true in many ML
applications where the data is i.i.d. With financial data, however, this does not hold. While
one may model the returns as uncorrelated, they are clearly not independent (e.g., the absolute
values of the returns are highly correlated, as observed in Chapter 2, Figures 2.19–2.22).

In fact, leakage refers to situations when the training set contains information that also appears
in the test set (it is a form of look-ahead bias). Some techniques can be employed to reduce
the likelihood of leakage (López de Prado, 2018). Nevertheless, due to the temporal structure
in financial data, it is the author’s opinion that 𝑘-fold cross-validation backtests can be very
dangerous in practice and are better avoided.

Summarizing, some of the issues with the 𝑘-fold cross-validation backtest include:

1. It is still using a single path of data.
2. It does not have a clear historical interpretation.
3. Most importantly, leakage is possible (and likely) because the training data does not trail

the test data.

8.4.4 Multiple Randomized Backtests
The main drawback of the vanilla and walk-forward backtests is that a single historical path
is evaluated. The 𝑘-fold cross-validation backtest attempts to address this issue by testing 𝑘
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alternative scenarios; however, there is a significant problem with leakage and, in addition,
only one of them corresponds to the historical sequence. With the multiple randomized
backtest we can effectively deal with those issues in a satisfactory manner by generating a
number of different backtests (each of them representing a different historical path) while
respecting the order of training data followed by test data (to avoid leakage).

The basic idea of multiple randomized backtests is very simple:

1. Start with a large amount of historical data (preferably large in time and in assets).
2. Repeat 𝑘 times:

a. resample dataset: choose randomly a subset of the 𝑁 available assets and a (contiguous)
subset of the total period of time; and

b. perform a walk-forward or rolling-window backtest of this resampled dataset.
3. Collect statistics on the results of the 𝑘 backtests.

original data

Resample 1 Resample 2 Resample 3

... ... ...

Figure 8.14 Data splitting in multiple randomized backtests.

Figure 8.14 illustrates the data split in multiple randomized backtests. For example, if the data
contains 500 stocks over a period of 10 years, one can resample the data by choosing, say, 200
randomly chosen stocks over random periods of 2 contiguous years. This will introduce some
randomness in each individual dataset and it will span different market regimes encountered
over the 10 years.

To illustrate multiple randomized backtests, we take a dataset of 𝑁 = 10 stocks over the
period 2017–2020 and generate 200 resamples each with 𝑁 = 8 randomly selected stocks
and a random period of two years. Then we perform a walk-forward backtest with a lookback
window of one year, reoptimizing the portfolio every month.

Table 8.4 shows the backtest results in table form with different performance measures over
the whole period. Figure 8.15 plots the barplots of the median values of maximum drawdown
and annualized volatility (over the 200 individual backtests), whereas Figure 8.16 shows
the boxplots of the Sharpe ratio and maximum drawdown. Clearly, the statistics on the
multiple individual backtests provide a more accurate representation of the true capabilities
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of each portfolio. Nevertheless, it is still valid to say that this does not guarantee any future
performance.

Table 8.4 Multiple randomized backtest: performance measures.

Portfolio Sharpe
ratio

Annual
return

Annual
volatility

Sortino
ratio

Max
drawdown

CVaR
(0.95)

1/𝑁 1.01 28% 25% 1.42 25% 4%
GMVP 0.72 16% 22% 1.01 24% 3%
IVolP 0.94 24% 23% 1.33 23% 3%

max drawdown annual volatility
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Figure 8.15 Multiple randomized backtests: barplots of maximum drawdown and
annualized volatility.

Multiple randomized backtests, while not perfect, seem to address the main drawbacks of the
other types of backtests covered here. Therefore, in the author’s opinion, it is the preferred
method for backtesting.

8.5 Backtesting with Synthetic Data
As we have already discussed, a backtest evaluates the out-of-sample performance of an
investment strategy using past observations. Section 8.4 has explored different ways to directly
use the historical data to assess the performance as if the strategy had been run in the past.
This section considers a more indirect way to employ historical data by generating synthetic –
yet realistic – data to simulate scenarios that did not happen in the past, such as stress tests
where different market scenarios are recreated to test the strategy.

Monte Carlo simulations allow us to create synthetic data that resembles a given set of
historical data. They can be divided into three categories:

• Parametric methods: These postulate and fit a model to the data. Then, they generate as
much synthetic data as necessary from the model.
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Figure 8.16 Multiple randomized backtests: boxplots of Sharpe ratio and maximum
drawdown.

• Nonparametric methods: These directly resample the historical data without any modeling.
• Hybrid methods: These combine the modeling approach with resampling for the model

residual (which can follow a parametric or nonparametric method).

Generating such realistic synthetic data will allow us to backtest a strategy on a large number
of unseen, synthetic testing sets, hence reducing the likelihood that the strategy has been
fitted to a particular dataset. The quality of the data generated under parametric methods
depends on the model assumption: if the model is wrong, the data generated will not be
realistic. Nonparametric methods are more robust, but they can also potentially destroy some
temporal structure in the data. Hybrid methods are more appealing as they can model as
much structure as possible and then the residual data is that generated following either the
parametric or nonparametric approach. These methods are compared and illustrated next.

I.I.D. Assumption
The simplest possible example of a parametric method is based on modeling the returns as
i.i.d. and fitting some distribution function, such as Gaussian or preferably a heavy-tailed
distribution. Once the parameters of the distribution have been estimated (i.e., the model has
been fitted to the data), then synthetic data can be generated, which will resemble (statistically)
the original data.

The simplest example of a nonparametric method, also based on assuming the returns are
i.i.d., is even simpler to implement: just resample the original returns with replacement.

It is important to emphasize that these two examples of parametric and nonparametric
methods are based on the i.i.d. assumption, which obviously does not hold for financial
data (e.g., the absolute values of the returns are highly correlated as observed in Chapter 2,
Figures 2.19–2.22).

Figure 8.17 illustrates the synthetic generation of return data under the i.i.d. parametric
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(assuming a Gaussian distribution) and nonparametric methods. Since both methods assume
i.i.d. data, they totally destroy the volatility clustering structure present in the original data. In
addition, the parametric method is assuming (wrongly) a Gaussian distribution and therefore
the generated data does not have the same deep spikes typical of a heavy-tailed distribution.
The nonparametric method, on the other hand, includes deep spikes but dispersed over time
rather than clustered. We next consider a more realistic case by incorporating the temporal
structure.
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Synthetic return data generation under i.i.d. model

Figure 8.17 Example of an original sequence and two synthetic sequences generated
with i.i.d. parametric and nonparametric methods.

Temporal Structure
To illustrate the hybrid method, suppose now that a more sophisticated model is used to model
the expected returns based on the past values of the returns, denoted by 𝝁𝑡 = 𝒇 (𝒓𝑡−𝑘 , . . . , 𝒓𝑡−1)
(see Chapter 4 for time-series mean models). This means that the returns can be written as the
forecast plus some residual error,

𝒓𝑡 = 𝝁𝑡 + 𝒖𝑡 ,

where 𝒖𝑡 is the zero-mean residual error at time 𝑡 with covariance matrix 𝚺.

An even more sophisticated model can combine the mean model for 𝝁𝑡 with a covariance
model for 𝚺𝑡 :

𝒓𝑡 = 𝝁𝑡 + 𝚺1/2
𝑡 𝝐𝑡 ,

where 𝝐𝑡 is a standardized zero-mean identity-covariance residual error at time 𝑡. The reader
is referred to Chapter 4 for time-series mean and covariance models.
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In these more sophisticated modeling cases, we can now take two different approaches to
generate the sequence of residuals and, implicitly, the sequence of synthetic returns:

• following the parametric paradigm: we can model the residuals with an i.i.d. model and
generate new synthetic residuals; and
• following the nonparametric paradigm: we can just resample the residuals from the historical

data.

Figure 8.18 illustrates the synthetic generation of return data properly modeling the volatility
clustering and then using both the parametric (assuming a Gaussian distribution) and
nonparametric methods. As expected, the volatility clustering is preserved as it appears in
the original data. The parametric method is assuming (wrongly) a Gaussian distribution for
the residuals and it could be further improved by employing a heavy-tailed distribution. The
nonparametric method, on the other hand, is more robust to modeling errors since it is directly
resampling the original residuals.
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Synthetic return data generation modeling the volatility clustering

Figure 8.18 Example of an original sequence and two synthetic sequences generated
by modeling the volatility clustering and the residuals with parametric and
nonparametric methods.

Stress Tests
Stress tests are yet another set of tools in the backtest toolkit. They also fall into the category
of synthetic generated data but they are more like an “à la carte menu.” The idea is to be able
to generate realistic synthetic data recreating different market scenarios, such as the choice of
a strong bull market, a weak bull market, a side market, a weak bear market, and a strong bear
market.

Other examples of stress tests could consider specific periods of crises such as the stock
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market crash of October 1987, the Asian crisis of 1997, and the tech bubble that burst in
1999–2000.

In other words, stress testing tests the resilience of investment portfolios against possible
future financial situations.

Figure 8.19 illustrates the generation of synthetic data for stress testing corresponding to a
bull market (the reference bull market period is April–August, 2020). On the other hand,
Figure 8.20 illustrates the generation of synthetic data for stress testing corresponding to a
bear market (the reference bear market period is September–December, 2018).
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Figure 8.19 Example of original data corresponding to a bull market and two
synthetic generations of bull markets for stress testing.

8.6 Summary
Backtesting of portfolios is an essential part in the process of strategy development and
evaluation. Nevertheless, it remains widely misunderstood and the dangers are routinely
underestimated. Some of the key points to keep in mind include the following:

• There are multiple reasons why backtest results have to be taken with “a grain of salt,”
namely, survivorship bias, look-ahead bias, storytelling bias, overfitting or data-snooping
bias, turnover and transaction cost, outliers, and asymmetric pattern and shorting cost,
among others.

• Arguably, the single main reason why any backtest may be faulty and misleading is
overfitting.

• Due to these potential pitfalls, one cannot trust any backtest results provided in academic
publications, blogs, investment fund brochures, and so on.
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Figure 8.20 Example of original data corresponding to a bear market and two
synthetic generations of bear markets for stress testing.

• Armed with this knowledge, it is recommended to conduct multiple randomized backtests,
perhaps combined with stress tests under different scenarios.

The reader has been warned and provided with tools, and hopefully this will serve as a guide
for the future.

Exercises
8.1 (Survivorship bias) Download stock price data corresponding to some index over several
years and find an example where survivorship bias makes a big difference to the portfolio
performance.

8.2 (Look-ahead bias) Download stock price data and find an example where look-ahead
bias makes a big difference to the portfolio performance.

8.3 (Storytelling or confirmation bias) Download stock price data and find an example
where storytelling or confirmation bias makes a big difference to the portfolio performance.

8.4 (Overfitting) Download stock price data and design a portfolio with overfitting in a way
that makes a big difference to the portfolio performance.
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8.5 (Turnover and transaction cost) Download stock price data and design a portfolio with
high turnover so that the performance ignoring and including the transaction cost makes a big
difference.

8.6 (Outliers) Download stock price data and find a portfolio example that accidentally
benefits from some random outlier during the training phase, but with bad performance during
the test phase.

8.7 (Single vs. multiple backtests) Download stock price data and choose several portfolio
designs. Then evaluate them first with a single backtest and then with multiple randomized
backtests. Find some example where the single backtest is totally misleading compared to the
performance statistics obtained from the multiple backtests.

8.8 (Stress tests) Download stock price data and experiment with the generation of synthetic
data corresponding to different market regimes of the market data. Then, repeat the experiment
with multiple stocks, including the correlation among the stocks.
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High-Order Portfolios

“The study of economics does not seem to require any specialised gifts of an unusually high order.”

— John Maynard Keynes

Markowitz’s mean–variance portfolio optimizes a trade-off between expected return and risk
measured by the variance. However, since financial data is not Gaussian distributed, due to
asymmetry and heavy tails in the distribution, it would be reasonable to also incorporate
higher-order moments.

Unfortunately, designing a portfolio based on the first four moments (i.e., mean, variance,
skewness, and kurtosis) brings at least two critical difficulties:

• The dimensionality of the higher-order moments grows as 𝑁4, where 𝑁 is the number of
assets, with implications in the complexity of the moment computation, memory storage,
and algorithmic manipulation.

• The portfolio formulations are nonconvex, further complicating the design and optimization.

High-order portfolios were formulated over half a century ago, but have only recently become
a practical reality for large numbers of assets in the order of hundreds or even thousands.

9.1 Introduction
Markowitz’s mean–variance portfolio (Markowitz, 1952) formulates the portfolio design as a
trade-off between the expected return 𝒘T𝝁 and the risk measured by the variance 𝒘T𝚺𝒘 (see
Chapter 7 for details):

maximize
𝒘

𝒘T𝝁 − 𝜆

2 𝒘
T𝚺𝒘

subject to 𝒘 ∈ W,

where 𝜆 is a hyper-parameter that controls the investor’s risk aversion andW denotes an
arbitrary constraint set, such asW = {𝒘 | 1T𝒘 = 1, 𝒘 ≥ 0}.

Nevertheless, decades of empirical studies have clearly demonstrated that financial data do

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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not follow a Gaussian distribution (see Chapter 2 for stylized facts of financial data). This
implies that it would be reasonable to also incorporate higher-order moments (or higher-order
statistics), in addition to the first two moments (i.e., mean and variance), in the portfolio
formulation. We will consider here the first four moments as an improvement over the first
two moments. The third and fourth moments are called skewness and kurtosis, respectively.
In terms of portfolio optimization, in the same way that a higher expected return and lower
variance are desired, we should seek a higher skewness and a lower kurtosis (i.e., higher odd
moments and lower even moments) (Scott & Horvath, 1980).

Figure 9.1 shows the skewed 𝑡 probability distribution function with different degrees of
skewness (controlled by the parameter 𝛾, with 𝛾 = 0 for the symmetric case) and kurtosis
(controlled by the parameter 𝜈, with 𝜈 →∞ for the non-heavy-tailed case).

0.0

0.1

0.2

0.3

0.4

0 10 20

Parameters

γ= 0, ν→∞ (Gaussian)

γ= 2, ν= 4

γ= 4, ν= 6

γ= 10, ν= 6

Probability density function of the skewed t distribution (μ= 0 and σ2 = 1)

Figure 9.1 Illustration of skewness and kurtosis with the skewed 𝑡 distribution.

The higher moments are definitely important and, for example, a skew-adjusted Sharpe ratio
was proposed in Zakamouline and Koekebakker (2009):

skew-adjusted-SR = SR ×
√︂

1 + skewness
3

SR.

Thus, the idea is to have a portfolio formulation where investors may accept lower expected
return and/or higher volatility, compared to the mean–variance benchmark, in exchange for
higher skewness and lower kurtosis.

High-Order Portfolios
As will be elaborated in the next section, the third and fourth moments of the portfolio are
given by the expressions 𝒘T𝚽(𝒘 ⊗𝒘) and 𝒘T𝚿(𝒘 ⊗𝒘 ⊗𝒘), respectively, where 𝚽 ∈ R𝑁×𝑁 2

is the co-skewness matrix, and 𝚿 =∈ R𝑁×𝑁 3 is the co-kurtosis matrix.

Unfortunately, the incorporation of the third and fourth moments into the portfolio formulation
brings two critical issues:
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• Due to the dimensions of the co-skewness and co-kurtosis matrices, their computation,
storage in memory, and algorithmic manipulation will be extremely challenging and
severely limiting.
• The third moment is a nonconvex function of the portfolio 𝒘. This will make the high-order

portfolio formulations complicated and the design of numerical algorithms more involved.

Historical Perspective
Portfolio formulations incorporating high-order moments go back to the 1960s (Jean, 1971;
Young & Trent, 1969). However, the estimation of such high-order moments was an absolute
impasse in those early days, the main problem being the dimensionality issue (recall that
the co-skewness matrix is 𝑁 × 𝑁2 and the co-kurtosis matrix is 𝑁 × 𝑁3), which means
that the number of parameters quickly grows with the number of assets, with detrimental
consequences in terms of the amount of data required for the estimation, the computational
cost, and the storage needs. As a consequence, some authors have shown skepticism regarding
the portfolio formulation based on high-order moments (Brandt et al., 2009):

extending the traditional approach beyond first and second moments, when the investor’s utility function
is not quadratic, is practically impossible because it requires modeling [ . . . ] the numerous higher-order
cross-moments.

We had to wait for half a century to start finding publications proposing improved estimation
methods, such as introducing structure and shrinkage in the high-order parameters (Boudt
et al., 2014; Martellini & Ziemann, 2010) or assuming parametric multivariate distributions,
to drastically reduce the number of parameters to estimate (Birgeand & Chavez-Bedoya,
2016; X. Wang et al., 2023). As empirically shown in Martellini and Ziemann (2010), unless
improved estimators are employed, incorporating third and fourth moments in the portfolio
design is detrimental in terms of out-of-sample performance.

In addition, apart from the estimation difficulties, the algorithmic part of the portfolio design
has been extremely challenging. Since the high-order problem formulations are nonconvex,
one approach is to use meta-heuristic optimization tools, such as genetic algorithms or
differential evolution (Boudt et al., 2014), which attempt to find the global solution at the
expense of a very high computational cost, but this becomes prohibitive when the problem
dimension grows. Local optimization methods are a reasonable practical alternative by finding
a locally optimal solution with acceptable computational cost.

A method based on difference-of-convex (DC) programming was proposed to solve high-order
portfolio problems to a stationary point (Dinh & Niu, 2011), but convergence is slow and it is
only applicable to low-dimensional problems. An improved method was proposed based on
the difference of convex sums of squares (DC-SOS) decomposition techniques (Niu & Wang,
2019), but the complexity of computing the gradients of high-order moments grows rapidly
with the problem dimension. The classical gradient descent method and backtracking line
search also become inapplicable when the problem dimension grows large.

Faster methods were developed in Zhou and Palomar (2021) based on the successive convex
approximation (SCA) framework (Scutari et al., 2014), which solves the original difficult
problem by constructing and solving a sequence of convex approximated problems whose
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solutions converge to a stationary point of the original problem (see Appendix B for details on
the SCA framework). The obtained algorithms converge much faster, although each iteration
still requires a significant computational cost due to the computation of gradients and Hessians
of high-order moments, allowing high-dimensional settings on the order of hundreds of assets,
but not higher.

In Birgeand and Chavez-Bedoya (2016) and X. Wang et al. (2023), the computational cost of
high-order moments was significantly reduced via a multivariate parametric model of the
data, and in X. Wang et al. (2023) even faster numerical methods were developed that can be
employed in very large dimensions with hundreds or thousands of assets.

Thus, practical high-order portfolios are now a reality after more than half a century of
research by the scientific community.

9.2 High-Order Moments
The first two moments of a random variable are enough to characterize its distribution only if
it follows a Gaussian or normal distribution; otherwise, higher-order moments, also termed
higher-order statistics, are necessary.

The first four moments of a random variable 𝑋 are

• the mean or first moment (measure of location): �̄� ≜ IE [𝑋];
• the variance or second central moment (measure of dispersion): IE[(𝑋 − �̄�)2];
• the skewness1 or third central moment (measure of asymmetry): IE[(𝑋 − �̄�)3]; and
• the kurtosis2 or fourth central moment (measure of thickness of tails): IE[(𝑋 − �̄�)4].

Next, we explore the expressions of the high-order statistics for the portfolio return.

9.2.1 Nonparametric Case
In the portfolio context with a universe of 𝑁 assets, we denote by 𝒓 ∈ R𝑁 the returns of the 𝑁
assets and by 𝒘 ∈ R𝑁 the portfolio weights. Then, the return of this portfolio is 𝒘T𝒓 and the
first four moments are given by

𝜙1(𝒘) ≜ IE
[
𝒘T𝒓

]
= 𝒘T𝝁,

𝜙2(𝒘) ≜ IE
[ (
𝒘T𝒓

)2
]
= 𝒘T𝚺𝒘,

𝜙3(𝒘) ≜ IE
[ (
𝒘T𝒓

)3
]
= 𝒘T𝚽(𝒘 ⊗ 𝒘),

𝜙4(𝒘) ≜ IE
[ (
𝒘T𝒓

)4
]
= 𝒘T𝚿(𝒘 ⊗ 𝒘 ⊗ 𝒘),

(9.1)

1 The skewness is actually defined as the standardized or normalized third moment IE
[ (
(𝑋 − �̄�)/Std[𝑋]

)3
]
,

where Std[𝑋] is the standard deviation of 𝑋.
2 The kurtosis is similarly defined as the standardized or normalized fourth moment IE

[ (
(𝑋 − �̄�)/Std[𝑋]

)4
]
.
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where 𝝁 = IE[𝒓] ∈ R𝑁 is the mean vector, 𝒓 = 𝒓 − 𝝁 are the centered returns, 𝚺 = IE
[
𝒓𝒓T]

∈
R𝑁×𝑁 is the covariance matrix, 𝚽 = IE

[
𝒓 (𝒓 ⊗ 𝒓)T

]
∈ R𝑁×𝑁 2 is the co-skewness matrix, and

𝚿 = IE
[
𝒓 (𝒓 ⊗ 𝒓 ⊗ 𝒓)T

]
∈ R𝑁×𝑁 3 is the co-kurtosis matrix.

The gradients and Hessians of the moments, required by numerical algorithms, are given by

∇𝜙1(𝒘) = 𝝁,

∇𝜙2(𝒘) = 2𝚺𝒘,
∇𝜙3(𝒘) = 3𝚽(𝒘 ⊗ 𝒘),
∇𝜙4(𝒘) = 4𝚿(𝒘 ⊗ 𝒘 ⊗ 𝒘)

(9.2)

and

∇2𝜙1(𝒘) = 0,
∇2𝜙2(𝒘) = 2𝚺,
∇2𝜙3(𝒘) = 6𝚽(𝑰 ⊗ 𝒘),
∇2𝜙4(𝒘) = 12𝚿(𝑰 ⊗ 𝒘 ⊗ 𝒘),

(9.3)

respectively (Zhou & Palomar, 2021).

Complexity Analysis
The main problem with high-order moments is the sheer number of elements required to
characterize them. This has direct implications on the computational cost, as well as the
memory cost.

To simplify the analysis, rather than characterizing the exact cost or complexity, we are just
interested in how the complexity grows with the dimensionality 𝑁 . This can be done with
the “big O” notation, which measures the order of complexity. To be specific, we say that the
complexity is 𝑓 (𝑁) = 𝑂 (𝑔(𝑁)), as 𝑁 →∞, if there exists a positive real number 𝑀 and 𝑁0
such that | 𝑓 (𝑁) | ≤ 𝑀𝑔(𝑁) for all 𝑁 ≥ 𝑁0.

Let us start by looking at the four parameters 𝝁, 𝚺, 𝚽, and 𝚿. From their dimensions,
we can infer that their complexity is 𝑂 (𝑁), 𝑂 (𝑁2), 𝑂 (𝑁3), and 𝑂 (𝑁4), respectively. The
computation of the portfolio moments in (9.1) has the same complexity order. Regarding
the gradients in (9.2), their computation has complexity 𝑂 (1), 𝑂 (𝑁2), 𝑂 (𝑁3), and 𝑂 (𝑁4),
respectively. Finally, the complexity of the computation of the Hessians in (9.3) is 𝑂 (1),
𝑂 (1), 𝑂 (𝑁3), and 𝑂 (𝑁4), respectively.

For example, when 𝑁 = 200, storing the co-kurtosis matrix 𝚿 requires almost 12 GB of
memory (assuming a floating-point number is represented with 64 bits or 8 bytes).

Summarizing, while the complexity order of the first and second moments in Markowitz’s
portfolio is𝑂 (𝑁2), further incorporating the third and fourth moments increases the complexity
order to𝑂 (𝑁4), which severely limits the practical application to scenarios with small number
of assets.



236 High-Order Portfolios

9.2.2 Structured Moments
One way to reduce the number of parameters to be estimated in the high-order moments is
by introducing some structure in the high-order moment matrices via factor modeling (see
Chapter 3). This will, however, make the estimation process much more complicated due to
the intricate structure in the matrices.

Consider a single market-factor model of the returns,

𝒓𝑡 = 𝜶 + 𝜷𝑟mkt
𝑡 + 𝝐𝑡 ,

where 𝜶 and 𝜷 are the so-called “alpha” and “beta,” respectively, 𝑟mkt
𝑡 is the market index,

and 𝝐𝑡 the residual. Then, the moments can be written (Martellini & Ziemann, 2010) as

𝝁 = 𝜶 + 𝜷𝜙mkt
1 ,

𝚺 = 𝜷𝜷T𝜙mkt
2 + 𝚺𝜖 ,

𝚽 = 𝜷
(
𝜷T ⊗ 𝜷T)

𝜙mkt
3 +𝚽𝜖 ,

𝚿 = 𝜷
(
𝜷T ⊗ 𝜷T ⊗ 𝜷T)

𝜙mkt
4 + 𝚿𝜖 ,

(9.4)

where 𝜙mkt
𝑖 denotes the 𝑖th moment of the market factor, and𝚺𝜖 ,𝚽𝜖 , and𝚿𝜖 are the covariance,

co-skewness, and co-kurtosis matrices of the residuals 𝝐𝑡 , respectively.

Alternatively, we can assume a multi-factor model of the returns,

𝒓𝑡 = 𝜶 + 𝑩 𝒇𝑡 + 𝝐𝑡 ,

where 𝒇𝑡 ∈ R𝐾 contains the 𝐾 factors (typically with 𝐾 ≪ 𝑁). Then, the moments can be
written (Boudt et al., 2014) as

𝝁 = 𝜶 + 𝑩𝝓factors
1 ,

𝚺 = 𝜷𝚽factors
2 𝜷T + 𝚺𝜖 ,

𝚽 = 𝜷𝚽factors
3

(
𝜷T ⊗ 𝜷T)

+𝚽𝜖 ,

𝚿 = 𝜷𝚽factors
4

(
𝜷T ⊗ 𝜷T ⊗ 𝜷T)

+ 𝚿𝜖 ,

(9.5)

where 𝝓factors
1 denotes the mean, and 𝚽factors

2 , 𝚽factors
3 , and 𝚽factors

4 , the covariance matrix,
co-skewness matrix, and co-kurtosis matrix of the multiple factors in 𝒇𝑡 , respectively.

In addition to the structure provided by factor modeling, another technique is via shrinkage,
see Martellini and Ziemann (2010) and Boudt, Cornilly, and Verdonck (2020).

9.2.3 Parametric Case
Multivariate Normal Distribution

A multivariate normal (or Gaussian) distribution with mean 𝝁 and covariance matrix 𝚺 is
characterized by the probability density function

𝑓mvn(𝒙) =
1√︁

(2𝜋)𝑁 |𝚺 |
exp

(
−1

2
(𝒙 − 𝝁)T𝚺−1(𝒙 − 𝝁)

)
.
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A random vector 𝒙 drawn from the normal distribution 𝑓mvn(𝒙) is denoted by

𝒙 ∼ N(𝝁,𝚺).

Nevertheless, decades of empirical studies have clearly demonstrated that financial data do
not follow a Gaussian distribution (see Chapter 2 for stylized facts of financial data). Thus, we
need more general distributions that can model the skewness (i.e., asymmetry) and kurtosis
(i.e., heavy tails).

Multivariate Normal Mixture Distributions
The multivariate normal can be generalized to obtain multivariate normal mixture distributions.
The crucial idea is the introduction of randomness into first the covariance matrix and then
the mean vector of a multivariate normal distribution via a positive mixing variable, denoted
by 𝑤 (McNeil et al., 2015).

A multivariate normal variance mixture can be represented as

𝒙 = 𝝁 +
√
𝑤𝒛,

where 𝝁 is referred to as the location vector, 𝒛 ∼ N(0,𝚺) with 𝚺 referred to as the scatter
matrix, and 𝑤 is a nonnegative scalar-valued random variable independent of 𝒛. Observe that
the random variable 𝑤 only affects the covariance matrix, but not the mean,

IE[𝒙] = 𝝁,

Cov(𝒙) = IE[𝑤]𝚺,

hence the name variance mixture.

One important example of a normal variance mixture is the multivariate 𝑡 distribution, obtained
when 𝑤 follows an inverse gamma distribution 𝑤 ∼ Ig

(
𝜈

2 ,
𝜈

2
)
, which is equivalent to saying

that 𝜏 = 1/𝑤 follows a gamma distribution 𝜏 ∼ Gamma
(
𝜈

2 ,
𝜈

2
)
.3 This can be represented in a

hierarchical structure as

𝒙 | 𝜏 ∼ N
(
𝝁,

1
𝜏
𝚺

)
,

𝜏 ∼ Gamma
( 𝜈
2
,
𝜈

2

)
.

The multivariate 𝑡 distribution (also called Student’s 𝑡 distribution) is widely used to model
heavy tails (via the parameter 𝜈) in finance and other areas. However, it cannot capture the
asymmetries observed in financial data.

A more general case of normal variance mixture is the multivariate symmetric generalized
hyperbolic distribution, obtained when 𝑤 follows a generalized inverse Gaussian (GIG)
distribution, which contains the inverse gamma distribution as a particular case. But this

3 Gamma(𝑎, 𝑏) represents the gamma distribution of shape 𝑎 and rate 𝑏, which has the pdf

𝑓 (𝜏 | 𝑎, 𝑏) = 𝑏𝑎𝜏𝑎−1 exp(−𝑏𝜏 )
Γ (𝑎) ,

where Γ (𝑎) is the gamma function, Γ (𝑎) =
∫ ∞

0 𝑡𝑎−1𝑒−𝑡 d𝑡 .
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distribution still cannot capture asymmetries since it is a variance mixture. In order to model
asymmetry, the mixture has to affect the mean as well.

A multivariate normal mean–variance mixture can be represented as

𝒙 = 𝒎(𝑤) +
√
𝑤𝒛,

where 𝒎(𝑤) is now some function of 𝑤 and the rest is as before for variance mixtures. A
typical example of 𝒎(𝑤) is 𝒎(𝑤) = 𝝁 + 𝑤𝜸, leading to

IE[𝒙] = 𝝁 + IE[𝑤]𝜸,
Cov(𝒙) = IE[𝑤]𝚺 + var(𝑤)𝜸𝜸T.

An example of a mean–variance mixture is the multivariate generalized hyperbolic (GH)
distribution, obtained when 𝒎(𝑤) = 𝝁 + 𝑤𝜸 and 𝑤 follows a GIG distribution. If the GIG
distribution is further particularized to an inverse gamma distribution, then the multivariate
skewed 𝑡 distribution (or generalized hyperbolic multivariate skewed 𝑡 (ghMST)) is obtained,
which can be conveniently represented in a hierarchical structure as

𝒙 | 𝜏 ∼ N
(
𝝁 + 1

𝜏
𝜸,

1
𝜏
𝚺

)
,

𝜏 ∼ Gamma
( 𝜈
2
,
𝜈

2

)
.

Other distributions more general than the ghMST could be considered, such as the restricted
multivariate skewed 𝑡 (rMST) distribution and the unrestricted multivariate skewed 𝑡 (uMST)
distribution; see X. Wang et al. (2023) and references therein for more details. However, these
more complex distributions are significantly more complicated to fit to data (e.g., the uMST
can only be fitted for 𝑁 < 10 in practice due to the computational complexity) and do not seem
to provide any advantage in modeling the asymmetries of financial data. Figure 9.2 shows the
goodness of fit (via the out-of-sample likelihood of the fit) of several multivariate distributions
from the simplest Gaussian to the most complicated uMST. The skewed 𝑡 distribution seems
to obtain a good fit while preserving its simplicity.

Parametric Moments
The advantage of assuming a parametric model for the data is that the computation of the
moments simplifies a great deal. To be specific, under the multivariate skewed 𝑡 distribution,
the first four moments are conveniently simplified (Birgeand & Chavez-Bedoya, 2016; X.
Wang et al., 2023) to

𝜙1(𝒘) = 𝒘T𝝁 + 𝑎1𝒘
T𝜸,

𝜙2(𝒘) = 𝑎21𝒘
T𝚺𝒘 + 𝑎22(𝒘T𝜸)2,

𝜙3(𝒘) = 𝑎31(𝒘T𝜸)3 + 𝑎32(𝒘T𝜸)𝒘T𝚺𝒘,

𝜙4(𝒘) = 𝑎41(𝒘T𝜸)4 + 𝑎42(𝒘T𝜸)2𝒘T𝚺𝒘 + 𝑎43(𝒘T𝚺𝒘)2,

(9.6)

where 𝑎1 = 𝜈

𝜈−2 , 𝑎21 = 𝑎1, 𝑎22 = 2𝜈2

(𝜈−2)2 (𝜈−4) , 𝑎31 = 16𝜈3

(𝜈−2)3 (𝜈−4) (𝜈−6) , 𝑎32 = 6𝜈2

(𝜈−2)2 (𝜈−4) ,
𝑎41 =

(12𝜈+120)𝜈4

(𝜈−2)4 (𝜈−4) (𝜈−6) (𝜈−8) , 𝑎42 =
6(2𝜈+4)𝜈3

(𝜈−2)3 (𝜈−4) (𝜈−6) , and 𝑎43 =
3𝜈2

(𝜈−2) (𝜈−4) .
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Figure 9.2 Likelihood of different fitted multivariate distributions for S&P 500 daily
stock returns.

It is important to emphasize that now 𝝁 refers to the location vector and not the mean;
similarly, 𝚺 now refers to the scatter matrix and not the covariance matrix.

The gradients and Hessians are given by

∇𝜙1(𝒘) = 𝝁 + 𝑎1𝜸,

∇𝜙2(𝒘) = 2𝑎21𝚺𝒘 + 2𝑎22(𝒘T𝜸)𝜸,
∇𝜙3(𝒘) = 3𝑎31(𝒘T𝜸)2𝜸 + 𝑎32

(
(𝒘T𝚺𝒘)𝜸 + 2(𝒘T𝜸)𝚺𝒘

)
,

∇𝜙4(𝒘) = 4𝑎41(𝒘T𝜸)3𝜸
+ 2𝑎42

(
(𝒘T𝜸)2𝚺𝒘 + (𝒘T𝚺𝒘) (𝒘T𝜸)𝜸

)
+ 4𝑎43(𝒘T𝚺𝒘)𝚺𝒘

(9.7)

and

∇2𝜙1(𝒘) = 0,
∇2𝜙2(𝒘) = 2𝑎21𝚺 + 2𝑎22𝜸𝜸

T,

∇2𝜙3(𝒘) = 6𝑎31(𝒘T𝜸)𝜸𝜸T + 2𝑎32
(
𝜸𝒘T𝚺 + 𝚺𝒘𝜸T + (𝒘T𝜸)𝚺

)
,

∇2𝜙4(𝒘) = 12𝑎41(𝒘T𝜸)2𝜸𝜸T

+ 2𝑎42
(
2(𝒘T𝜸)𝚺𝒘𝜸T + (𝒘T𝜸)2𝚺 + 2(𝒘T𝜸)𝜸𝒘T𝚺 + (𝒘T𝚺𝒘)𝜸𝜸T)

+ 4𝑎43
(
2𝚺𝒘𝒘T𝚺 + (𝒘T𝚺𝒘)𝚺

)
,

(9.8)

respectively (X. Wang et al., 2023).

9.2.4 L-Moments
One property of higher-order moments is that they fully characterize the distribution function
of the random variable. In addition, the first four moments convey descriptive properties of
the random variable such as location, dispersion, asymmetry, and thickness of tails.
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Interestingly, the so-called “L-moments” also characterize the distribution of a random
variable and similarly convey descriptive properties (Hosking, 1990). In addition, they are
linear functions of the order statistics and are easier to estimate in practice.

Let 𝑋 be a random variable and 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ · · · ≤ 𝑋𝑛:𝑛 be the order statistics of a random
sample of size 𝑛 drawn from the distribution of 𝑋 . The L-moments of 𝑋 are defined as

𝜆𝑟 =
1
𝑟

𝑟−1∑︁
𝑘=0

(−1)𝑘
(
𝑟 − 1
𝑘

)
IE[𝑋𝑟−𝑘:𝑟 ], 𝑟 = 1, 2, . . .

In particular, the first four L-moments are

𝜆1 = IE[𝑋],

𝜆2 =
1
2

IE[𝑋2:2 − 𝑋1:2],

𝜆3 =
1
3

IE[𝑋3:3 − 2𝑋2:3 + 𝑋1:3]

=
1
3

IE[(𝑋3:3 − 𝑋2:3) − (𝑋2:3 − 𝑋1:3)],

𝜆4 =
1
4

IE[𝑋4:4 − 3𝑋3:4 + 3𝑋2:4 − 𝑋1:4]

=
1
4

IE[(𝑋4:4 − 𝑋1:4) − 3(𝑋3:4 − 𝑋2:4)] .

(9.9)

These moments provide descriptive information similar to the regular moments (Hosking,
1990):

• The L-location, 𝜆1, is identical to the mean �̄� .
• The L-scale, 𝜆2, measures the expected difference between any two realizations. It resembles

the variance expressed as 𝜎2 = 1
2 IE[(𝑋2:2 − 𝑋1:2)2].

• The L-skewness, 𝜆3, is the expected difference of differences. It provides a measure of the
asymmetry less sensitive to extreme tails than the regular skewness IE[(𝑋 − �̄�)3], which
makes its estimation more accurate in practice.
• The L-kurtosis, 𝜆4, measures the expected exceedance of the largest difference. It is a

measure of how thick the tails are, similar to the regular kurtosis IE[(𝑋 − �̄�)4], but, again,
less sensitive to extreme tails, which makes its estimation more accurate in practice.

A direct estimation of the moments in (9.9) from a set of observations would be computationally
demanding (if not insurmountable), because the possible numbers of combinations of two,
three, and four values from a sample can be quite large even for a relatively small sample size.
Fortunately, there is a much simpler way to cover all the possible combinations, leading to the
following estimators for the L-moments in terms of the sample values in ascending order,
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𝑥 (1) ≤ 𝑥 (2) ≤ · · · ≤ 𝑥 (𝑛) (Q. J. Wang, 1996):

�̂�1 =
1
𝐶𝑛1

𝑛∑︁
𝑖=1

𝑥 (𝑖) =
1
𝑛

𝑛∑︁
𝑖=1

𝑥 (𝑖) ,

�̂�2 =
1
2

1
𝐶𝑛2

𝑛∑︁
𝑖=1

(
𝐶𝑖−1

1 − 𝐶𝑛−𝑖1
)
𝑥 (𝑖) ,

�̂�3 =
1
3

1
𝐶𝑛3

𝑛∑︁
𝑖=1

(
𝐶𝑖−1

2 − 2𝐶𝑖−1
1 𝐶𝑛−𝑖1 + 𝐶𝑛−𝑖2

)
𝑥 (𝑖) ,

�̂�4 =
1
4

1
𝐶𝑛4

𝑛∑︁
𝑖=1

(
𝐶𝑖−1

3 − 3𝐶𝑖−1
2 𝐶𝑛−𝑖1 + 3𝐶𝑖−1

1 𝐶𝑛−𝑖2 − 𝐶𝑛−𝑖3
)
𝑥 (𝑖) ,

where 𝐶𝑚
𝑘

≜
(
𝑚

𝑘

)
= 𝑚!

𝑘!(𝑚−𝑘 )! is the number of combinations of any 𝑘 items from 𝑚 items
(equals zero when 𝑘 > 𝑚).

Figure 9.3 compares the moments and L-moments of the S&P 500 index returns. The
L-moments clearly convey a similar information to the regular moments. In addition, they
seem to be more stable (in the sense that they do not exhibit jumps as high as the regular
moments).

It seems that the L-moments may be superior to the regular moments in the sense that they are
more stable and convey similar useful information. However, when it comes to the portfolio
design, they come with the additional difficulty of requiring sorted returns, whose ordering
depends on the portfolio 𝒘:

𝒘T𝒓1, 𝒘
T𝒓2, . . . , 𝒘

T𝒓𝑇 −→ 𝒘T𝒓𝜏 (1) ≤ 𝒘T𝒓𝜏 (2) ≤ · · · ≤ 𝒘T𝒓𝜏 (𝑇 ) ,

where 𝜏(·) denotes a permutation of the 𝑇 observations so that the portfolio returns are sorted
in increasing order.

Thus, given the permutation 𝜏(·), the portfolio moments can be expressed as

𝜙1(𝒘) =
1
𝑛

𝑇∑︁
𝑡=1

𝒘T𝒓𝜏 (𝑡 ) ,

𝜙2(𝒘) =
1
2

1
𝐶𝑇2

𝑇∑︁
𝑡=1

(
𝐶𝑡−1

1 − 𝐶𝑇−𝑡1
)
𝒘T𝒓𝜏 (𝑡 ) ,

𝜙3(𝒘) =
1
3

1
𝐶𝑇3

𝑇∑︁
𝑡=1

(
𝐶𝑡−1

2 − 2𝐶𝑡−1
1 𝐶𝑇−𝑡1 + 𝐶𝑇−𝑡2

)
𝒘T𝒓𝜏 (𝑡 ) ,

𝜙4(𝒘) =
1
4

1
𝐶𝑇4

𝑇∑︁
𝑡=1

(
𝐶𝑡−1

3 − 3𝐶𝑡−1
2 𝐶𝑇−𝑡1 + 3𝐶𝑡−1

1 𝐶𝑇−𝑡2 − 𝐶𝑇−𝑡3
)
𝒘T𝒓𝜏 (𝑡 ) .

(9.10)

9.3 High-Order Portfolio Formulations
We now explore different formulations involving high-order moments. Recall that higher-order
moments will make the formulations nonconvex, unlike the mean–variance formulation.
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Figure 9.3 Moments and L-moments of the S&P 500 index in a rolling-window
fashion.

As explored in Section 9.2, there are several options for the expressions of the moments
𝜙1(𝒘), 𝜙2(𝒘), 𝜙3(𝒘), and 𝜙4(𝒘):

• nonparametric moments: as in (9.1);
• factor model structured moments: as in (9.4) for a single factor or (9.5) for multiple factors;
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• parametric moments: following the multivariate skewed 𝑡 as in (9.6); and
• L-moments: as in (9.10).

9.3.1 MVSK Portfolios
A natural and straightforward way to incorporate higher-order moments in Markowitz’s
mean–variance framework is by optimizing a weighted combination of the first four moments,
called the mean–variance–skewness–kurtosis (MVSK) portfolio:

minimize
𝒘

−𝜆1𝜙1(𝒘) + 𝜆2𝜙2(𝒘) − 𝜆3𝜙3(𝒘) + 𝜆4𝜙4(𝒘)
subject to 𝒘 ∈ W.

(9.11)

The hyper-parameters 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are chosen, as usual, according to the investor’s risk
aversion. Observe that a reasonable investor seeks higher values of the first and third moments
(i.e., mean and skewness), 𝜙1(𝒘) and 𝜙3(𝒘), and lower values of the second and fourth
moments (i.e., variance and kurtosis), 𝜙2(𝒘) and 𝜙4(𝒘) (Briec et al., 2007; Martellini &
Ziemann, 2010; Scott & Horvath, 1980). An interesting case of (9.11) arises when 𝜆1 = 0, that
is, ignoring the mean like in the global minimum variance portfolio (GMVP); see Section 6.5.1
in Chapter 6.

A convenient choice for the hyper-parameters is according to the constant relative risk aversion
(Martellini & Ziemann, 2010):

𝜆1 = 1,

𝜆2 =
𝛾

2
,

𝜆3 =
𝛾(𝛾 + 1)

6
,

𝜆4 =
𝛾(𝛾 + 1) (𝛾 + 2)

24
,

where 𝛾 ≥ 0 is the risk aversion parameter.

As is customary, this high-order portfolio design could be alternatively formulated with any
of the moments as constraints. For example, the feasibility problem

find
𝒘

𝒘

subject to 𝜙1(𝒘) ≥ 𝛼1,

𝜙2(𝒘) ≤ 𝛼2,

𝜙3(𝒘) ≥ 𝛼3,

𝜙4(𝒘) ≤ 𝛼4,

where the hyper-parameters are given by 𝛼1, 𝛼2, 𝛼3, and 𝛼4, denoting the investor’s preference.

Efficient numerical algorithms specifically designed to solve the MVSK formulation in (9.11)
are discussed in Section 9.4, based on Zhou and Palomar (2021) and X. Wang et al. (2023).
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Expected-Utility Approximations
Expected utility theory in the context of portfolio design was explored in Section 7.3 of
Chapter 7. The idea is to maximize the expected value of a utility function, IE

[
𝑈 (𝒘T𝒓)

]
, where

𝑈 (·) denotes some utility function, instead of the mean–variance objective 𝒘T𝝁 − 𝜆

2 𝒘
T𝚺𝒘.

High-order portfolios were considered in Young and Trent (1969) using the following
approximation for the geometric mean of the returns:

IE
[
log

(
1 + 𝒘T𝒓

) ]
≈ log (1 + 𝜙1(𝒘)) −

𝜙2(𝒘)
2𝜙2

1(𝒘)
+ 𝜙3(𝒘)

3𝜙3
1(𝒘)

− 𝜙4(𝒘)
4𝜙4

1(𝒘)
,

where the approximation up to the first two terms coincides to that in (7.16). High-order
expansions were also considered for arbitrary expected utilities (Jean, 1971). More recently,
Martellini and Ziemann (2010) considered high-order approximations of expected utilities
with structured estimators of the moments as in (9.4).

9.3.2 Making Portfolios Efficient
The shortage function is an important quantity in multi-objective optimization related to the
efficient frontier and the Pareto-optimal points (see Section A.7 in Appendix A).

The shortage function measures the distance between the moments of a portfolio and the
efficient frontier along a given direction. Based on this concept, given a reference portfolio
𝒘0 and a direction vector 𝒈, we can optimize a portfolio by pushing the reference portfolio
towards the efficient frontier along that direction (Briec et al., 2007; Jurczenko et al., 2006):

maximize
𝒘, 𝛿≥0

𝛿

subject to 𝜙1(𝒘) ≥ 𝜙1(𝒘0) + 𝛿𝑔1,

𝜙2(𝒘) ≤ 𝜙2(𝒘0) − 𝛿𝑔2,

𝜙3(𝒘) ≥ 𝜙3(𝒘0) + 𝛿𝑔3,

𝜙4(𝒘) ≤ 𝜙4(𝒘0) − 𝛿𝑔4.

(9.12)

Observe that this formulation is always feasible. In the case that the reference portfolio 𝒘0

was already on the efficient frontier, then the solution will be 𝒘 = 𝒘0 and 𝛿 = 0.

9.3.3 Portfolio Tilting
The formulation in (9.12) to improve a given reference portfolio 𝒘0 can be further extended
by introducing a measure of portfolio optimality.

Suppose that the reference portfolio 𝒘0 is obtained as the solution to the minimization of
some cost function 𝜉 (·):

𝒘0 = arg min𝒘∈W 𝜉 (𝒘).

Some illustrative examples of the cost function 𝜉 (·) are
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• the Herfindahl index of the portfolio weights to promote diversity (see Section 7.1.5 in
Chapter 7):

𝜉 (𝒘) =
𝑁∑︁
𝑖=1

𝑤2
𝑖 ;

• equalization of risk contributions (see the risk parity portfolio in Chapter 11):

𝜉 (𝒘) =
𝑁∑︁
𝑖=1

(
𝑤𝑖 (𝚺𝒘)𝑖
𝒘T𝚺𝒘

− 1
𝑁

)2

;

• diversification ratio (see Section 6.5 in Chapter 6):

𝜉 (𝒘) = − 𝒘T𝝈
√
𝒘T𝚺𝒘

;

• tracking error of a benchmark portfolio 𝒘b (see index tracking in Chapter 13):

𝜉 (𝒘) =
√︁
(𝒘 − 𝒘b)T𝚺(𝒘 − 𝒘b).

The so-called MVSK portfolio tilting is formulated (Boudt, Cornilly, Holle, & Willems, 2020)
as

maximize
𝒘, 𝛿≥0

𝛿

subject to 𝜉 (𝒘) ≤ 𝜉 (𝒘0) + 𝜅,
𝜙1(𝒘) ≥ 𝜙1(𝒘0) + 𝑔1(𝛿),
𝜙2(𝒘) ≤ 𝜙2(𝒘0) − 𝑔2(𝛿),
𝜙3(𝒘) ≥ 𝜙3(𝒘0) + 𝑔3(𝛿),
𝜙4(𝒘) ≤ 𝜙4(𝒘0) − 𝑔4(𝛿),

(9.13)

where 𝑔𝑖 (𝛿) are increasing functions of 𝛿, and 𝜅 > 0 is the “sacrifice parameter” to allow for
some loss of optimality with respect to the reference portfolio (according to the cost function
𝜉 (·)) in exchange for getting closer to the efficient frontier.

One simple way to choose the hyper-parameters is proportional to the reference values, for
example:

𝜅 = 0.01 × 𝜉 (𝒘0),
𝑔1(𝛿) = 𝛿 × 𝜙1(𝒘0),
𝑔2(𝛿) = 𝛿 × 𝜙2(𝒘0),
𝑔3(𝛿) = 𝛿 × 𝜙3(𝒘0),
𝑔4(𝛿) = 𝛿 × 𝜙4(𝒘0).

Efficient numerical algorithms specifically designed to solve the MVSK tilting portfolio
formulation were developed in Zhou and Palomar (2021).

9.3.4 Polynomial Goal Programming MVSK Portfolio
Another possible way to obtain a trade-off among the moments can be formulated as the
so-called polynomial goal programming into which the investor’s preferences and objectives
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are incorporated. The formulation is based on minimizing the distance to some reference
moments measured with a polynomial (Lai, 1991):

minimize
𝒘,𝒅≥0

��� 𝑑1
𝜙0

1

���𝜆1

+
��� 𝑑2
𝜙0

2

���𝜆2

+
��� 𝑑3
𝜙0

3

���𝜆3

+
��� 𝑑4
𝜙0

4

���𝜆4

subject to 𝜙1(𝒘) + 𝑑1 ≥ 𝜙0
1,

𝜙2(𝒘) − 𝑑2 ≤ 𝜙0
2,

𝜙3(𝒘) + 𝑑3 ≥ 𝜙0
3,

𝜙4(𝒘) − 𝑑4 ≤ 𝜙0
4,

where 𝒅 denotes the deviation from the so-called “aspired levels” of the moments 𝜙0
1, 𝜙

0
2, 𝜙

0
3,

and 𝜙0
4, which can be obtained, for example, as the extreme values 𝜙0

𝑖
= max(min)𝒘∈W 𝜙𝑖 (𝒘).

Observe that these aspired levels are not jointly achievable by a single portfolio and that is
where the vector variable 𝒅 ≥ 0 comes into play to relax the problem. If the aspired levels
could be achieved by a portfolio 𝒘0, then the optimal solution would simply be 𝒘 = 𝒘0 and
𝒅 = 0.

One particular case of this polynomial goal programming is when using the Minkowski
distance (where the exponents are set to 𝜆𝑖 = 1/𝑝):

minimize
𝒘,𝒅≥0

(
4∑︁
𝑖=1

���� 𝑑𝑖𝜙0
𝑖

����𝑝)1/𝑝

subject to 𝜙1(𝒘) + 𝑑1 ≥ 𝜙0
1,

𝜙2(𝒘) − 𝑑2 ≤ 𝜙0
2,

𝜙3(𝒘) + 𝑑3 ≥ 𝜙0
3,

𝜙4(𝒘) − 𝑑4 ≤ 𝜙0
4.

9.3.5 L-Moment Portfolios
We now turn to the L-moments in (9.10) obtained from the sorted portfolio returns

𝒘T𝒓𝜏 (1) ≤ 𝒘T𝒓𝜏 (2) ≤ · · · ≤ 𝒘T𝒓𝜏 (𝑇 ) ,

where the permutation 𝜏(·) is a critical component that makes the problem nonconvex and
difficult to handle.

Plugging the expressions of the L-moments in terms of sorted portfolio returns, as in (9.10),
into the MSVK portfolio formulation in (9.11) leads to

maximize
𝒘

∑𝑇
𝑖=1 𝑣𝑖𝒘

T𝒓𝜏 (𝑖)

subject to 𝒘 ∈ W,

for properly chosen weights 𝑣𝑖.

The function in the objective
∑𝑇
𝑖=1 𝑣𝑖𝒘

T𝒓𝜏 (𝑖) involving ordered values is called ordered
weighted averaging (OWA) and was studied in the 1990s. It turns out that such a problem can
be reformulated in terms of auxiliary integer (actually binary) variables, which shows that the
problem is in general a nonconvex integer problem (Yager, 1996).
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To be specific, the OWA problem

maximize
𝒘,{𝑥𝑡 }

∑𝑇
𝑖=1 𝑣𝑖𝑥 (𝑖)

subject to 𝑥𝑡 = 𝒘T𝒓𝑡 , 𝑡 = 1, . . . , 𝑇,
𝒘 ∈ W

(9.14)

is equivalent to the mixed-integer linear program (Yager, 1996)

maximize
𝒘,{𝑥𝑡 },{𝑦𝑡 },{𝑧𝑖 𝑗 }

𝑇∑︁
𝑖=1

𝑣𝑖𝑦𝑖

subject to 𝑥𝑡 = 𝒘T𝒓𝑡 , 𝑡 = 1, . . . , 𝑇,
𝒘 ∈ W,

𝑦1 ≤ 𝑦2 ≤ · · · ≤ 𝑦𝑇 ,
𝑦𝑖1 ≤ 𝒙 + 𝑀 𝒛𝑖, 𝑖 = 1, . . . , 𝑇,
1T𝒛𝑖 ≤ 𝑖 − 1,
𝑧𝑖 𝑗 ∈ {0, 1},

where the weights 𝑣𝑖 are assumed to be nonnegative and 𝑀 is a sufficiently large constant
(much larger than any possible value that any of the 𝑥𝑡 or 𝑦𝑡 can take).

If the weights 𝑣𝑖 are positive and decreasing, it was shown (Ogryczak, 2000) that the OWA
objective function is a concave piecewise linear function,

𝑇∑︁
𝑖=1

𝑣𝑖𝑥 (𝑖) = min
𝜏∈Π

(
𝑇∑︁
𝑖=1

𝑣𝜏 (𝑖)𝑥𝑖

)
,

where 𝜏(·) is a permutation and Π the set of all possible 𝑇! permutations for a set of length 𝑇 .
Then the OWA problem (9.14) can be rewritten as the linear program

maximize
𝒘,𝑠

𝑠

subject to 𝑠 ≤ ∑𝑇
𝑡=1 𝑣𝜏 (𝑡 )𝒘

T𝒓𝑡 , for all 𝜏 ∈ Π,
𝒘 ∈ W.

This formulation, unfortunately, has 𝑇! constraints involved in all possible permutations,
which makes its usefulness questionable. An efficient dual implementation was considered in
Ogryczak and Sliwinski (2003). An alternative is based on relaxing the set of permutations to
its convex hull, which does not change the minimum value (Chassein & Goerigk, 2015).

Yet another reformulation of the OWA problem (9.14) is in terms of the cumulative ordered
values, defined as 𝑥𝑖 =

∑𝑖
𝑗=1 𝑥 (𝑖) , which allows us to write

𝑇∑︁
𝑖=1

𝑣𝑖𝑥 (𝑖) =

𝑇∑︁
𝑖=1

𝑣′𝑖𝑥𝑖,

where 𝑣′𝑖 = 𝑣𝑖 − 𝑣𝑖+1, for 𝑖 = 1, . . . , 𝑇 − 1, and 𝑣′
𝑇
= 𝑣𝑇 . It was shown (Ogryczak & Sliwinski,

2003) that

𝑥𝑖 = max𝑦𝑖
{
𝑖𝑦𝑖 − 1T(𝒙 − 𝑦𝑖1)+

}
.
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Thus, if the weights 𝑣𝑖 are positive and decreasing, then 𝑣′𝑖 > 0 for 𝑖 = 1, . . . , 𝑇 and the OWA
formulation can be written as the following problem (Ogryczak & Sliwinski, 2003):

maximize
𝒘,𝒙,𝒚

𝑇∑︁
𝑖=1

𝑣′𝑖
(
𝑖𝑦𝑖 − 1T(𝒙 − 𝑦𝑖1)+

)
subject to 𝑥𝑡 = 𝒘T𝒓𝑡 , 𝑡 = 1, . . . , 𝑇,

𝒘 ∈ W,

which can be easily rewritten as a linear program:

maximize
𝒘,𝒙,𝒚,𝒔≥0

𝑇∑︁
𝑖=1

𝑣′𝑖
(
𝑖𝑦𝑖 − 1T𝑠𝑖

)
subject to 𝑥𝑡 = 𝒘T𝒓𝑡 , 𝑡 = 1, . . . , 𝑇,

𝑠𝑖 ≥ 𝒙 − 𝑦𝑖1, 𝑖 = 1, . . . , 𝑇,
𝒘 ∈ W.

Nevertheless, if the weights 𝑣𝑖 are not positive and decreasing, then the problem cannot be
simplified as above.

9.4 Algorithms
We will focus only on the MVSK portfolio formulation (9.11), whose objective function,

𝑓 (𝒘) = −𝜆1𝜙1(𝒘) + 𝜆2𝜙2(𝒘) − 𝜆3𝜙3(𝒘) + 𝜆4𝜙4(𝒘), (9.15)

is nonconvex due to the higher-order moments.

It is convenient to split the nonconvex MVSK objective function (9.15) into convex and
nonconvex terms:

𝑓 (𝒘) = 𝑓cvx(𝒘) + 𝑓ncvx(𝒘),

where
𝑓cvx(𝒘) = −𝜆1𝜙1(𝒘) + 𝜆2𝜙2(𝒘),
𝑓ncvx(𝒘) = −𝜆3𝜙3(𝒘) + 𝜆4𝜙4(𝒘).

One can, of course, always use some off-the-shelf general nonconvex solver (typically referred
to as a nonlinear solver) capable of dealing with the nonconvex MVSK portfolio formulation
(9.11). In the following, however, we will develop ad hoc methods that are much more efficient
and do not require the use of a general nonlinear solver. In particular, we will explore the
successive convex approximation (SCA) framework as well as the majorization–minimization
(MM) framework for the derivation of the numerical methods (see Appendix B for details on
numerical methods).

9.4.1 Algorithms via the SCA Framework
Preliminaries on SCA

The successive convex approximation method (or framework) approximates a difficult
optimization problem by a sequence of simpler convex approximated problems. For details,
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the reader is referred to Section B.8 in Appendix B, the original paper in Scutari et al. (2014),
and the comprehensive book chapter in Scutari and Sun (2018). We now give a concise
description.

Suppose the following (difficult) problem is to be solved:

minimize
𝒙

𝑓 (𝒙)
subject to 𝒙 ∈ X,

where 𝑓 (·) is the (possibly nonconvex) objective function and X is a convex set. Instead of
attempting to directly obtain a solution 𝒙★ (either a local or global solution), the SCA method
will produce a sequence of iterates 𝒙0, 𝒙1, 𝒙2, . . . that will converge to 𝒙★.

More specifically, at iteration 𝑘 , the SCA approximates the objective function 𝑓 (𝒙) by a
surrogate function around the current point 𝒙𝑘 , denoted by 𝑓

(
𝒙; 𝒙𝑘

)
. One may be tempted to

solve the sequence of (simpler) problems

𝒙𝑘+1 = argmin
𝒙∈X

𝑓
(
𝒙; 𝒙𝑘

)
, 𝑘 = 0, 1, 2, . . .

Unfortunately, the previous sequence of updates may not converge and a smoothing step is
necessary to introduce some memory in the process, which will avoid undesired oscillations.
Thus, the correct sequence of problems in the SCA method is

�̂�𝑘+1 = arg min
𝒙∈X

𝑓
(
𝒙; 𝒙𝑘

)
𝒙𝑘+1 = 𝒙𝑘 + 𝛾𝑘

(
�̂�𝑘+1 − 𝒙𝑘

)  𝑘 = 0, 1, 2, . . . ,

where {𝛾𝑘} is a properly designed sequence with 𝛾𝑘 ∈ (0, 1] (Scutari et al., 2014).

In order to guarantee converge of the iterates, the surrogate function 𝑓
(
𝒙; 𝒙𝑘

)
has to satisfy

the following technical conditions (Scutari et al., 2014):

• 𝑓
(
𝒙; 𝒙𝑘

)
must be strongly convex on the feasible set X; and

• 𝑓
(
𝒙; 𝒙𝑘

)
must be differentiable with ∇ 𝑓

(
𝒙; 𝒙𝑘

)
= ∇ 𝑓 (𝒙).

SCA Applied to MVSK Portfolio Design
Following the SCA framework, we will leave 𝑓cvx(𝒘) untouched, since it is already (strongly)
convex, and we will construct a quadratic convex approximation (another option would be a
linear approximation) of the nonconvex term 𝑓ncvx(𝒘) around the point 𝒘 = 𝒘𝑘 as

𝑓ncvx
(
𝒘; 𝒘𝑘

)
= 𝑓ncvx

(
𝒘𝑘

)
+ ∇ 𝑓ncvx

(
𝒘𝑘

)T (
𝒘 − 𝒘𝑘

)
+ 1

2
(
𝒘 − 𝒘𝑘

)T [
∇2 𝑓ncvx

(
𝒘𝑘

) ]
PSD

(
𝒘 − 𝒘𝑘

)
,

where [𝚵]PSD denotes the projection of the matrix 𝚵 onto the set of positive semidefinite
matrices. In practice, this projection can be obtained by first computing the eigenvalue
decomposition of the matrix, 𝚵 = 𝑼Diag (𝝀)𝑼T, and then projecting the eigenvalues onto
the nonnegative orthant [𝚵]PSD = 𝑼Diag (𝝀+)𝑼T, where (·)+ = max(0, ·). [As a technical
detail, if 𝜆2 = 0, then the matrix [𝚵]PSD should be made positive definite so that the overall
approximation is strongly convex (Zhou & Palomar, 2021).]
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Thus, a quadratic convex approximation of 𝑓 (𝒘) in (9.15) is obtained as

𝑓
(
𝒘; 𝒘𝑘

)
= 𝑓cvx(𝒘) + 𝑓ncvx

(
𝒘; 𝒘𝑘

)
=

1
2
𝒘T𝑸𝑘𝒘 + 𝒘T𝒒𝑘 + constant,

where
𝑸𝑘 = 𝜆2∇2𝜙2(𝒘) +

[
∇2 𝑓ncvx

(
𝒘𝑘

) ]
PSD ,

𝒒𝑘 = −𝜆1∇𝜙1(𝒘) + ∇ 𝑓ncvx
(
𝒘𝑘

)
−

[
∇2 𝑓ncvx

(
𝒘𝑘

) ]
PSD 𝒘𝑘 ,

and the gradients and Hessians of the moments can be obtained from either the nonparametric
expressions in (9.2)–(9.3) or the parametric ones in (9.7)–(9.8).

Finally, the SCA-based algorithm can be implemented by successively solving, for 𝑘 =

0, 1, 2, . . ., the convex quadratic problems

minimize
𝒘

1
2𝒘

T𝑸𝑘𝒘 + 𝒘T𝒒𝑘

subject to 𝒘 ∈ W.
(9.16)

This SCA-based quadratic approximated MVSK (SCA-Q-MVSK) method is summarized in
Algorithm 9.1. More details and similar algorithms for other formulations, such as MVSK
portfolio tilting, can be found in Zhou and Palomar (2021).

Algorithm 9.1: SCA-Q-MVSK method to solve the MVSK portfolio in (9.11).
1: Choose initial point 𝒘0 ∈ W and sequence {𝛾𝑘};
2: Set 𝑘 ← 0;
3: repeat
4: Calculate ∇ 𝑓ncvx

(
𝒘𝑘

)
and

[
∇2 𝑓ncvx

(
𝒘𝑘

) ]
PSD;

5: Solve the problem (9.16) and keep solution as �̂�𝑘+1;
6: 𝒘𝑘+1 ← 𝒘𝑘 + 𝛾𝑘 (�̂�𝑘+1 − 𝒘𝑘);
7: 𝑘 ← 𝑘 + 1;
8: until convergence;

9.4.2 Algorithms via the MM Framework
Preliminaries on MM

The majorization–minimization method (or framework), similarly to SCA, approximates a
difficult optimization problem by a sequence of simpler approximated problems. We now
give a concise description. For details, the reader is referred to Section B.7 in Appendix B, as
well as the concise tutorial in Hunter and Lange (2004), the long tutorial with applications in
Sun et al. (2017), and the convergence analysis in Razaviyayn et al. (2013).

Suppose the following (difficult) problem is to be solved:

minimize
𝒙

𝑓 (𝒙)
subject to 𝒙 ∈ X,
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where 𝑓 (·) is the (possibly nonconvex) objective function and X is a (possibly nonconvex)
set. Instead of attempting to directly obtain a solution 𝒙★ (either a local or global solution),
the MM method will produce a sequence of iterates 𝒙0, 𝒙1, 𝒙2, . . . that will converge to 𝒙★.

More specifically, at iteration 𝑘 , the MM approximates the objective function 𝑓 (𝒙) by a
surrogate function around the current point 𝒙𝑘 (essentially, a tangent upper bound), denoted
by 𝑢

(
𝒙; 𝒙𝑘

)
, leading to the sequence of (simpler) problems

𝒙𝑘+1 = arg min
𝒙∈X

𝑢
(
𝒙; 𝒙𝑘

)
, 𝑘 = 0, 1, 2, . . .

In order to guarantee convergence of the iterates, the surrogate function 𝑢
(
𝒙; 𝒙𝑘

)
has to satisfy

the following technical conditions (Razaviyayn et al., 2013; Sun et al., 2017):

• upper bound property: 𝑢
(
𝒙; 𝒙𝑘

)
≥ 𝑓 (𝒙);

• touching property: 𝑢
(
𝒙𝑘; 𝒙𝑘

)
= 𝑓

(
𝒙𝑘

)
; and

• tangent property: 𝑢
(
𝒙; 𝒙𝑘

)
must be differentiable with ∇𝑢

(
𝒙; 𝒙𝑘

)
= ∇ 𝑓 (𝒙).

The surrogate function 𝑢
(
𝒙; 𝒙𝑘

)
is also referred to as the majorizer because it is an upper

bound of the original function. The fact that, at each iteration, first the majorizer is constructed
and then it is minimized gives the name majorization–minimization to the method.

MM Applied to MVSK Portfolio Design
Following the MM framework, we will leave 𝑓cvx(𝒘) untouched, since it is already convex,
and we will construct a majorizer (i.e., a tangent upper-bound surrogate function) of the
nonconvex term 𝑓ncvx(𝒘) around the point 𝒘 = 𝒘𝑘 . For example, a linear function plus a
quadratic regularizer,

𝑓ncvx
(
𝒘; 𝒘𝑘

)
= 𝑓ncvx

(
𝒘𝑘

)
+ ∇ 𝑓ncvx

(
𝒘𝑘

)T (
𝒘 − 𝒘𝑘

)
+ 𝜏MM

2
∥𝒘 − 𝒘𝑘 ∥22,

where 𝜏MM is a positive constant properly chosen so that 𝑓ncvx
(
𝒘; 𝒘𝑘

)
upper-bounds 𝑓ncvx(𝒘)

(Zhou & Palomar, 2021).

Thus, a quadratic convex approximation of 𝑓 (𝒘) (albeit using only first-order or linear
information about the nonconvex term 𝑓ncvx) is obtained as

𝑓
(
𝒘; 𝒘𝑘

)
= 𝑓cvx(𝒘) + 𝑓ncvx

(
𝒘; 𝒘𝑘

)
= −𝜆1𝜙1(𝒘) + 𝜆2𝜙2(𝒘) + ∇ 𝑓ncvx

(
𝒘𝑘

)T
𝒘 + 𝜏MM

2
∥𝒘 − 𝒘𝑘 ∥22 + constant,

where the gradient of the nonconvex function 𝑓ncvx can be obtained from the gradients of
𝜙3(𝒘) and 𝜙4(𝒘), either the nonparametric expressions in (9.2) or the parametric ones in
(9.7). It is worth pointing out that, owing to the linear approximation of the nonconvex term
𝑓ncvx(𝒘), the Hessians are not even required, which translates into huge savings in computation
time and storage memory.

Finally, the MM-based algorithm can be implemented by successively solving, for 𝑘 =

0, 1, 2, . . ., the convex problems

minimize
𝒘

−𝜆1𝜙1(𝒘) + 𝜆2𝜙2(𝒘) + ∇ 𝑓ncvx
(
𝒘𝑘

)T
𝒘 + 𝜏MM

2 ∥𝒘 − 𝒘𝑘 ∥22
subject to 𝒘 ∈ W.

(9.17)
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We denote the solution to each majorized problem in (9.17) as MM(𝒘𝑘), so that 𝒘𝑘+1 =

MM(𝒘𝑘).

Unfortunately, due to the upper-bound requirement of the nonconvex function 𝑓ncvx
(
𝒘; 𝒘𝑘

)
,

the constant 𝜏MM ends up being too large in practice. This means that the approximation is
not tight enough and the method requires many iterations to converge. For that reason, it is
necessary to resort to some acceleration techniques.

We consider a quasi-Newton acceleration technique called SQUAREM (Varadhan & Roland,
2008) that works well in practice. Instead of taking the solution to the majorized problem
in (9.17), MM(𝒘𝑘), as the next point 𝒘𝑘+1, the acceleration technique takes two steps and
combines them in a sophisticated way, with a final third step to guarantee feasibility. The
details are as follows:

difference first update: 𝒓𝑘 = 𝑅(𝒘𝑘) = MM(𝒘𝑘) − 𝒘𝑘

difference of differences: 𝒗𝑘 = 𝑅(MM(𝒘𝑘)) − 𝑅(𝒘𝑘)
stepsize: 𝛼𝑘 = −max

(
1, ∥𝒓𝑘 ∥2/∥𝒗𝑘 ∥2

)
actual step taken: 𝒚𝑘 = 𝒘𝑘 − 𝛼𝑘 𝒓𝑘

final update on actual step: 𝒘𝑘+1 = MM(𝒚𝑘).

(9.18)

The choice of the stepsize 𝛼𝑘 can be further refined to get a more robust algorithm with a
much faster convergence (X. Wang et al., 2023). The last step, 𝒘𝑘+1 = MM(𝒚𝑘), can also be
simplified to avoid having to solve the majorized problem a third time.

This quasi-Newton accelerated MM linear (as in using linear information or gradient only of
the nonconvex term) MVSK (Acc-MM-L-MVSK) method is summarized in Algorithm 9.2.
More details and similar algorithms for other formulations, such as MVSK portfolio tilting,
can be found in X. Wang et al. (2023).4

Algorithm 9.2: Acc-MM-L-MVSK method to solve the MVSK portfolio in (9.11).
1: Choose initial point 𝒘0 ∈ W and proper constant 𝜏MM for majorized problem (9.17);
2: Set 𝑘 ← 0;
3: repeat
4: Calculate ∇ 𝑓ncvx

(
𝒘𝑘

)
;

5: Compute the quantities 𝒓𝑘 , 𝒗𝑘 , 𝛼𝑘 , 𝒚𝑘 , and current solution 𝒘𝑘+1 as in (9.18), which
requires solving the majorized problem (9.17) three times;

6: 𝑘 ← 𝑘 + 1;
7: until convergence;

9.4.3 Numerical Experiments
We now perform an empirical study and comparison of the computational cost of the
two methods SCA-Q-MVSK and Acc-MM-L-MVSK described in Algorithms 9.1 and 9.2,

4 The R package highOrderPortfolios (Zhou et al., 2022) implements Algorithms 9.1 and 9.2 based on Zhou
and Palomar (2021) and X. Wang et al. (2023).

https://cran.r-project.org/package=highOrderPortfolios
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respectively. In addition, for the computation of the gradients and Hessians of the moments,
we consider both the nonparametric expressions in (9.2)–(9.3) and the parametric ones in
(9.7)–(9.8).

In fact, the Acc-MM-L-MVSK method considered in the numerical results is actually an
improvement over Algorithm 9.2 that does not require the computation of the constant 𝜏MM
in (9.17) (which already takes on the order of 10 seconds for 𝑁 = 100). For details refer to
X. Wang et al. (2023).

Convergence and Computation Time
Figure 9.4 shows the convergence of different MVSK portfolio optimization methods for a
universe size of 𝑁 = 100. In this case, both the nonparametric and parametric expressions for
the moments can be employed. As a reference, the benchmark computation of the solution via
an off-the-shelf nonlinear solver requires around 5 seconds with nonparametric moments and
around 0.5 seconds with parametric moments.
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Figure 9.4 Convergence of different MVSK portfolio optimization algorithms for
𝑁 = 100.

Figure 9.5 similarly shows the convergence of different MVSK portfolio optimization methods
for a universe size of 𝑁 = 400. In this case, however, due to the larger universe size, only
the parametric computation of the moments is feasible. As a reference, the benchmark
computation of the solution via an off-the-shelf nonlinear solver requires around 1 minute.

Figure 9.6 shows a boxplot of the computation time vs. the universe dimension 𝑁 for different
MVSK portfolio optimization methods (in the parametric case).

More extensive numerical comparisons can be found in Zhou and Palomar (2021) and X.
Wang et al. (2023).

Summarizing, it seems clear that parametric computation of the moments is the most
appropriate (due to the otherwise high computational cost). In addition, the Acc-MM-L-
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Figure 9.5 Convergence of different MVSK portfolio optimization algorithms for
𝑁 = 400.
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Figure 9.6 Computation time of different (parametric) MVSK portfolio optimization
algorithms.

MVSK method described in Algorithm 9.2 – to be exact, the more sophisticated version
proposed in X. Wang et al. (2023)) – provides the fastest convergence by orders of magnitude.

Portfolio Backtest
We compare the performance of some portfolios based on different moments, namely, the
global maximum return portfolio (GMRP; see Section 6.4.2 in Chapter 6), the global minimum
variance portfolio (GMVP; see Section 6.5.1 in Chapter 6), and the MVSK portfolio in (9.11)
(setting 𝜆1 = 0 to resemble the GMVP).

Figure 9.7 shows the cumulative P&L and drawdown during 2016–2019 over a random
universe of 20 stocks from the S&P 500, whereas Table 9.1 gives the numerical values over the
whole period. A small improvement of the MVSK portfolio over the GMVP can be observed.
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Figure 9.7 Backtest of high-order portfolios: cumulative P&L and drawdown.

Table 9.1 Backtest of high-order portfolios: performance measures.

Portfolio Sharpe
ratio

Annual
return

Annual
volatility

Sortino
ratio

Max
drawdown

CVaR
(0.95)

GMRP -0.01 0% 27% -0.02 39% 4%
GMVP 1.47 16% 11% 2.12 13% 2%
MVSK 1.56 17% 11% 2.26 12% 2%

Multiple Portfolio Backtests
We now consider multiple randomized backtests (see Section 8.4 in Chapter 8) for a better
characterization of the performance of the portfolios. We take a dataset of 𝑁 = 20 stocks over
the period 2015–2020 and generate 100 resamples each with 𝑁 = 8 randomly selected stocks
and a random period of two years. Then we perform a walk-forward backtest with a lookback
window of 1 year, reoptimizing the portfolio every month.

Figure 9.8 shows the boxplots of the Sharpe ratio and maximum drawdown, and Table 9.2
shows the backtest results in table form with different performance measures over the whole
period. Again, one can observe a modest improvement of the MVSK portfolio over the GMVP.



256 High-Order Portfolios

MVSK

GMVP

GMRP

-1 0 1 2 3

Sharpe ratio

MVSK

GMVP

GMRP

0.1 0.2 0.3 0.4

max drawdown

Figure 9.8 Multiple randomized backtest of high-order portfolios: Sharpe ratio and
maximum drawdown.

Table 9.2 Multiple randomized backtest of high-order portfolios: performance mea-
sures.

Portfolio Sharpe
ratio

Annual
return

Annual
volatility

Sortino
ratio

Max
drawdown

CVaR
(0.95)

GMRP 0.33 9% 26% 0.45 20% 4%
GMVP 1.05 13% 13% 1.48 12% 2%
MVSK 1.15 14% 13% 1.58 12% 2%

9.5 Summary
• Markowitz’s portfolio is formulated in terms of the mean and variance of the returns (first

and second moments), but financial data is not Gaussian distributed and higher orders may
be necessary for a proper characterization.

• High-order portfolios attempt to capture the non-Gaussianity by incorporating the skewness
and kurtosis (third and fourth moments) in the formulation to better model the asymmetry
and heavy tails of the distribution.

• High-order portfolios go back to the 1960s. However, the estimation and manipulation
of such high-order moments was an impossibility in those early days. For a universe of
𝑁 assets, the number of parameters increases at a rate of 𝑁4, which rapidly becomes
unmanageable in terms of computational complexity and memory storage. In addition,
the portfolio formulations are nonconvex, adding to the difficulty of designing optimal
portfolios.

• There is a wide variety of portfolio formulations incorporating high orders, such as MVSK
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portfolios, portfolio tilting, polynomial-goal formulations, and even using alternative linear
moments (L-moments).

• Efficient algorithms are now readily available based on mature iterative algorithmic
frameworks.

• Consequently, after over half a century of research by the scientific community, all the
challenges have been overcome, and designing high-order portfolios can now be easily
achieved with hundreds or even thousands of assets. The decision to incorporate high-order
moments now rests in the hands of the trader.

Exercises
9.1 (Non-Gaussian return distribution)

a. Download market data for one asset.
b. Plot the histograms for different frequencies of returns.
c. Try to fit a Gaussian distribution.
d. Assess the asymmetry as well as the thickness of the tails for these histograms (use Q–Q

plots, compute skewness and kurtosis, etc.).

9.2 (Computation of portfolio sample moments)

a. Download market data corresponding to 𝑁 assets during a period with 𝑇 observations,
𝒓1, . . . , 𝒓𝑇 ∈ R𝑁 .

b. Estimate the mean vector, covariance matrix, co-skewness matrix, and co-kurtosis matrix
of the data via sample means.

c. Design some portfolio, such as the 1/𝑁 portfolio, and compute the four moments of the
portfolio returns (i.e., mean, variance, skewness, and kurtosis).

d. Additionally, compute the gradient and Hessian of the four portfolio moments.
e. Repeat the whole process for different values of 𝑁 , while keeping track of the computational

cost, and make a final plot of complexity vs. 𝑁 .

9.3 (Comparison of nonparametric, structured, and parametric moments)

a. Download market data corresponding to 𝑁 assets during a period with 𝑇 observations,
𝒓1, . . . , 𝒓𝑇 ∈ R𝑁 .

b. Design some portfolio, such as the 1/𝑁 portfolio.
c. Estimate the mean, variance, skewness, and kurtosis of the portfolio returns in the following

ways:
• nonparametric moments: via a direct sample mean estimation of the mean vector,

covariance matrix, co-skewness matrix, and co-kurtosis matrix;
• structured moments: via fitting a single market-factor model to the returns;
• parametric moments: via fitting a multivariate skew 𝑡 distribution to the returns.

d. Repeat the whole process for different values of 𝑁 , while keeping track of the computational
cost, and make a final plot of complexity vs. 𝑁 .

9.4 (Sanity check of parametric moment expressions)
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a. Generate synthetic data according to a multivariate skew 𝑡 distribution.
b. Design some portfolio, such as the 1/𝑁 portfolio.
c. Estimate the mean, variance, skewness, and kurtosis of the portfolio returns in the following

ways:
• nonparametric moments: first estimate via sample means the mean vector, covariance

matrix, co-skewness matrix, and co-kurtosis matrix of the data, then evaluate the
portfolio moments (as well as gradients and Hessians);
• parametric moments: first fit a multivariate skew 𝑡 distribution to these synthetic returns,

then evaluate the moments with the parametric expressions (as well as gradients and
Hessians).

d. Compare the nonparametric and parametric estimations.
e. Repeat the whole process for different numbers of data samples 𝑇 , and make a final plot of

estimators vs. 𝑇 .

9.5 (L-moments)

a. Download market data for one asset.
b. Compute the first four moments (i.e., mean, variance, skewness, and kurtosis) in a

rolling-window fashion and plot them over time.
c. Compute the first four L-moments (i.e., L-location, L-scale, L-skewness, and L-kurtosis)

in a rolling-window fashion and plot them over time.
d. Try different values for the lookback window and compare the regular moments with the

L-moments.

9.6 (MVSK portfolios)

a. Download market data corresponding to 𝑁 assets during a period with 𝑇 observations,
𝒓1, . . . , 𝒓𝑇 ∈ R𝑁 .

b. Fit a multivariate skew 𝑡 distribution to the data.
c. Design a traditional mean–variance portfolio.
d. Design a high-order MVSK portfolio.
e. Compare their performance. Try to obtain a clear performance improvement via the

introduction of higher orders.

9.7 (Portfolio tilting)

a. Download market data corresponding to 𝑁 assets during a period with 𝑇 observations,
𝒓1, . . . , 𝒓𝑇 ∈ R𝑁 .

b. Fit a multivariate skew 𝑡 distribution to the data.
c. Design some portfolio as a reference.
d. Use the portfolio tilting formulation to improve the reference portfolio.
e. Compare their performance. Try to obtain a clear performance improvement via tilting.
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10

Portfolios with Alternative Risk Measures

“I try all things, I achieve what I can.”

— Herman Melville, Moby Dick

Markowitz’s mean–variance portfolio optimizes a trade-off between expected return and risk
measured by the variance. The higher the variance, the more uncertainty, which is undesired,
and vice versa. In principle, this makes sense and follows our intuitive expectation of a
measure of risk.

However, as already indicated by Markowitz, the variance and volatility are very simplistic
measures of risk. To start with, they penalize both the unwanted losses and the desired gains.
In addition, the shape of the distribution function of the returns is being ignored. Rather than
focusing on the width of the middle part of the distribution (as the volatility does), it is the
tail of the distribution that characterizes the big losses.

This chapter explores a variety of alternative and more sophisticated measures proposed
over the past seven decades (such as downside risk, semi-variance, value-at-risk, conditional
value-at-risk, expected shortfall, and drawdown) and, more importantly, how to incorporate
such measures in the portfolio formulation in a manageable way.

10.1 Introduction
Markowitz’s mean–variance portfolio (Markowitz, 1952) formulates the portfolio design as a
trade-off between the expected return 𝒘T𝝁 and the risk measured by the variance 𝒘T𝚺𝒘 (see
Chapter 7 for details):

maximize
𝒘

𝒘T𝝁 − 𝜆

2 𝒘
T𝚺𝒘

subject to 𝒘 ∈ W,

where 𝜆 is a hyper-parameter that controls the investor’s risk aversion andW denotes an
arbitrary constraint set, such asW = {𝒘 | 1T𝒘 = 1, 𝒘 ≥ 0}.

Nevertheless, it has been well recognized over decades of research and experimentation that

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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measuring the portfolio risk with the variance 𝒘T𝚺𝒘 or, similarly, the volatility
√
𝒘T𝚺𝒘 may

not be the best choice for out-of-sample performance. Markowitz himself recognized and
stressed the limitations of the mean–variance analysis (Markowitz, 1959). As a consequence,
academics and practitioners have explored alternative risk measures that satisfy desirable
properties, notably the family of coherent risk measures (Artzner et al., 1999).

This chapter explores a variety of risk measures alternative to the variance, namely, the
downside risk, semi-variance, semi-deviation, value-at-risk (VaR), conditional value-at-risk
(CVaR), expected shortfall (ES), and drawdown. Particular emphasis is placed on how to
incorporate such alternative risk measures in the portfolio formulation itself.

10.2 Alternative Risk Measures
The return obtained by portfolio 𝒘 is 𝑅 = 𝒘T𝒓, where 𝒓 denotes the vector of random returns
of the 𝑁 assets (see Chapter 6 for details). Since the portfolio return 𝑅 is a random variable,
a proper full characterization is provided by the probability distribution function (pdf). For
simplicity and convenience, the information contained in the pdf is typically condensed into a
few key numbers, such as the mean (expected return) and the standard deviation (as a measure
of risk). However, determining the appropriate quantity that should be used as a measure of
risk has been a subject of scientific investigation since the 1950s (McNeil et al., 2015).

As a consequence, academics and practitioners have explored over decades alternative risk
measures that satisfy desirable properties, notably the family of coherent risk measures that
satisfy four basic properties: translation invariance, monotonicity, subadditivity, and positive
homogeneity (Artzner et al., 1999).

Figure 10.1 illustrates the meaning of the most popular measures of risk in the context of the
pdf of the portfolio return, namely, the variance/volatility, the semi-variance/semi-deviation,
the VaR, and the CVaR.

return

pdf

VaR

0

CVaR

variance / volatility

semi-variance / semi-deviation

Figure 10.1 Illustration of return distribution and measures of risk.

In the following, we describe in detail variations of downside risk, VaR, CVaR, and drawdown.
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As will be discussed later, drawdown is fundamentally different from all the other measures
in that it is not invariant to the order of the returns.

10.2.1 Downside Risk
Economists have long recognized that investors care differently about downside losses
vs. upside gains (Roy, 1952). Markowitz himself advocated using the semi-variance as a
measure of risk, rather than the variance (Markowitz, 1959).

Downside risk generally refers to risk measures that quantify the losses below a certain
threshold. A number of studies indicate that downside risk measures are more meaningful
than symmetric measures such as the variance or volatility (Ang et al., 2006; Estrada, 2006).
Nevertheless, if the distribution of returns is not sufficiently asymmetric, downside risk
measures may not withstand scrutiny in terms of providing an advantage over the variance or
volatility (Grootveld & Hallerbach, 1999).

Semi-Variance and Semi-Deviation
The variance of the return random variable 𝑅 is

𝜎2 = IE
[
(𝑅 − 𝜇)2

]
,

where 𝜇 = IE[𝑅] is the mean. The semi-variance (SV) is similarly defined but only taking
into account when the random variable is below the mean:

SV = IE
[
((𝜇 − 𝑅)+)2

]
, (10.1)

where the operator (·)+ = max(0, ·) only keeps the nonnegative part.

Similarly to the volatility (the square root of the variance), the semi-deviation is defined as the
square root of the semi-variance. A related performance measure is the Sortino ratio, defined
as the ratio of the expected return to the semi-deviation (similarly to the Sharpe ratio, which
uses the volatility instead).

LPM
The lower partial moment (LPM) is a generalization of the semi-variance (Bawa, 1975;
Fishburn, 1977):

LPM𝛼 = IE
[
((𝜏 − 𝑅)+)𝛼

]
, (10.2)

where the parameter 𝜏 is termed the disaster level (minimum acceptable return) and the
parameter 𝛼 reflects the investor’s feeling about falling short of 𝜏, namely, 𝛼 > 1 naturally
fits a risk-averse investor, 𝛼 = 1 corresponds to a neutral investor, and 0 < 𝛼 < 1 is suitable
for risk-seeking behavior.

By changing the parameters 𝛼 and 𝜏 in (10.2) most downside measures used in practice can
be formed. For instance, setting 𝛼 = 2 and 𝜇 = IE[𝑅] yields the semi-variance (10.1).

In the same way that in the traditional modern portfolio theory it is common to plot the
mean–volatility trade-off achieved by portfolios (see Section 7.1.1 in Chapter 7 for details),
we can similarly plot the mean–risk trade-off where the risk is given by LPM1/𝛼

𝛼 .
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10.2.2 Tail Measures: VaR, CVaR, and EVaR
Tail measures, as the name indicates, focus on the tail of the distribution. They are typically
defined in terms of the loss, which can be taken as the opposite of the portfolio return 𝑅 = 𝒘T𝒓:

𝜉 = −𝒘T𝒓.

Differently from the variance/volatility and semi-variance/semi-deviation, which attempt to
measure the dispersion of the pdf of the portfolio return, tail measures focus on the tail of the
distribution that represents the big losses (the left tail of the return distribution or the right
tail of the loss distribution).

The value-at-risk (VaR) as a risk measure was proposed in the early 1990s by J. P. Morgan
and denotes the maximum loss with a specified confidence level (McNeil et al., 2015):

VaR𝛼 = inf {𝜉0 : Pr [𝜉 ≤ 𝜉0] ≥ 𝛼} , (10.3)

where 𝛼 is the confidence level, for example, 𝛼 = 0.95 for 95%. In other words, VaR𝛼 is
the quantile function 𝑞𝛼 (𝐹) for the distribution function 𝐹 (defined as 𝐹 (𝑥0) = Pr[𝑥 ≤ 𝑥0]).
However, this measure does not consider the distribution shape of losses exceeding the VaR,
is nonconvex, and is not a coherent measure (it lacks the subadditivity property) (McNeil
et al., 2015).

The conditional value-at-risk (CVaR), also called expected shortfall (ES) and expected tail
loss (ETL), builds on the VaR by taking into account the shape of the losses exceeding the
VaR through the average:

CVaR𝛼 = IE [𝜉 | 𝜉 ≥ VaR𝛼] . (10.4)

The CVaR is a coherent risk measure and therefore satisfies several desirable properties
(Rockafellar & Uryasev, 2002).

The entropic VaR (EVaR) is the tightest possible upper bound that can be obtained from the
Chernoff inequality for the VaR (Ahmadi-Javid, 2012):

EVaR𝛼 = inf
𝑧>0

{
𝑧−1 log

(
1

1 − 𝛼 IE [exp(𝑧𝜉)]
)}
. (10.5)

The EVaR is also a coherent risk measure (Ahmadi-Javid, 2012) and satisfies other properties,
such as strong monotonicity (Ahmadi-Javid & Fallah-Tafti, 2019).

Some interesting connections among the tail measures are:

• the monotonicity relationship:

VaR𝛼 ≤ CVaR𝛼 ≤ EVaR𝛼;

• the “average VaR” expression:

CVaR𝛼 =
1

1 − 𝛼

∫ 1

𝛼

VaR𝑢 d𝑢

• limiting behavior: the VaR, CVaR, and EVaR all tend to the maximal value of the support
of the pdf as 𝛼→ 1.
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Figure 10.2 illustrates the VaR, CVaR, and EVaR (as well as the maximal value) in the context
of the pdf of the loss.

VaR

0

CVaR EVaR

probability
1 - α

maximal value

pdf

loss

Figure 10.2 Illustration of loss distribution and tail measures (VaR, CVaR, and
EVaR).

For the Gaussian distribution with mean 𝜇 and standard deviation 𝜎, these tail measures can
be further written as

VaR𝛼 = 𝜇 + 𝜎Φ−1(𝛼),

CVaR𝛼 = 𝜇 + 𝜎
𝜙

(
Φ−1(𝛼)

)
1 − 𝛼 ,

EVaR𝛼 = 𝜇 + 𝜎
√︁
−2log(1 − 𝛼),

where Φ denotes the standard normal distribution function, 𝜙 its density function, and Φ−1(𝛼)
the 𝛼-quantile of Φ. Clearly, minimizing any of these measures under a Gaussian distribution
is tantamount to minimizing the standard deviation 𝜎.

Convex Characterization of CVaR
To use the CVaR in a portfolio formulation, it is helpful to first obtain a convex representation.
To start with, the CVaR can be rewritten as

CVaR𝛼 =
1

1 − 𝛼 IE [𝜉 × 𝐼{𝜉 ≥ VaR𝛼}]

= VaR𝛼 +
1

1 − 𝛼 IE [(𝜉 − VaR𝛼)+] ,

which requires knowledge of the VaR.

Interestingly, the CVaR can be similarly written in a variational form without knowledge of
the VaR (Rockafellar & Uryasev, 2000):

CVaR𝛼 = inf
𝜏

{
𝜏 + 1

1 − 𝛼 IE [(𝜉 − 𝜏)+]
}
,

where the optimal 𝜏 is precisely the VaR.
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In the context of optimization of the portfolio 𝒘, we can conveniently write:

VaR𝛼 (𝒘) ∈ arg min
𝜏

𝐹𝛼 (𝒘, 𝜏),

CVaR𝛼 (𝒘) = inf
𝜏
𝐹𝛼 (𝒘, 𝜏),

(10.6)

where 𝐹𝛼 (𝒘, 𝜏) is the convex auxiliary function

𝐹𝛼 (𝒘, 𝜏) = 𝜏 +
1

1 − 𝛼 IE
[
(−𝒘T𝒓 − 𝜏)+

]
.

Convexity is easily established since the term −𝒘T𝒓 − 𝜏 is linear, the operator (·)+ is the
maximum of two convex functions (one constant and one linear) and hence convex, and the
expectation is just a convexity-preserving nonnegative sum (see Appendix A for details on
convexity).

From Downside Risk to CVaR
The CVaR is intimately related to the downside risk in the form of LPM (10.2) with 𝛼 = 1.
This can be seen by rewriting

LPM1 = IE [(𝜏 − 𝑅) × 𝐼{𝑅 ≤ 𝜏}]
= IE [(𝜉 − (−𝜏)) × 𝐼{𝜉 ≥ −𝜏}] ,

where 𝐼{·} is the indicator function and we have used the fact that the loss is 𝜉 = −𝑅.

If we now choose the disaster level as 𝜏 = −VaR𝛼, we can further write
LPM1 = IE [(𝜉 − VaR𝛼) × 𝐼{𝜉 ≥ VaR𝛼}]

= (1 − 𝛼)IE [(𝜉 − VaR𝛼) | 𝜉 ≥ VaR𝛼] ,
which bears a striking resemblance to the CVaR in (10.4):

CVaR𝛼 = IE [𝜉 | 𝜉 ≥ VaR𝛼] .

Basically, by choosing 𝜏 = −VaR𝛼 and ignoring the scaling factor (1 − 𝛼), the downside risk
LPM1 measures the expected value of the tail shifted to the origin (excess loss above VaR𝛼),
whereas the CVaR measures the expected value of the tail (loss above VaR𝛼). The main
difference is that the VaR chooses the disaster level automatically whereas for the downside
risk it is fixed a priori.

10.2.3 Drawdown
The drawdown (or underwater curve) attempts to measure the amount of suffering of an
investor constantly monitoring the cumulative return or wealth. As such, it focuses entirely on
the downside events while ignoring the upside movements. In addition, the measure of loss is
always in relation to the past maximum (mimicking the human psychology).

The high watermark is the historical peak of the value 𝑋 (𝑡) up to time 𝑡:

HWM(𝑡) = max
1≤𝜏≤𝑡

𝑋 (𝜏).

The drawdown at time 𝑡 is defined as the decline from a historical peak of the value:
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• absolute drawdown:

𝐷 (𝑡) = HWM(𝑡) − 𝑋 (𝑡);

• normalized drawdown:

�̄� (𝑡) = HWM(𝑡) − 𝑋 (𝑡)
HWM(𝑡) .

Figure 10.3 illustrates the net asset value (NAV) curve of the S&P 500 and the corresponding
(normalized) drawdown, which is typically depicted as negative numbers going down.

1.0

1.2

1.4

1.6

1.8

2015 2016 2017 2018 2019 2020 2021

NAV

-30

-20

-10

0

2015 2016 2017 2018 2019 2020 2021

%

Drawdown

Figure 10.3 Illustration of NAV and corresponding drawdown.

Path Dependency
It is important to remark that the drawdown is a path-dependent measure. This means that it
depends on the temporal order in which the returns happen. This is in sharp contrast to the
previously considered measures, which are agnostic to the ordering of the returns.

For illustration purposes, Figure 10.4 shows the best and worst possible ordering of the returns
corresponding to the original ordering in Figure 10.3. The difference is extreme: in the best
case the drawdown reaches about 12.5%, whereas in the worst case it goes to virtually 100%
(the original drawdown reached 34%).

Single-Number Summarization
In practice, it is convenient to summarize the whole drawdown curve, which spans a period
𝑡 = 1, . . . , 𝑇 , into a single number. This can be done in different ways:
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Figure 10.4 Effect of ordering of returns in the cumulative return and drawdown.

• maximum drawdown (Max-DD):

Max-DD = max
1≤𝑡≤𝑇

𝐷 (𝑡);

• average drawdown (Ave-DD):

Ave-DD =
1
𝑇

∑︁
1≤𝑡≤𝑇

𝐷 (𝑡);

• CVaR of drawdown (CVaR-DD) or conditional drawdown at risk (CDaR):

CDaR𝛼 = IE [𝐷 (𝑡) | 𝐷 (𝑡) ≥ VaR𝛼] ,

where VaR𝛼 is the value at risk of the drawdown 𝐷 (𝑡) with confidence level 𝛼.

10.3 Downside Risk Portfolios
We now consider portfolio formulations based on downside risk measures.

10.3.1 Formulation
Using the downside risk measure LPM in (10.2) instead of the usual variance 𝒘T𝚺𝒘 leads to
the mean–downside risk formulation:

maximize
𝒘

𝒘T𝝁 − 𝜆 IE
[ (
(𝜏 − 𝒘T𝒓)+

) 𝛼]
subject to 𝒘 ∈ W.

(10.7)
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Note that this problem can be similarly formulated by moving either the expected return or
risk term to the constraints (see Chapter 7).

In practice, the expectation operator in the LPM has to be approximated by the sample mean
over 𝑇 observations 𝒓1, . . . , 𝒓𝑇 :

IE
[ (
(𝜏 − 𝒘T𝒓)+

) 𝛼] ≈ 1
𝑇

𝑇∑︁
𝑡=1

(
(𝜏 − 𝒘T𝒓𝑡 )+

) 𝛼
.

Note that this is the same technique used to approximate the variance:

IE
[ (
𝒘T(𝒓 − 𝝁)

)2
]
≈ 1
𝑇

𝑇∑︁
𝑡=1

(
𝒘T(𝒓𝑡 − 𝝁)

)2
= 𝒘T�̂�𝒘,

where �̂� is the sample covariance matrix (see Chapter 3 for details on estimating the covariance
matrix).

Thus, the mean–downside risk formulation is finally written as

maximize
𝒘

𝒘T𝝁 − 𝜆 1
𝑇

∑𝑇
𝑡=1

(
(𝜏 − 𝒘T𝒓𝑡 )+

) 𝛼
subject to 𝒘 ∈ W,

where all the return observations 𝒓1, . . . , 𝒓𝑇 appear explicitly and cannot be condensed into a
convenient matrix (unlike in the case of the variance).

From an optimization perspective, it is convenient to rewrite the formulation without the
nondifferentiable operator (·)+ as

maximize
𝒘,{𝑠𝑡 }

𝒘T𝝁 − 𝜆 1
𝑇

∑𝑇
𝑡=1 𝑠

𝛼
𝑡

subject to 0 ≤ 𝑠𝑡 ≥ 𝜏 − 𝒘T𝒓𝑡 , 𝑡 = 1, . . . , 𝑇,
𝒘 ∈ W.

(10.8)

Interestingly, the class of optimization problems for common choices of 𝛼 (assuming that the
constraints inW are linear) are all convex and can be optimally solved, namely:

• linear program for 𝛼 = 1;
• quadratic program for 𝛼 = 2 (semi-variance portfolio); and
• general convex program for 𝛼 = 3.

10.3.2 Semi-Variance Portfolios
As previously mentioned, the variance has a very convenient expression in terms of the
covariance matrix 𝚺:

IE
[ (
𝒘T(𝒓 − 𝝁)

)2
]
= 𝒘T𝚺𝒘,

where

𝚺 = IE
[
(𝒓 − 𝝁) (𝒓 − 𝝁)T

]
.
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The question is whether the semi-variance enjoys a similar property (even as an approximation)
so that we can write

IE
[ (
(𝜏 − 𝒘T𝒓)+

)2
]
≈ 𝒘T𝑴𝒘

for some conveniently defined matrix 𝑴.

In fact, Markowitz himself suggested using the following matrix (Markowitz, 1959), which
provides an exact semi-variance:

𝑴 (𝒘) = IE
[
(𝜏1 − 𝒓) (𝜏1 − 𝒓)T × 𝐼{𝜏 > 𝒘T𝒓}

]
,

where 1 denotes the all-one vector and 𝐼{·} the indicator function. However, this matrix is
endogenous in the sense that it depends on the portfolio 𝒘 and it is therefore not appropriate
for portfolio optimization.

Unfortunately, the semi-variance cannot be written via an exogenous matrix 𝑴 (independent of
𝒘). Nevertheless, this has not stopped authors from proposing good heuristic approximations
(Estrada, 2008) such as

𝑴 = IE
[
(𝜏1 − 𝒓)+ ((𝜏1 − 𝒓)+)T

]
.

Many other practical approaches have been proposed over the past few decades, cf. Estrada
(2008).

Summarizing, the mean–semi-variance formulation can be obtained by setting 𝛼 = 2 in (10.7),
but it can also be conveniently approximated (similarly to the mean–variance formulation) as

maximize
𝒘

𝒘T𝝁 − 𝜆

2 𝒘
T𝑴𝒘

subject to 𝒘 ∈ W.

10.3.3 Numerical Experiments
We now compare different versions of downside risk portfolios based on (10.8), namely, for
𝛼 = 1, 𝛼 = 2 (with and without the approximation), and 𝛼 = 3. To focus on the effect of
the risk measure, we ignore the expected return term in the optimization (effectively letting
𝜆→∞) and also include the GMVP as a reference benchmark.

Figure 10.5 shows boxplots of the Sharpe ratio and maximum drawdown for 200 realizations of
50 randomly chosen stocks from the S&P 500 during 2015–2020, reoptimizing the portfolios
every month with a lookback of one year.

10.4 Tail-Based Portfolios
We will now focus on CVaR and EVaR portfolios (and the limiting case of the worst-case
portfolio) since they can be conveniently formulated as convex problems.
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Figure 10.5 Backtest performance of different downside risk portfolios.

10.4.1 Formulation for CVaR Portfolios
The mean–CVaR formulation replaces the usual variance term 𝒘T𝚺𝒘 by the CVaR in (10.4)
as a measure of risk:

maximize
𝒘

𝒘T𝝁 − 𝜆CVaR𝛼 (𝒘)
subject to 𝒘 ∈ W.

(10.9)

As usual, this problem can be similarly formulated by moving either the expected return or
risk term to the constraints (see Chapter 7).

To write the problem in convex form, we will use the variational convex representation of the
CVaR in (10.6):

CVaR𝛼 (𝒘) = inf
𝜏

{
𝜏 + 1

1 − 𝛼 IE
[
(−𝒘T𝒓 − 𝜏)+

]}
.

This leads to the convex mean–CVaR formulation:

maximize
𝒘,𝜏

𝒘T𝝁 − 𝜆
(
𝜏 + 1

1−𝛼 IE
[
(−𝒘T𝒓 − 𝜏)+

] )
subject to 𝒘 ∈ W,

where the auxiliary variable 𝜏 has been conveniently moved from the inner minimization to
the outer maximization (and we have tacitly assumed that the setW is convex).

In practice, the expectation operator is approximated by the sample mean over 𝑇 observations
𝒓1, . . . , 𝒓𝑇 :

IE
[
(−𝒘T𝒓 − 𝜏)+

]
≈ 1
𝑇

𝑇∑︁
𝑡=1

(−𝒘T𝒓𝑡 − 𝜏)+.
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Thus, the mean–CVaR formulation is finally given as

maximize
𝒘,𝜏

𝒘T𝝁 − 𝜆
(
𝜏 + 1

1−𝛼
1
𝑇

∑𝑇
𝑡=1(−𝒘T𝒓𝑡 − 𝜏)+

)
subject to 𝒘 ∈ W.

From an optimization perspective, it is convenient to rewrite the formulation without the
nondifferentiable operator (·)+ by introducing the 𝑇 auxiliary variables 𝒖 = (𝑢1, . . . , 𝑢𝑇 ) as

maximize
𝒘,𝜏,𝒖

𝒘T𝝁 − 𝜆
(
𝜏 + 1

1−𝛼
1
𝑇

∑𝑇
𝑡=1 𝑢𝑡

)
subject to 0 ≤ 𝑢𝑡 ≥ −𝒘T𝒓𝑡 − 𝜏, 𝑡 = 1, . . . , 𝑇,

𝒘 ∈ W.

(10.10)

This problem is a linear program (assuming that the setW is described via linear constraints)
and can be conveniently solved with an LP solver.

It is important to bear in mind that the tail events in the CVaR formulation (10.10) happen
with low probability (by definition) and, therefore, very few samples (if any) will contribute to
the characterization of the CVaR. For instance, if 𝛼 = 0.99 and we have 𝑇 = 200 observations,
then only 2 samples out of the 200 will characterize the tail, which is too few samples for
a proper characterization of the shape of the tail. This effect is further exacerbated as the
dimension 𝑁 becomes large. As a consequence, the CVaR portfolio may not be numerically
stable and alternative methods have been proposed, such as based on some parametric
distribution of the returns (Gaussian or elliptical distributions), alternative estimation methods
for CVaR (Hong et al., 2014; Nadarajah et al., 2014), use of worst-case characterizations of
CVaR (Zhu & Fukushima, 2009), and sophisticated tail characterizations based on extreme
value theory (McNeil & Frey, 2000).

10.4.2 Formulation for EVaR Portfolios
Similarly to (10.9), the mean–EVaR formulation replaces the usual variance term 𝒘T𝚺𝒘 by
the EVaR in (10.5) as a measure of risk:

maximize
𝒘

𝒘T𝝁 − 𝜆 EVaR𝛼 (𝒘)
subject to 𝒘 ∈ W.

(10.11)

Using the change of variable 𝑡 = 𝑧−1 in the EVaR (10.5), the problem can be written
(Ahmadi-Javid & Fallah-Tafti, 2019) as

maximize
𝒘,𝑡>0

𝒘T𝝁 − 𝜆
(
𝑡 log

( 1
1−𝛼 IE

[
exp(−𝑡−1𝒘T𝒓)

] ) )
subject to 𝒘 ∈ W,

which is a convex problem (assuming that the setW is convex) because the log-sum-exp
function is convex and the perspective 𝑡 𝑓 (𝒙/𝑡) of a function 𝑓 (𝒙) preserves convexity (see
Appendix A for details on convexity).

In practice, the expectation operator is approximated by the sample mean over 𝑇 observations
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𝒓1, . . . , 𝒓𝑇 and the mean–EVaR formulation is finally written as

maximize
𝒘,𝑡>0

𝒘T𝝁 − 𝜆
(
𝑡 log

(∑𝑇
𝑡 ′=1

[
exp(−𝑡−1𝒘T𝒓𝑡 ′)

] )
− 𝑡 log ((1 − 𝛼)𝑇)

)
subject to 𝒘 ∈ W.

(10.12)

This problem can be solved in practice in a variety of ways (see Appendix B for a discussion
on algorithms, solvers, and modeling frameworks):

• via a general-purpose solver (since the problem is convex, it will find an optimal solution);

• via a tailored interior-point method for convex problems (Ahmadi-Javid & Fallah-Tafti,
2019);

• via a convex modeling framework that can recognize the convexity of the log-sum-exp
function and then performing bisection over 𝑡;

• via a convex modeling framework that can recognize both the convexity of the log-sum-exp
function and the convexity-preserving property of the perspective operator;

• via a convex reformulation in terms of the exponential cone Kexp (Chares, 2007),1 which
some solvers and modeling frameworks can recognize (Cajas, 2021):2

maximize
𝒘,𝑡>0,𝑠,𝒖

𝒘T𝝁 − 𝜆 (𝑠 − 𝑡 log ((1 − 𝛼)𝑇))
subject to 𝒘 ∈ W,

𝑡 ≥ 𝑢1 + · · · + 𝑢𝑇 ,
(−𝒘T𝒓𝑡 ′ − 𝑠, 𝑡, 𝑢𝑡 ′) ∈ Kexp, 𝑡′ = 1, . . . , 𝑇,

where

Kexp ≜
{
(𝑎, 𝑏, 𝑐) | 𝑐 ≥ 𝑏 𝑒𝑎/𝑏, 𝑏 > 0

}
∪

{
(𝑎, 𝑏, 𝑐) | 𝑎 ≤ 0, 𝑏 = 0, 𝑐 ≥ 0

}
.

10.4.3 Formulation for the Worst-Case Portfolio
The VaR, CVaR, and EVaR measures all tend to the maximal value of the support of the pdf
of the loss as 𝛼→ 1. In practice, this implies focusing attention on the worst realization of
the return or loss.

1 The convex constraint involving the log-sum-exp function

𝑠 ≥ 𝑡 log
(
𝑒𝑥1/𝑡 + 𝑒𝑥2/𝑡

)
,

for 𝑡 > 0, can be rewritten in terms of the exponential cone Kexp as (Chares, 2007)

𝑡 ≥ 𝑢1 + 𝑢2,

(𝑥𝑖 − 𝑠, 𝑡 , 𝑢𝑖 ) ∈ Kexp, 𝑖 = 1, 2.

2 Some solvers like the Embedded COnic Solver (ECOS) solver (https://github.com/embotech/ecos) or MOSEK
(www.mosek.com) are able to handle problems with the exponential cone. Some modeling frameworks like
CVXR (https://cvxr.rbind.io) can also accept the exponential cone.

https://github.com/embotech/ecos
https://www.mosek.com
https://cvxr.rbind.io
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This worst-case risk leads to the following formulation (Young, 1998):

maximize
𝒘

𝒘T𝝁 − 𝜆 max1≤𝑡≤𝑇 {−𝒘T𝒓𝑡 }
subject to 𝒘 ∈ W

or, without the nondifferentiable maximum operator,

maximize
𝒘,𝜏

𝒘T𝝁 − 𝜆 𝜏
subject to 𝜏 ≥ −𝒘T𝒓𝑡 , 𝑡 = 1, . . . , 𝑇,

𝒘 ∈ W.

(10.13)

This problem is again a linear program (assuming that the setW is described via linear
constraints) and can be conveniently solved with an LP solver.

10.4.4 Numerical Experiments
We now compare CVaR, EVaR, and worst-case portfolios based on (10.10), (10.12), and
(10.13), respectively. To focus on the effect of the risk measure, we ignore the expected return
term in the optimization (effectively letting 𝜆→∞) and also include the GMVP as a reference
benchmark.

A word of caution is necessary. Since these portfolio formulations are based on a nonparametric
computation of the risk (observed returns directly instead of some covariance matrix) and the
tail events happen with low probability (by definition), we cannot expect a good characterization
of the true tail. The most extreme case is the worst-case portfolio which is defined by a single
data point. For CVaR, very few observations (if any) may occur on the tail, and this can be
exacerbated with larger values of 𝛼. EVaR may be slightly better in this regard since it uses
all the observations. For this reason, alternative, more stable, methods have been proposed,
as previously mentioned, based on parametric models or sophisticated tail characterizations
based on extreme value theory.

Figure 10.6 shows boxplots of the Sharpe ratio and maximum drawdown for 200 realizations of
50 randomly chosen stocks, from the S&P 500 during 2015–2020, reoptimizing the portfolios
every month with a lookback of one year. It is difficult to draw conclusions from this numerical
experiment, but the EVaR portfolios seem to produce better results than the CVaR ones, as
expected.

10.5 Drawdown Portfolios
Drawdown portfolios can be approached via statistical modeling of the returns based on
dynamic programming (Cvitanic & Karatzas, 1995; Grossman & Zhou, 1993), as well as
from a more data-driven perspective based on a sample-path (realization) of portfolio returns
(Chekhlov et al., 2004), as we consider here.

As we know, the return of a portfolio 𝒘 at time 𝑡 is given by 𝑅𝑡 = 𝒘T𝒓𝑡 , where 𝒓𝑡 denotes
linear returns or approximately log-returns. However, since the drawdown is derived from the
cumulative return, we need the portfolio cumulative return:

𝑅cum
𝑡 = 𝒘T𝒓cum

𝑡 ,
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Min. Worst-Case

Min. EVaR 99%

Min. CVaR 99%

Min. EVaR 95%

Min. CVaR 95%

Min. EVaR 90%

Min. CVaR 90%

GMVP

0 1 2

Sharpe ratio

Min. Worst-Case

Min. EVaR 99%

Min. CVaR 99%

Min. EVaR 95%

Min. CVaR 95%

Min. EVaR 90%

Min. CVaR 90%

GMVP

0.0 0.1 0.2 0.3

max drawdown

Figure 10.6 Backtest performance of CVaR and EVaR portfolios.

where the cumulative returns of the assets can be computed as

𝒓cum
𝑡 =

𝑡∑︁
𝜏=1

𝒓𝜏 .

Depending on whether we use linear or log-returns in 𝒓𝑡 , this expression corresponds to the
uncompounded linear returns or compounded log-returns, respectively (see Section 6.1.3 in
Chapter 6 for details). Note that the value of the portfolio is 1 + 𝑅cum

𝑡 .

The absolute drawdown is

𝐷𝑡 (𝒘) = max
1≤𝜏≤𝑡

𝒘T𝒓cum
𝜏 − 𝒘T𝒓cum

𝑡

and a constraint of the form 𝐷𝑡 (𝒘) ≤ 𝛼 can be written as the linear (after adding some
dummy variables) constraint

𝒘T𝒓cum
𝑡 ≥ max

1≤𝜏≤𝑡
𝒘T𝒓cum

𝜏 − 𝛼.
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Similarly, the normalized drawdown is

�̄�𝑡 (𝒘) =
max
1≤𝜏≤𝑡

𝒘T𝒓cum
𝜏 − 𝒘T𝒓cum

𝑡

1 + max
1≤𝜏≤𝑡

𝒘T𝒓cum
𝜏

and a constraint of the form �̄�𝑡 (𝒘) ≤ 𝛼 can be written as the linear (again after adding some
dummy variables) constraint

𝒘T𝒓cum
𝑡 ≥ (1 − 𝛼) max

1≤𝜏≤𝑡
𝒘T𝒓cum

𝜏 − 𝛼.

10.5.1 Formulation for the Max-DD Portfolio
The mean–Max-DD formulation replaces the usual variance term 𝒘T𝚺𝒘 by the maximum
drawdown as a measure of risk:

maximize
𝒘

𝒘T𝝁 − 𝜆Max-DD(𝒘)
subject to 𝒘 ∈ W.

(10.14)

As usual, this problem can be similarly formulated by moving either the expected return or
the risk term to the constraints (see Chapter 7).

Substituting for Max-DD(𝒘) = max
1≤𝑡≤𝑇

𝐷𝑡 (𝒘), where 𝐷𝑡 (𝒘) is the drawdown at time 𝑡, leads
to the problem

maximize
𝒘

𝒘T𝝁 − 𝜆 max
1≤𝑡≤𝑇

{
max
1≤𝜏≤𝑡

𝒘T𝒓cum
𝜏 − 𝒘T𝒓cum

𝑡

}
subject to 𝒘 ∈ W,

which is convex (assumingW is convex) because the maximum of convex functions is convex
(see Appendix A for details on convexity).

Writing the problem in epigraph form and introducing the auxiliary variables 𝑠 and 𝒖
(𝑢0 ≜ −∞) to get rid of the max operators leads to

maximize
𝒘,𝒖,𝑠

𝒘T𝝁 − 𝜆 𝑠
subject to 𝒘T𝒓cum

𝑡 ≤ 𝑢𝑡 ≤ 𝑠 + 𝒘T𝒓cum
𝑡 , 𝑡 = 1, . . . , 𝑇,

𝑢𝑡−1 ≤ 𝑢𝑡 ,
𝒘 ∈ W,

(10.15)

which is a linear program (assumingW only contains linear constraints).

It is important to remark that, by definition, the worst drawdown is given by a single data
point, which makes this risk measure extremely sensitive. In other words, minute changes
in the portfolio weights and the specific time period examined (recall that the drawdown is
path-dependent) may produce totally different values of the maximum drawdown. This makes
this measure of risk not very reliable, which can be mitigated by using instead the average
drawdown or the conditional drawdown-at-risk considered next. As an alternative, if the
distribution is close to Gaussian, then the mean–variance framework may be sufficient (see
Chapter 7), whereas if the distribution shows some skewness and heavy tails, then high-order
portfolios can be used (see Chapter 9).
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10.5.2 Formulation for the Ave-DD Portfolio
We can repeat the same procedure with the average drawdown instead:

maximize
𝒘

𝒘T𝝁 − 𝜆 1
𝑇

𝑇∑︁
𝑡=1

(
max
1≤𝜏≤𝑡

𝒘T𝒓cum
𝜏 − 𝒘T𝒓cum

𝑡

)
subject to 𝒘 ∈ W,

which is also convex (assumingW is convex) because the maximum of convex functions is
convex (see Appendix A for details on convexity).

Writing the problem in epigraph form and introducing the auxiliary variables 𝑠 and 𝒖
(𝑢0 ≜ −∞) to get rid of the max operator leads to

maximize
𝒘,𝒖,𝑠

𝒘T𝝁 − 𝜆 𝑠
subject to 1

𝑇

∑𝑇
𝑡=1 𝑢𝑡 ≤ 1

𝑇

∑𝑇
𝑡=1 𝒘

T𝒓cum
𝑡 + 𝑠,

𝒘T𝒓cum
𝑡 ≤ 𝑢𝑡 , 𝑡 = 1, . . . , 𝑇,

𝑢𝑡−1 ≤ 𝑢𝑡 ,
𝒘 ∈ W,

(10.16)

which is a linear program (assumingW only contains linear constraints).

10.5.3 Formulation for the CVaR-DD Portfolio
To formulate the mean–CVaR-DD portfolio, we will make use of the following variational
convex representation of the CVaR-DD (or CDaR) (Chekhlov et al., 2004, 2005):

CVaR-DD(𝒘) = inf
𝜏

{
𝜏 + 1

1 − 𝛼
1
𝑇

𝑇∑︁
𝑡=1

(𝐷𝑡 (𝒘) − 𝜏)+
}
.

This leads to the mean–CVaR-DD formulation:

maximize
𝒘,𝜏

𝒘T𝝁 − 𝜆
(
𝜏 + 1

1 − 𝛼
1
𝑇

𝑇∑︁
𝑡=1

(
max
1≤𝜏≤𝑡

𝒘T𝒓cum
𝜏 − 𝒘T𝒓cum

𝑡 − 𝜏
)+)

subject to 𝒘 ∈ W,

where the auxiliary variable 𝜏 has been conveniently moved from the inner minimization to
the outer maximization. This problem is convex, assuming thatW is a convex set.

After a series of manipulations to get rid of the nondifferentiable max operator and (·)+, and
the introduction of the auxiliary variables 𝑠, 𝒛, and 𝒖 (𝑢0 ≜ −∞), the problem can be finally
rewritten as

maximize
𝒘,𝜏,𝑠,𝒛,𝒖

𝒘T𝝁 − 𝜆 𝑠
subject to 𝑠 ≥ 𝜏 + 1

1−𝛼
1
𝑇

∑𝑇
𝑡=1 𝑧𝑡 ,

0 ≤ 𝑧𝑡 ≥ 𝑢𝑡 − 𝒘T𝒓cum
𝑡 − 𝜏, 𝑡 = 1, . . . , 𝑇,

𝒘T𝒓cum
𝑡 ≤ 𝑢𝑡 ,

𝑢𝑡−1 ≤ 𝑢𝑡 ,
𝒘 ∈ W,

(10.17)
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which is a linear program (assumingW only contains linear constraints).

Similarly to the EVaR portfolio in (10.11)–(10.12), one can easily formulate a drawdown EVaR
simply by replacing in (10.12) the loss terms −𝒘T𝒓𝑡 by 𝐷𝑡 (𝒘) = max

1≤𝜏≤𝑡
𝒘T𝒓cum

𝜏 − 𝒘T𝒓cum
𝑡 .

10.5.4 Numerical Experiments
We now compare several drawdown-based portfolios, namely, that based on the minimization
of the maximum drawdown formulated in (10.15), the average drawdown formulated in
(10.16), and the drawdown CVaR formulated in (10.17). To focus on the effect of the risk
measure, we ignore the expected return term in the optimization (effectively letting 𝜆→∞)
and also include the GMVP as a reference benchmark.

Similarly to the CVaR portfolios, a word of caution is necessary here. The problem boils
down to the fact that the worst drawdowns happen with low probability, which translates into
very few samples being used in the computation of the risk measure. This is specially true for
the maximum drawdown (a single sample) and the drawdown CVaR (extremely few samples).

Figure 10.7 shows boxplots of the Sharpe ratio and maximum drawdown for 200 realizations of
50 randomly chosen stocks, from the S&P 500 during 2015–2020, reoptimizing the portfolios
every month with a lookback of one year. The drawdown portfolios do not seem to outperform
the simple GMVP benchmark, although more exhaustive empirical experiments would be
necessary.

Min. CVaR-DD 99%

Min. CVaR-DD 95%

Min. CVaR-DD 90%

Min. Ave-DD

Min. Max-DD

GMVP

0 1 2

Sharpe ratio

Min. CVaR-DD 99%

Min. CVaR-DD 95%

Min. CVaR-DD 90%

Min. Ave-DD

Min. Max-DD

GMVP

0.0 0.1 0.2 0.3

max drawdown

Figure 10.7 Backtest performance of drawdown portfolios.
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10.6 Summary
The variance (similarly, the volatility) is a very simple way to measure the risk of a portfolio
and was used in Markowitz’s 1952 seminal mean–variance modern portfolio theory framework.
Since then, a wide variety of alternative and more sophisticated measures of risk have been
proposed, such as semi-variance, downside risk, VaR, CVaR, EVaR, drawdown, and so on.

Interestingly, many meaningful risk measures can be conveniently incorporated in the context
of portfolio optimization, expressed in terms of the raw returns of the assets. Some notable
examples include:

• Downside risk portfolios: The risk focuses on the downside losses, which can be formulated
in convex form (parameterized by the parameter 𝛼):
– 𝛼 = 1: formulated as a linear program;
– 𝛼 = 2: semi-variance portfolio formulated as a quadratic program;
– 𝛼 = 3: more risk averse and formulated as a convex program.

• Tail portfolios: The risk is measured by the tail of the distribution of the losses, which can
be formulated in convex form:
– CVaR portfolios: based on the mean of the tail and formulated as a linear program;
– EVaR portfolios: based on a smooth approximation of the CVaR and formulated in terms

of the exponential cone;
– worst-case portfolio: extreme version of CVaR and EVaR portfolios and formulated as a

linear program.
• Drawdown portfolios: The risk is based on the drawdown, which can be formulated as

linear programs:
– maximum drawdown portfolio: based on the single worst drawdown;
– average drawdown portfolio: based on the average of all the drawdowns; and
– drawdown CVaR portfolio: based on the average of the tail of the drawdowns.

Exercises
10.1 (Computing alternative measures of risk) Generate 10 000 samples following a normal
distribution, plot the histogram, and compute the following measures:

• mean
• variance and standard deviation
• semi-variance and semi-deviation
• tail measures (VaR, CVaR, and EVaR) based on raw data
• tail measures (VaR, CVaR, and EVaR) based on a Gaussian approximation.

10.2 (CVaR in variational convex form) Consider the following expression for the CVaR:

CVaR𝛼 = IE [𝜉 | 𝜉 ≥ VaR𝛼] .

Show that it can be rewritten in a convex variational form as:

CVaR𝛼 = inf
𝜏

{
𝜏 + 1

1 − 𝛼 IE [(𝜉 − 𝜏)+]
}
,
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where the optimal 𝜏 precisely equals VaR𝛼.

10.3 (Sanity check for variational computation of CVaR) Generate 10 000 samples of the
random variable 𝜉 following a normal distribution and compute the CVaR as

CVaR𝛼 = IE [𝜉 | 𝜉 ≥ VaR𝛼] .

Verify numerically that the variational expression for the CVaR gives the same result:

CVaR𝛼 = inf
𝜏

{
𝜏 + 1

1 − 𝛼 IE [(𝜉 − 𝜏)+]
}
.

10.4 (CVaR vs. downside risk) Consider the following two measures of risk in terms of the
loss random variable 𝜉:

• downside risk in the form of lower partial moment (LPM) with 𝛼 = 1:

LPM1 = IE [(𝜉 − 𝜉0)+] ;

• CVaR:

CVaR𝛼 = IE [𝜉 | 𝜉 ≥ VaR𝛼] .

Rewrite LPM1 in the form of CVaR𝛼 and the other way around. Hint: use 𝜉0 = VaR𝛼.

10.5 (Log-sum-exp function as exponential cone) Show that the following convex constraint
involving the perspective operator on the log-sum-exp function,

𝑠 ≥ 𝑡 log
(
𝑒𝑥1/𝑡 + 𝑒𝑥2/𝑡

)
,

for 𝑡 > 0, can be rewritten in terms of the exponential cone Kexp as

𝑡 ≥ 𝑢1 + 𝑢2,

(𝑢𝑖, 𝑡, 𝑥𝑖 − 𝑠) ∈ Kexp, 𝑖 = 1, 2,

where

Kexp ≜
{
(𝑎, 𝑏, 𝑐) | 𝑐 ≥ 𝑏 𝑒𝑎/𝑏, 𝑏 > 0

}
∪

{
(𝑎, 𝑏, 𝑐) | 𝑎 ≤ 0, 𝑏 = 0, 𝑐 ≥ 0

}
.

10.6 (Drawdown and path-dependency)

a. Generate 10 000 samples of returns following a normal distribution.
b. Compute and plot the cumulative returns, and plot the drawdown.
c. Randomly reorder the original returns and plot again.
d. Repeat a few times to observe the path-dependency property of the drawdown.

10.7 (Semi-variance portfolios)

a. Download market data corresponding to 𝑁 assets (e.g., stocks or cryptocurrencies) during
a period with 𝑇 observations, 𝒓1, . . . , 𝒓𝑇 ∈ R𝑁 .
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b. Solve the minimization of the semi-variance in a nonparametric way (reformulate it as a
quadratic program):

minimize
𝒘

1
𝑇

∑𝑇
𝑡=1

(
(𝜏 − 𝒘T𝒓𝑡 )+

)2

subject to 𝒘 ≥ 0, 1T𝒘 = 1.

c. Solve the parametric approximation based on the quadratic program:

minimize
𝒘

𝒘T𝑴𝒘

subject to 𝒘 ≥ 0, 1T𝒘 = 1,

where
𝑴 = IE

[
(𝜏1 − 𝒓)+ ((𝜏1 − 𝒓)+)T

]
.

d. Comment on the goodness of the approximation.

10.8 (CVaR portfolios)

a. Download market data corresponding to 𝑁 assets (e.g., stocks or cryptocurrencies) during
a period with 𝑇 observations, 𝒓1, . . . , 𝒓𝑇 ∈ R𝑁 .

b. Solve the minimum CVaR portfolio as the following linear program for different values of
the parameter 𝛼:

minimize
𝒘,𝜏,𝒖

𝜏 + 1
1−𝛼

1
𝑇

∑𝑇
𝑡=1 𝑢𝑡

subject to 0 ≤ 𝑢𝑡 ≥ −𝒘T𝒓𝑡 − 𝜏, 𝑡 = 1, . . . , 𝑇,
𝒘 ≥ 0, 1T𝒘 = 1.

c. Observe how many observations are actually used (𝑢𝑡 > 0) for the different values of 𝛼.
d. Add some small perturbation or noise to the sequence of returns 𝒓1, . . . , 𝒓𝑇 and repeat the

experiment to observe the sensitivity of the solutions to data perturbation.

10.9 (Mean–Max-DD formulation as an LP) The mean–Max-DD formulation replaces the
usual variance term 𝒘T𝚺𝒘 by the Max-DD as a measure of risk, defined as

Max-DD(𝒘) = max
1≤𝑡≤𝑇

𝐷𝑡 (𝒘),

where 𝐷𝑡 (𝒘) is the drawdown at time 𝑡. This leads to the problem formulation

maximize
𝒘

𝒘T𝝁 − 𝜆 max
1≤𝑡≤𝑇

{
max
1≤𝜏≤𝑡

𝒘T𝒓cum
𝜏 − 𝒘T𝒓cum

𝑡

}
subject to 𝒘 ∈ W.

Show that it can be rewritten as the following problem (𝑢0 ≜ −∞):

maximize
𝒘,𝒖,𝑠

𝒘T𝝁 − 𝜆 𝑠
subject to 𝒘T𝒓cum

𝑡 ≤ 𝑢𝑡 ≤ 𝑠 + 𝒘T𝒓cum
𝑡 , 𝑡 = 1, . . . , 𝑇,

𝑢𝑡−1 ≤ 𝑢𝑡 ,
𝒘 ∈ W,

which is a linear program (assumingW only contains linear constraints).
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10.10 (Mean–Ave-DD formulation as an LP) The mean–Ave-DD formulation replaces the
usual variance term 𝒘T𝚺𝒘 by the Ave-DD as a measure of risk, defined as

Ave-DD =
1
𝑇

∑︁
1≤𝑡≤𝑇

𝐷𝑡 (𝒘),

where 𝐷𝑡 (𝒘) is the drawdown at time 𝑡. This leads to the problem formulation

maximize
𝒘

𝒘T𝝁 − 𝜆 1
𝑇

𝑇∑︁
𝑡=1

(
max
1≤𝜏≤𝑡

𝒘T𝒓cum
𝜏 − 𝒘T𝒓cum

𝑡

)
subject to 𝒘 ∈ W.

Show that it can be rewritten as the following problem (𝑢0 ≜ −∞):

maximize
𝒘,𝒖,𝑠

𝒘T𝝁 − 𝜆 𝑠
subject to 1

𝑇

∑𝑇
𝑡=1 𝑢𝑡 ≤ 1

𝑇

∑𝑇
𝑡=1 𝒘

T𝒓cum
𝑡 + 𝑠,

𝒘T𝒓cum
𝑡 ≤ 𝑢𝑡 , 𝑡 = 1, . . . , 𝑇,

𝑢𝑡−1 ≤ 𝑢𝑡 ,
𝒘 ∈ W,

which is a linear program (assumingW only contains linear constraints).

10.11 (Mean–CVaR-DD formulation as an LP) The mean–CVaR-DD formulation replaces
the usual variance term 𝒘T𝚺𝒘 by the CVaR-DD as a measure of risk, expressed in a variational
form as

CVaR-DD(𝒘) = inf
𝜏

{
𝜏 + 1

1 − 𝛼
1
𝑇

𝑇∑︁
𝑡=1

(𝐷𝑡 (𝒘) − 𝜏)+
}
,

where 𝐷𝑡 (𝒘) is the drawdown at time 𝑡. This leads to the problem formulation

maximize
𝒘,𝜏

𝒘T𝝁 − 𝜆
(
𝜏 + 1

1 − 𝛼
1
𝑇

𝑇∑︁
𝑡=1

(
max
1≤𝜏≤𝑡

𝒘T𝒓cum
𝜏 − 𝒘T𝒓cum

𝑡 − 𝜏
)+)

subject to 𝒘 ∈ W.

Show that it can be rewritten as the following problem (𝑢0 ≜ −∞):

maximize
𝒘,𝜏,𝑠,𝒛,𝒖

𝒘T𝝁 − 𝜆 𝑠
subject to 𝑠 ≥ 𝜏 + 1

1−𝛼
1
𝑇

∑𝑇
𝑡=1 𝑧𝑡 ,

0 ≤ 𝑧𝑡 ≥ 𝑢𝑡 − 𝒘T𝒓cum
𝑡 − 𝜏, 𝑡 = 1, . . . , 𝑇,

𝒘T𝒓cum
𝑡 ≤ 𝑢𝑡 ,

𝑢𝑡−1 ≤ 𝑢𝑡 ,
𝒘 ∈ W,

which is a linear program (assumingW only contains linear constraints).

10.12 (Mean–EVaR-DD formulation as a convex problem) The mean–EVaR-DD formulation
replaces the usual variance term 𝒘T𝚺𝒘 by the EVaR-DD as a measure of risk, defined as

EVaR-DD(𝒘) = inf
𝑧>0

{
𝑧−1 log

(
1

1 − 𝛼
1
𝑇

𝑇∑︁
𝑡=1

exp(𝑧𝐷𝑡 (𝒘))
)}
,
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where 𝐷𝑡 (𝒘) is the drawdown at time 𝑡 defined as

𝐷𝑡 (𝒘) = max
1≤𝜏≤𝑡

𝒘T𝒓cum
𝜏 − 𝒘T𝒓cum

𝑡 .

a. Write down the mean–EVaR-DD portfolio formulation in convex form.
b. Further rewrite the problem in terms of the exponential cone.
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11

Risk Parity Portfolios

“To dare the impossible is no mark of a wise man.”

— Euripides

Markowitz’s mean–variance portfolio optimizes a trade-off between expected return and
risk measured by the variance. Alternative measures of risk to the variance or volatility can
certainly be entertained.

However, measuring the risk of the portfolio with a single number provides a limited view.
Instead, a more refined characterization comes from employing a risk profile that quantifies
the amount of risk contributed by each constituent asset. This refined risk characterization
allows a proper control of the portfolio risk diversification and will be explored in this chapter.

11.1 Introduction
Markowitz’s mean–variance portfolio (Markowitz, 1952) formulates the portfolio design as a
trade-off between the expected return 𝒘T𝝁 and the risk measured by the variance 𝒘T𝚺𝒘 (see
Chapter 7 for details):

maximize
𝒘

𝒘T𝝁 − 𝜆

2 𝒘
T𝚺𝒘

subject to 𝒘 ∈ W,

where 𝜆 is a hyper-parameter that controls the investor’s risk aversion andW denotes an
arbitrary constraint set, such asW = {𝒘 | 1T𝒘 = 1, 𝒘 ≥ 0}.

Nevertheless, it has been well recognized over decades of research and experimentation that
measuring the portfolio risk with the variance 𝒘T𝚺𝒘 or, similarly, the volatility

√
𝒘T𝚺𝒘 may

not be the best choice for out-of-sample performance. One way to address this drawback is to
use alternative risk measures as explored in Chapter 10. On top of that, one can add another
layer of sophistication by characterizing the risk of the portfolio not just with a single number
but with a risk profile that quantifies the amount of risk contributed by each constituent asset.
This refined risk characterization allows for proper control of the portfolio risk diversification
(Litterman, 1996; Qian, 2005, 2016; Roncalli, 2013b; Tasche, 2008).

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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This chapter introduces the risk parity portfolio from its simplest form (with a closed-form
solution), through vanilla convex formulations, to the more general nonconvex formulations,
providing a wide range of numerical algorithms (Feng & Palomar, 2015, 2016; Maillard et al.,
2010).

11.2 From Dollar to Risk Diversification
Risk parity is an approach to investment management that focuses on allocation of risk rather
than allocation of dollars or capital. In other words, it departs from the concept of dollar
diversification to risk diversification. The underlying idea is to design the asset allocation so
that each asset (or asset class) contributes the same risk level to the overall portfolio. This
typically produces better out-of-sample risk control and can be more resistant to market
downturns than traditional portfolios.

Historically, risk parity starts from the observation that traditional asset allocations, such as
the market portfolio or the 60/40 portfolio in stocks/bonds, are insufficiently diversified in
terms of risk contribution (Asness et al., 2012). From a risk perspective, the 60/40 portfolio is
mainly equity portfolio since stocks are much more volatile than bonds and dominate the risk
of the entire portfolio.

Some of the theoretical components were developed in the 1950s and 1960s, but the first
risk parity fund, called the “All Weather” fund, was pioneered by Bridgewater Associates in
1996. An early analysis in terms of partial derivatives to identify “hot spots” can be found in
Litterman (1996). The term “risk parity” was coined in 2005 by Edward Qian1 (Qian, 2005)
and, in recent years, it has been adopted by the asset management industry as a way of risk
management. Risk parity gained significantly in popularity after the global financial crisis in
2008 (Asness et al., 2012; Maillard et al., 2010). Nevertheless, some portfolio managers have
expressed skepticism about its practical application and effectiveness in all types of market
conditions, especially bull markets (Anderson et al., 2012; Chaves et al., 2011).

The risk parity portfolio has received significant attention from both practitioner and academic
communities, producing a large number of publications and some textbooks such as Qian
(2016) for a high-level and practical perspective and Roncalli (2013b) for a more mathematical
treatment.

Figure 11.1 illustrates the difference between dollar diversification and risk diversification.
The 1/𝑁 portfolio by definition perfectly diversifies the capital allocation (i.e., portfolio
weights) but does not show a good risk diversification profile (in fact, a single asset exhibits a
high risk contribution). On the other hand, the risk parity portfolio precisely focuses on the
diversification of the risk profile.

1 Dr. Edward Qian is the Chief Investment Officer and Head of Research of the Multi Asset Group at PanAgora
Asset Management.

https://www.panagora.com/members/edward-qian-ph-d/
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Figure 11.1 Illustration of portfolio allocation and risk allocation for the 1/𝑁
portfolio and risk parity portfolio.

11.3 Risk Contributions
The whole idea of the risk parity portfolio hinges on quantifying the decomposition of the
portfolio risk into the sum of risk contributions from the individual assets:

portfolio risk =

𝑁∑︁
𝑖=1

RC𝑖,

where RC𝑖 denotes the risk contribution (RC) of the 𝑖th asset to the total risk. The choice
of risk measure depends on the portfolio designer, with common options being volatility,
value-at-risk (VaR), or conditional VaR (CVaR). For a list of performance measures, refer to
Section 6.3, and for a detailed discussion on portfolio design based on alternative performance
measures, see Chapter 10. Euler’s theorem offers the solution for the desired decomposition
of portfolio risk, cf. Litterman (1996), Tasche (2008), and references therein.

Theorem 11.1 (Euler’s homogenous function theorem) Let a continuous and differentiable
function 𝑓 : R𝑁 → R be a positively homogeneous function of degree one.2 Then

𝑓 (𝒘) =
𝑁∑︁
𝑖=1

𝑤𝑖
𝜕 𝑓

𝜕𝑤𝑖
. (11.1)

2 A function 𝑓 (𝒘) is a positively homogeneous function of degree one if 𝑓 (𝑐𝒘) = 𝑐 𝑓 (𝒘) holds for any 𝑐 > 0.
This condition is satisfied by the volatility, VaR, and CVaR, among others (but not by the variance, for example).
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From Theorem 11.1, for a given risk measure 𝑓 (𝒘), we can interpret the risk contribution
from the 𝑖th asset as

RC𝑖 = 𝑤𝑖
𝜕 𝑓 (𝒘)
𝜕𝑤𝑖

.

In addition, it is convenient to define the related marginal risk contribution (MRC) as

MRC𝑖 =
𝜕 𝑓 (𝒘)
𝜕𝑤𝑖

,

which evaluates the portfolio risk’s sensitivity with respect to the 𝑖th asset weight, and the
relative risk contribution (RRC) as

RRC𝑖 =
RC𝑖
𝑓 (𝒘) ,

which satisfies
∑𝑁
𝑖=1 RRC𝑖 = 1.

The following measures of risk do satisfy Euler’s requirement in Theorem 11.1 and the
decomposition in (11.1) can be employed.

• For the volatility, 𝜎(𝒘) =
√
𝒘T𝚺𝒘, Euler’s theorem can be used with

RC𝑖 = 𝑤𝑖
𝜕𝜎(𝒘)
𝜕𝑤𝑖

=
𝑤𝑖 (𝚺𝒘)𝑖√
𝒘T𝚺𝒘

.

• For the VaR, defined as VaR𝛼 (𝒘) = inf
{
𝜉0 | Pr(−𝒘T𝒓 ≤ 𝜉0) ≥ 𝛼

}
with 𝛼 the confidence

level (e.g., 𝛼 = 0.95), 𝒓 representing the random market return vector, and −𝒘T𝒓 denoting
the (random) loss of portfolio 𝒘, it follows (Hallerbach, 2003) that

RC𝑖 = 𝑤𝑖
𝜕VaR𝛼 (𝒘)

𝜕𝑤𝑖
= IE

[
−𝑤𝑖𝑟𝑖 | −𝒘T𝒓 = VaR𝛼 (𝒘)

]
.

• For the CVaR, defined as CVaR𝛼 (𝒘) = IE
[
−𝒘T𝒓 | −𝒘T𝒓 ≥ VaR𝛼 (𝒘)

]
, it follows (Scaillet,

2004) that

RC𝑖 = 𝑤𝑖
𝜕CVaR𝛼 (𝒘)

𝜕𝑤𝑖
= IE

[
−𝑤𝑖𝑟𝑖 | −𝒘T𝒓 ≥ VaR𝛼 (𝒘)

]
.

In practice, the VaR and CVaR risk contribution expressions are not easily computable.
Interestingly, if the returns 𝒓 follow a Gaussian distribution, then the VaR and CVaR can be
expressed explicitly as (McNeil et al., 2015)

VaR𝛼 (𝒘) = −𝒘T𝝁 + 𝜅1(𝛼)
√
𝒘T𝚺𝒘,

CVaR𝛼 (𝒘) = −𝒘T𝝁 + 𝜅2(𝛼)
√
𝒘T𝚺𝒘,

where 𝜅1(𝛼) ≜ Φ−1(𝛼), 𝜅2(𝛼) ≜ 1
(1−𝛼)

1√
2𝜋

exp
(
− 1

2Φ
−1(𝛼)2

)
, and Φ(·) is the cumulative

distribution function of a zero-mean unit-variance Gaussian variable.



290 Risk Parity Portfolios

Volatility Risk Contributions
In the rest of the chapter, we will focus on the portfolio volatility, 𝜎(𝒘) =

√
𝒘T𝚺𝒘, which

admits the decomposition

𝜎(𝒘) =
𝑁∑︁
𝑖=1

𝑤𝑖
𝜕𝜎

𝜕𝑤𝑖
=

𝑁∑︁
𝑖=1

𝑤𝑖 (𝚺𝒘)𝑖√
𝒘T𝚺𝒘

,

leading to the following expressions:

MRC𝑖 =
(𝚺𝒘)𝑖√
𝒘T𝚺𝒘

, RC𝑖 =
𝑤𝑖 (𝚺𝒘)𝑖√
𝒘T𝚺𝒘

, RRC𝑖 =
𝑤𝑖 (𝚺𝒘)𝑖
𝒘T𝚺𝒘

.

11.4 Problem Formulation
The risk parity portfolio (RPP), also termed equal risk portfolio (ERP), is simply formulated
as requiring the risk contributions to be equal (i.e., equalizing the individual risks):

RRC𝑖 =
𝑤𝑖 (𝚺𝒘)𝑖
𝒘T𝚺𝒘

=
1
𝑁
, 𝑖 = 1, . . . , 𝑁.

This is reminiscent of the 1/𝑁 portfolio or equally weighted portfolio (EWP) that satisfies:

𝑤𝑖 =
1
𝑁
, 𝑖 = 1, . . . , 𝑁.

Thus, whereas the 1/𝑁 portfolio equalizes the dollar allocation, the RPP equalizes the risk
contribution. Interestingly, if all the assets have roughly the same Sharpe ratios and same
correlations, the RPP can be interpreted as optimal under the Markowitz mean–variance
framework (Maillard et al., 2010). In addition, it can be shown that the RPP exists, is unique,
and is located between the minimum variance and equally weighted portfolios (Maillard et al.,
2010).

More generally, one can specify a risk profile allocation different from the uniform one,
termed the risk budgeting portfolio (RBP):

RRC𝑖 =
𝑤𝑖 (𝚺𝒘)𝑖
𝒘T𝚺𝒘

= 𝑏𝑖, 𝑖 = 1, . . . , 𝑁,

where 𝒃 = (𝑏1, . . . , 𝑏𝑁 ) ≥ 0 (normalized to 1T𝒃 = 1) is the desired risk profile.

Thus, in its simplest form, the problem can be formulated as finding a portfolio 𝒘 ≥ 0, with
1T𝒘 = 1, satisfying the risk budgeting constraints

𝑤𝑖 (𝚺𝒘)𝑖 = 𝑏𝑖 𝒘T𝚺𝒘, 𝑖 = 1, . . . , 𝑁.

This is a feasibility problem (there is no objective to maximize or minimize, just constraints),
whose solution is not trivial. In the rest of the chapter we will consider the resolution of this
problem by exploring three cases in order of difficulty:3

• naive diagonal formulation;
3 The R package riskParityPortfolio (Cardoso & Palomar, 2021) and the Python package riskparity.py

can solve these formulations very efficiently.

https://CRAN.R-project.org/package=riskParityPortfolio
https://github.com/convexfi/riskparity.py
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• vanilla convex formulation; and
• general nonconvex formulation.

Formulation with Shorting
Typically, the RPP formulation involves no shorting, so 𝒘 ≥ 0. Allowing shorting generally
requires more complicated resolution methods. Nevertheless, in the case that the shorting
pattern is known a priori, the problem can be easily reformulated like the no-shorting
formulation with the following trick (Spinu, 2013).

Suppose that the shorting pattern, i.e., which assets to long or short, is defined a priori in the
vector 𝒔 = (𝑠1, . . . , 𝑠𝑁 ) with 𝑠𝑖 = 1 for long positions and 𝑠𝑖 = −1 for short positions. Then the
desired portfolio 𝒘, which follows the shorting pattern, can be related to a virtual no-shorting
portfolio �̃� ≥ 0 as 𝒘 = 𝒔 ⊙ �̃� such that 𝒘T𝚺𝒘 = �̃�T�̃��̃�, where �̃� = Diag(𝒔)𝚺Diag(𝒔). Then,
the risk budgeting equations become

�̃�𝑖 (�̃��̃�)𝑖 = 𝑏𝑖 �̃�T�̃��̃�, 𝑖 = 1, . . . , 𝑁.

Formulation with Group Risk Parity
The idea of group risk parity is to consider the risk contributions of several assets belonging
to the same group (e.g., industry or sector) as a whole. For example, suppose there are 𝐾
groups (with 𝐾 < 𝑁), denoted G1, . . . ,G𝐾 , such that they form a partition of the 𝑁 assets.
We can define the risk contribution from the 𝑘th group as

RCG𝑘 =
∑︁
𝑖∈G𝑘

𝑤𝑖
𝜕𝜎

𝜕𝑤𝑖
=

∑︁
𝑖∈G𝑘

𝑤𝑖 (𝚺𝒘)𝑖√
𝒘T𝚺𝒘

and then the risk budgeting equations become∑︁
𝑖∈G𝑘

𝑤𝑖 (𝚺𝒘)𝑖 = 𝑏𝑘 𝒘T𝚺𝒘, 𝑖 = 1, . . . , 𝐾.

Formulation with Risk Factors
Consider the following factor modeling of the returns:

𝒓𝑡 = 𝜶 + 𝑩 𝒇𝑡 + 𝝐𝑡 ,

where 𝒇𝑡 contains the 𝐾 factors (typically with 𝐾 ≪ 𝑁), 𝜶 is the so-called “alpha,” matrix 𝑩
contains the so-called “betas” on the columns corresponding to the different factors, and 𝝐𝑡 is
the residual.

The risk contribution from the 𝑘th factor can be defined (Roncalli & Weisang, 2016) as

RC𝑘 =
(𝑩T𝒘)𝑘 (𝑩†𝚺𝒘)𝑘√

𝒘T𝚺𝒘
,

where 𝑩† ≜ 𝑩T(𝑩T𝑩)−1 is the Moore–Penrose pseudo-inverse matrix of 𝑩, and the risk
budgeting equations become

(𝑩T𝒘)𝑘 (𝑩†𝚺𝒘)𝑘 = 𝑏𝑘 𝒘T𝚺𝒘, 𝑖 = 1, . . . , 𝐾.
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11.5 Naive Diagonal Formulation
Consider the risk budgeting equations

𝑤𝑖 (𝚺𝒘)𝑖 = 𝑏𝑖 𝒘T𝚺𝒘, 𝑖 = 1, . . . , 𝑁.

If we assume that the covariance matrix is diagonal, 𝚺 = Diag(𝝈2), then they simplify to

𝑤2
𝑖𝜎

2
𝑖 = 𝑏𝑖

𝑁∑︁
𝑗=1

𝑤2
𝑗𝜎

2
𝑗 , 𝑖 = 1, . . . , 𝑁

or, equivalently,

𝑤𝑖 =

√
𝑏𝑖

𝜎𝑖

√√√ 𝑁∑︁
𝑗=1

𝑤2
𝑗
𝜎2
𝑗
, 𝑖 = 1, . . . , 𝑁. (11.2)

Observe that this portfolio is inversely proportional to the assets’ volatilities, which corresponds
to the inverse volatility portfolio (IVolP) introduced in Section 6.5.2 of Chapter 6. Lower
weights are given to high-volatility assets and higher weights to low-volatility assets, resulting
in weighted constituent assets with equal volatility (for the case 𝑏𝑖 = 1/𝑁):

Std(𝑤𝑖𝑥𝑖) = 𝑤𝑖𝜎𝑖 = 1/𝑁,

where Std(·) denotes standard deviation.

For a general nondiagonal covariance matrix, a closed-form solution is not available and some
optimization procedure has to be employed. Nevertheless, the diagonal solution in (11.2) can
always be used as a “naive” solution. Interestingly, the diagonal solution is also optimal if the
correlations of all assets are the same (Maillard et al., 2010).

Illustrative Example
Figure 11.2 shows the portfolio allocation and the risk contribution of the naive RPP and the
1/𝑁 portfolio. The 1/𝑁 portfolio has an equal capital allocation by definition, but it shows an
unequal risk contribution with much more risk from the single-asset “MGM.” The naive RPP
does a much better job equalizing the risk contribution, but it is not perfectly equalized since
it ignores the off-diagonal elements of the covariance matrix.

11.6 Vanilla Convex Formulations
Consider the risk budgeting equations

𝑤𝑖 (𝚺𝒘)𝑖 = 𝑏𝑖 𝒘T𝚺𝒘, 𝑖 = 1, . . . , 𝑁

with 1T𝒘 = 1 and 𝒘 ≥ 0. If we define 𝒙 = 𝒘/
√
𝒘T𝚺𝒘, then we can rewrite them as

𝑥𝑖 (𝚺𝒙)𝑖 = 𝑏𝑖 or, more compactly in vector form, as

𝚺𝒙 = 𝒃/𝒙 (11.3)

with 𝒙 ≥ 0, from which we can recover the portfolio simply by normalizing 𝒙 as 𝒘 = 𝒙/(1T𝒙).

Interestingly, the equations in (11.3) can be rewritten in terms of the correlation matrix
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Figure 11.2 Portfolio allocation and risk contribution of the 1/𝑁 portfolio and naive
diagonal RPP.

𝑪 = 𝑫−1/2𝚺𝑫−1/2, with 𝑫 a diagonal matrix containing the variances diag(𝚺) = 𝝈2 along
the main diagonal, as (Spinu, 2013)

𝑪�̃� = 𝒃/�̃�, (11.4)

where 𝒙 = �̃�/𝝈. This has the effect of normalizing the returns with respect to the volatilities
of the assets, which can help numerically as will be empirically verified later.

Direct Resolution via Root Finding
The system of nonlinear equations 𝚺𝒙 = 𝒃/𝒙 can be interpreted as finding the roots of the
nonlinear function

𝐹 (𝒙) = 𝚺𝒙 − 𝒃/𝒙,

that is, solving for

𝐹 (𝒙) = 0.

In practice, this can be done with a general-purpose nonlinear multivariate root finder,
available in most programming languages.4

A similar root-finding problem can be formulated in terms of 𝒘 by including the budget
4 In R, a general-purpose nonlinear multivariate root finder is provided by the function multiroot() from the

package rootSolve. In MATLAB, we can use the function fsolve().

https://CRAN.R-project.org/package=rootSolve
https://www.mathworks.com/help/optim/ug/fsolve.html
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constraint 1T𝒘 = 1 explicitly in the nonlinear function (Chaves et al., 2012):

𝐹 (𝒘, 𝜆) =
[
𝚺𝒘 − 𝜆𝒃/𝒘

1T𝒘 − 1

]
.

11.6.1 Formulations
A more interesting way to solve the risk budgeting equation in (11.3) is by unveiling the
hidden convexity. This can be achieved by realizing that (11.3) precisely corresponds to the
optimality conditions of some carefully chosen convex optimization problems, as is the case
with the following three formulations.

• To start, consider the following convex optimization problem (Spinu, 2013):

minimize
𝒙≥0

1
2𝒙

T𝚺𝒙 − 𝒃T log(𝒙). (11.5)

It turns out that setting the gradient of the objective function to zero precisely corresponds
to (11.3):

𝚺𝒙 = 𝒃/𝒙.

Therefore, solving this problem is equivalent to solving the risk budgeting equations.

• A slightly different convex optimization problem is (Roncalli, 2013b)

minimize
𝒙≥0

√
𝒙T𝚺𝒙 − 𝒃T log(𝒙). (11.6)

In this case, setting the gradient to zero leads to

𝚺𝒙 = 𝒃/𝒙 ×
√
𝒙T𝚺𝒙,

which follows the form of the risk budgeting equation (11.3) after renormalizing the
variable as �̃� = 𝒙/(𝒙T𝚺𝒙)1/4.

• Similarly, the following formulation was proposed in Maillard et al. (2010):

minimize
𝒙≥0

√
𝒙T𝚺𝒙

subject to 𝒃T log(𝒙) ≥ 𝑐,
(11.7)

with 𝑐 an arbitrary constant. This formulation provides an alternative interpretation of
the problem as minimizing the volatility (or variance) with the constraint on 𝒃T log(𝒙)
controlling the diversification.

• Another reformulation swapping the objective and constraint in (11.7) was proposed by
Kaya and Lee (2012) as

maximize
𝒙≥0

𝒃T log(𝒙)
subject to

√
𝒙T𝚺𝒙 ≤ 𝜎0,

(11.8)

where the volatility term appears as a constraint and 𝜎0 is the chosen maximum level of
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volatility. In this case, we can define the Lagrangian (ignoring the nonnegativity constraint
on 𝒙 since it is automatically satisfied) as

𝐿 (𝒙;𝜆) = 𝒃T log(𝒙) + 𝜆
(
𝜎0 −

√
𝒙T𝚺𝒙

)
and setting its gradient to zero leads to

𝜆𝚺𝒙 = 𝒃/𝒙 ×
√
𝒙T𝚺𝒙,

which follows the form of the risk budgeting equation (11.3) after renormalizing the
variable as �̃� = 𝒙 × 𝜆1/2/(𝒙T𝚺𝒙)1/4.

All these formulations are convex and can be solved with a general-purpose solver available
in any programming language.5 Alternatively, simple and efficient tailored algorithms can be
developed.

Illustrative Example
Figure 11.3 shows the distribution of the portfolio weights and risk contribution for the 1/𝑁
portfolio, the naive diagonal RPP, and the vanilla convex RPP. The latter clearly achieves
perfect risk equalization as opposed to the naive diagonal case.
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Figure 11.3 Portfolio allocation and risk contribution of the vanilla convex RPP
compared to benchmarks (1/𝑁 portfolio and naive diagonal RPP).

5 In R, there is a myriad of solvers, a typical example being the base function optim(). In MATLAB, a similar
function is fmincon().
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11.6.2 Algorithms
As an alternative to using a general-purpose solver, we will now develop several practical
iterative algorithms tailored to the problem formulations in (11.5) and (11.6) that produce a
sequence of iterates 𝒙0, 𝒙1, 𝒙2, . . .

As the initial point of these iterative algorithms, we can use several options that attempt to
approximately solve the system of nonlinear equations 𝚺𝒙 = 𝒃/𝒙:

• Naive diagonal solution: Inspired by the diagonal case 𝚺 = Diag(𝝈2), we can simply use

𝒙0 =
√
𝒃/𝝈.

• Scaled heuristic for (11.5): For any given point �̄�, we can always find a more appropriate
scaling factor 𝑡 such that 𝒙 = 𝑡 �̄� satisfies the sum of the nonlinear equations 1T𝚺𝒙 = 1T(𝒃/𝒙),
leading to 𝑡 =

√︁
1T(𝒃/�̄�)/1T𝚺�̄� and then

𝒙0 = �̄� ×
√︂

1T(𝒃/�̄�)
1T𝚺�̄�

.

• Scaled heuristic for (11.6): For any given point �̄�, we can always find a more appropriate
scaling factor 𝑡 such that 𝒙 = 𝑡 �̄� satisfies the sum of the nonlinear equations 1T𝚺𝒙 =

1T(𝒃/𝒙) ×
√
𝒙T𝚺𝒙, leading to

𝒙0 = �̄� × 1T(𝒃/�̄�)
1T𝚺�̄�

√
�̄�T𝚺�̄�.

• Diagonal row-sum heuristic: Using Diag(𝚺1) in lieu of 𝚺 leads to

𝒙0 =
√
𝒃/
√
𝚺1.

Newton’s Method
Newton’s method obtains the iterates based on the gradient ∇ 𝑓 and the Hessian H 𝑓 of the
objective function 𝑓 (𝒙) as follows:

𝒙𝑘+1 = 𝒙𝑘 − H 𝑓 (𝒙𝑘)−1∇ 𝑓 (𝒙𝑘).

For details on Newton’s method, the reader is referred to Section B.2 in Appendix B. The
specific application of Newton’s method to risk parity portfolio was studied in detail in Spinu
(2013).

In our case, the gradient and Hessian are easily computed as follows:

• For the function 𝑓 (𝒙) = 1
2𝒙

T𝚺𝒙 − 𝒃T log(𝒙) in (11.5):

∇ 𝑓 (𝒙) = 𝚺𝒙 − 𝒃/𝒙,
H 𝑓 (𝒙) = 𝚺 + Diag(𝒃/𝒙2).

• For the function 𝑓 (𝒙) =
√
𝒙T𝚺𝒙 − 𝒃T log(𝒙) in (11.6):

∇ 𝑓 (𝒙) = 𝚺𝒙/
√
𝒙T𝚺𝒙 − 𝒃/𝒙,

H 𝑓 (𝒙) =
(
𝚺 − 𝚺𝒙𝒙T𝚺/𝒙T𝚺𝒙

)
/
√
𝒙T𝚺𝒙 + Diag(𝒃/𝒙2).
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Cyclical Coordinate Descent Algorithm
This method simply minimizes the function 𝑓 (𝒙) in a cyclical manner with respect to each
element 𝑥𝑖 of the variable 𝒙 = (𝑥1, . . . , 𝑥𝑁 ), while holding the other elements fixed. It is a
particular case of the block coordinate descent (BCD) algorithm, also called the Gauss–Seidel
method; for details, the reader is referred to Section B.6 in Appendix B.

This approach makes sense when the minimization with respect to a single element 𝑥𝑖 becomes
much easier. In particular, in our case the minimizer can be conveniently derived in closed
form as follows (Griveau-Billion et al., 2013):

• For the function 𝑓 (𝒙) = 1
2𝒙

T𝚺𝒙 − 𝒃T log(𝒙) in (11.5), the elementwise minimization
becomes

minimize
𝑥𝑖≥0

1
2𝑥

2
𝑖𝚺𝑖𝑖 + 𝑥𝑖 (𝒙T

−𝑖𝚺−𝑖,𝑖) − 𝑏𝑖 log 𝑥𝑖,

where 𝒙−𝑖 = (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑁 ) denotes the variable 𝒙 without the 𝑖th element
and 𝚺−𝑖,𝑖 denotes the 𝑖th column of matrix 𝚺 without the 𝑖th element. Setting the partial
derivative with respect to 𝑥𝑖 to zero gives us the second-order equation

𝚺𝑖𝑖𝑥
2
𝑖 + (𝒙T

−𝑖𝚺−𝑖,𝑖)𝑥𝑖 − 𝑏𝑖 = 0

with positive solution given by

𝑥𝑖 =
−𝒙T
−𝑖𝚺−𝑖,𝑖 +

√︃
(𝒙T
−𝑖𝚺−𝑖,𝑖)2 + 4𝚺𝑖𝑖𝑏𝑖

2𝚺𝑖𝑖
.

• For the function 𝑓 (𝒙) =
√
𝒙T𝚺𝒙 − 𝒃T log(𝒙) in (11.6), the derivation follows similarly,

with the update for 𝑥𝑖 given by

𝑥𝑖 =
−𝒙T
−𝑖𝚺−𝑖,𝑖 +

√︃
(𝒙T
−𝑖𝚺−𝑖,𝑖)2 + 4𝚺𝑖𝑖𝑏𝑖

√
𝒙T𝚺𝒙

2𝚺𝑖𝑖
.

The main issue with this method is that the elements of 𝒙 have to be updated sequentially
at each iteration, which increases the computational complexity per iteration. One might be
tempted to try a parallel update, but then convergence would not be guaranteed.

Parallel Update via MM
The reason why a parallel update cannot be implemented is that the term 𝒙T𝚺𝒙 couples all
the elements of 𝒙. One way to decouple these elements is via the majorization–minimization
(MM) framework; for details on MM, the reader is referred to Section B.7 in Appendix B.

The MM method obtains the iterates 𝒙0, 𝒙1, 𝒙2, . . . by solving a sequence of simpler surrogate
or majorized problems. In particular, the following majorizer is used for the term 𝒙T𝚺𝒙 around
the current point 𝒙 = 𝒙𝑘 , that is, an upper-bound tangent at the current point:

1
2
𝒙T𝚺𝒙 ≤ 1

2
(𝒙𝑘)T𝚺𝒙𝑘 + (𝚺𝒙𝑘)T(𝒙 − 𝒙𝑘) + 𝜆max

2
(𝒙 − 𝒙𝑘)T(𝒙 − 𝒙𝑘),

where 𝜆max is the largest eigenvalue of matrix 𝚺. We can now solve our original problem by
solving instead a sequence of majorized problems as follows:
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• The majorized problem corresponding to (11.5) is

minimize
𝒙≥0

𝜆max
2 𝒙T𝒙 + 𝒙T(𝚺 − 𝜆max𝑰)𝒙𝑘 − 𝒃T log(𝒙),

from which setting the gradient to zero gives the second-order equation

𝜆max𝑥
2
𝑖 + ((𝚺 − 𝜆max𝑰)𝒙𝑘)𝑖𝑥𝑖 − 𝑏𝑖 = 0

with positive solution

𝑥𝑖 =
−((𝚺 − 𝜆max𝑰)𝒙𝑘)𝑖 +

√︁
((𝚺 − 𝜆max𝑰)𝒙𝑘)2𝑖 + 4𝜆max𝑏𝑖

2𝜆max
.

• Similarly, forming the majorized problem for (11.6) and setting the gradient to zero gives
the second-order equation

𝜆max𝑥
2
𝑖 + ((𝚺 − 𝜆max𝑰)𝒙𝑘)𝑖𝑥𝑖 − 𝑏𝑖

√︁
(𝒙𝑘)T𝚺𝒙𝑘 = 0

with positive solution

𝑥𝑖 =
−((𝚺 − 𝜆max𝑰)𝒙𝑘)𝑖 +

√︃
((𝚺 − 𝜆max𝑰)𝒙𝑘)2𝑖 + 4𝜆max𝑏𝑖

√︁
(𝒙𝑘)T𝚺𝒙𝑘

2𝜆max
.

Parallel Update via SCA
Another way to decouple the elements of 𝒙 in the term 𝒙T𝚺𝒙 is via the successive convex
approximation (SCA) framework; for details on SCA, the reader is referred to Section B.8 in
Appendix B.

The SCA method obtains the iterates 𝒙0, 𝒙1, 𝒙2, . . . by solving a sequence of simpler surrogate
problems. In particular, the following surrogate can be used for the term 𝒙T𝚺𝒙 around the
current point 𝒙 = 𝒙𝑘:

1
2
𝒙T𝚺𝒙 ≈ 1

2
(𝒙𝑘)T𝚺𝒙𝑘 + (𝚺𝒙𝑘)T(𝒙 − 𝒙𝑘) + 1

2
(𝒙 − 𝒙𝑘)TDiag(𝚺) (𝒙 − 𝒙𝑘),

where Diag(𝚺) is a diagonal matrix containing the diagonal of 𝚺. We can now solve our
original problems by solving instead a sequence of surrogate problems as follows:

• The surrogate problem corresponding to (11.5) is

minimize
𝒙≥0

1
2𝒙

TDiag(𝚺)𝒙 + 𝒙T(𝚺 − Diag(𝚺))𝒙𝑘 − 𝒃T log(𝒙),

from which setting the gradient to zero gives the second-order equation

𝚺𝑖𝑖𝑥
2
𝑖 + ((𝚺 − Diag(𝚺))𝒙𝑘)𝑖𝑥𝑖 − 𝑏𝑖 = 0

with positive solution

𝑥𝑖 =
−((𝚺 − Diag(𝚺))𝒙𝑘)𝑖 +

√︁
((𝚺 − Diag(𝚺))𝒙𝑘)2

𝑖
+ 4𝚺𝑖𝑖𝑏𝑖

2𝚺𝑖𝑖
.



11.6 Vanilla Convex Formulations 299

• Similarly, forming the surrogate problem for (11.6) and setting the gradient to zero gives
the update

𝑥𝑖 =
−((𝚺 − Diag(𝚺))𝒙𝑘)𝑖 +

√︃
((𝚺 − Diag(𝚺))𝒙𝑘)2

𝑖
+ 4𝚺𝑖𝑖𝑏𝑖

√︁
(𝒙𝑘)T𝚺𝒙𝑘

2𝚺𝑖𝑖
.

11.6.3 Numerical Experiments
To evaluate the algorithms empirically, we use a universe of 𝑁 = 200 stocks from the S&P
500 and compare their convergence in terms of iterations as well as CPU time (the latter
is needed because each iteration may have a different computational cost depending on the
method).

Effect of Initial Point
We start by evaluating in Figure 11.4 the effect of different initial points in Newton’s method
for Spinu’s formulation (11.5). We can clearly observe that the effect is huge. Surprisingly,
the naive diagonal solution, what would have seemed to be a good starting point, is the worst
possible choice. The diagonal row-sum heuristic turns out to be an excellent choice and will
be used hereafter.
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Figure 11.4 Effect of the initial point in Newton’s method for Spinu’s RPP
formulation (11.5).
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Comparison Between the Two Formulations (11.5) and (11.6)
We continue by comparing in Figure 11.5 the difference between solving the two formulations
in (11.5) (termed Spinu) and (11.6) (termed Roncallli) for Newton’s method and the cyclical
coordinate descent method. We can observe that there is not much difference between the
two formulations. Interestingly, the cyclical coordinate method shows the best convergence in
terms of iterations, but the worst in terms of CPU time. However, a word of caution is needed
here: in the cyclical update, each iteration requires updating each element sequentially and
that requires a loop; it is well known that loops are slow in high-level programming languages
like R or Python, but much faster in C++ or Rust. Thus, a more realistic comparison should
be performed in a low-level programming language. As a first-order approximation, when
implemented in a low-level programming language, one can expect the cyclical methods to
perform very similarly to the parallel SCA methods.
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Figure 11.5 Difference between solving Spinu’s RPP formulation (11.5) and
Roncalli’s RPP formulation (11.6) via Newton’s method and the cyclical coordinate
descent method.

Benefit of Reformulation in Terms of Correlation Matrix
Figure 11.6 explores the benefit of reformulating the problem in terms of the correlation
matrix as in (11.4) instead of the covariance matrix – as already proposed in Spinu (2013)
and numerically assessed in Choi and Chen (2022) – based on Newton’s method and MM for
the formulation (11.5). A modest improvement is observed and will be used hereafter.
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Figure 11.6 Effect of formulating the RPP problem in terms of the correlation matrix
and the covariance matrix.

Benefit of the Normalization Step
The solution to 𝚺𝒙 = 𝒃/𝒙 naturally satisfies 𝒙T𝚺𝒙 = 1T𝒃 = 1. It was suggested in Choi and
Chen (2022) to enforce such normalization after each iteration with the quadratic normalization
step

𝒙 ← 𝒙 × 1
√
𝒙T𝚺𝒙

.

This normalization has a complexity of 𝑂 (𝑁2), which is not insignificant. An alternative way
is to enforce at each iteration 1T𝚺𝒙 = 1T(𝒃/𝒙), leading to the linear normalization step

𝒙 ← 𝒙 ×

√︄
𝒃T(1/𝒙)
(1T𝚺)𝒙 ,

which has a complexity of 𝑂 (𝑁).

Figure 11.7 explores the benefit of introducing the normalization step (either quadratic or
linear) for the formulation (11.5) based on the correlation matrix. A small improvement is
observed in the case of the linear normalization.

Final Comparison of Selected Methods
Figure 11.8 shows the convergence of the Newton, MM, and SCA methods for problem (11.5),
comparing the original version with the improved one (i.e., using the correlation matrix
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Figure 11.7 Effect of introducing a normalization step (quadratic or linear) in RPP
algorithms.

instead of the covariance matrix and using the linear normalization step). It seems that the
best method is the improved SCA.

Finally, it is insightful to study the convergence CPU time as a function of the problem
dimension 𝑁 , as shown in Figure 11.9. Again, the improved SCA method seems the best,
followed by the original SCA and the improved MM.

11.7 General Nonconvex Formulations
Risk parity places risk management at the heart of the strategy by building risk-diversified
portfolios while ignoring the expected return. It has been criticized precisely because it
focuses on managing risk concentration rather than portfolio performance. However, the
expected return can also be taken into account within the risk parity paradigm (Roncalli,
2013a). This is often referred to as the enhanced risk parity portfolio.

Section 11.6 was devoted to the vanilla formulation, that is, just with the portfolio constraints
1T𝒘 = 1 and 𝒘 ≥ 0, which can be reformulated in convex form and optimally solved in order to
obtain a portfolio satisfying the risk budgeting equations: 𝑤𝑖 (𝚺𝒘)𝑖 = 𝑏𝑖𝒘T𝚺𝒘, 𝑖 = 1, . . . , 𝑁.
However, in practice, portfolio managers always have additional constraints (e.g., turnover
constraint, market-neutral constraint, maximum-position constraint) as listed in Section 6.2
and also additional objective functions such as the maximization of the expected return or
minimization of the overall variance or volatility. In such realistic scenarios, unfortunately,
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the convex reformulations in Section 11.6 do not hold anymore and we need to resort to more
complicated nonconvex formulations.
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For the general case incorporating additional constraints and/or objective functions, the risk
budgeting equations can only be approximately satisfied:

𝑤𝑖 (𝚺𝒘)𝑖 ≈ 𝑏𝑖𝒘T𝚺𝒘, 𝑖 = 1, . . . , 𝑁.

Since the risk budgeting constraints can only be satisfied approximately, we need to define a
measure of the approximation error, but there is a multitude of possible choices, such as:

• sum of squared relative risk-contribution errors:
𝑁∑︁
𝑖=1

(
𝑤𝑖 (𝚺𝒘)𝑖
𝒘T𝚺𝒘

− 𝑏𝑖
)2

;

• sum of squared risk-contribution errors:
𝑁∑︁
𝑖=1

(
𝑤𝑖 (𝚺𝒘)𝑖√
𝒘T𝚺𝒘

− 𝑏𝑖
√
𝒘T𝚺𝒘

)2

;

• sum of squared volatility-scaled risk-contribution errors:
𝑁∑︁
𝑖=1

(
𝑤𝑖 (𝚺𝒘)𝑖 − 𝑏𝑖𝒘T𝚺𝒘

)2
.

These three error definitions are the same up to a scaling factor; but in terms of numerical
algorithms they show different convergence behaviors (notice that the gradients and Hessians
are different). We recommend the use of the relative risk contributions since they are
normalized by definition between 0 and 1, and do not suffer from numerical issues.

Another alternative to assess the concentration of a risk measure 𝑓 is via the Herfindahl index
(Roncalli, 2013b):

ℎ(𝒘) ≜
𝑁∑︁
𝑖=1

(
𝑤𝑖

𝜕 𝑓

𝜕𝑤𝑖

𝑓 (𝒘)

)2

,

which satisfies 1/𝑁 ≤ ℎ(𝒘) ≤ 1, with ℎ(𝒘) = 1 indicating that the risk is totally concentrated
on a single asset and ℎ(𝒘) = 1/𝑁 corresponding to the risk being equally distributed among
all the assets. Hence, the smaller the Herfindahl index is, the more diversified the risk is. For
the case of the volatility, it becomes

ℎ(𝒘) =
𝑁∑︁
𝑖=1

(
𝑤𝑖 (𝚺𝒘)𝑖
𝒘T𝚺𝒘

)2

.

These expressions are all based on the ℓ2-norm; however, many alternative norms could be
used instead, such as the ℓ1-norm, ℓ∞-norm, or Huber’s robust penalty function. This leads
to a multitude of possible portfolio formulations, some of which have been explored in the
literature as described next.
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11.7.1 Formulations
One of the earlier proposed formulations (Maillard et al., 2010) penalizes the differences
between the volatility-scaled risk-contribution errors as

minimize
𝒘

𝑁∑︁
𝑖, 𝑗=1

(
𝑤𝑖 (𝚺𝒘)𝑖 − 𝑤 𝑗 (𝚺𝒘) 𝑗

)2

subject to 𝒘 ∈ W,

(11.9)

which can obviously be generalized to include the risk budget profile 𝒃 = (𝑏1, . . . , 𝑏𝑁 ) simply
by using the normalized terms 𝑤𝑖 (𝚺𝒘)𝑖 /𝑏𝑖 instead of 𝑤𝑖 (𝚺𝒘)𝑖.

To avoid the double-index summation in the formulation (11.9), the following alternative
reformulation, with the additional dummy variable 𝜃, reduces the number of terms from 𝑁2

to 𝑁:

minimize
𝒘, 𝜃

𝑁∑︁
𝑖=1

(𝑤𝑖 (𝚺𝒘)𝑖 − 𝜃)2

subject to 𝒘 ∈ W.

(11.10)

Note that the optimal 𝜃 for a given 𝒘 is 𝜃 = 1
𝑁

∑𝑁
𝑖=1 𝑤𝑖 (𝚺𝒘)𝑖 = 1

𝑁
𝒘T𝚺𝒘.

The following formulation based on the relative risk-contribution errors was proposed in
Bruder and Roncalli (2012):

minimize
𝒘

𝑁∑︁
𝑖=1

(
𝑤𝑖 (𝚺𝒘)𝑖
𝒘T𝚺𝒘

− 𝑏𝑖
)2

subject to 𝒘 ∈ W.

(11.11)

Another alternative formulation is based on the minimization of the Herfindahl index (Roncalli,
2013b):

minimize
𝒘

𝑁∑︁
𝑖=1

(
𝑤𝑖 (𝚺𝒘)𝑖
𝒘T𝚺𝒘

)2

subject to 𝒘 ∈ W,

(11.12)

which can be seen as a particular case of (11.11) with 𝑏𝑖 = 0.

The formulations (11.9) and (11.10) are not recommended as they tend to suffer from
numerical issues because the terms 𝑤𝑖 (𝚺𝒘)𝑖 squared can become very small (in order
to make them work, the covariance matrix 𝚺 has to be artificially scaled up) (Mausser
& Romanko, 2014). For this reason, the formulations (11.11) and (11.12), based on the
normalized terms 𝑤𝑖 (𝚺𝒘)𝑖 /(𝒘T𝚺𝒘), are preferred for numerical stability.

Unified Formulation
A general risk parity formulation was proposed in Feng and Palomar (2015) as

minimize
𝒘

𝑁∑︁
𝑖=1

𝑔𝑖 (𝒘)2 + 𝜆𝐹 (𝒘)

subject to 𝒘 ∈ W,

(11.13)
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where 𝑔𝑖 (𝒘) denotes an arbitrary concentration error measure for the 𝑖th asset, for example,

𝑔𝑖 (𝒘) =
𝑤𝑖 (𝚺𝒘)𝑖
𝒘T𝚺𝒘

− 𝑏𝑖,

the function 𝐹 (𝒘) denotes an arbitrary preference function, for example,

𝐹 (𝒘) = −𝒘T𝝁 + 1
2
𝒘T𝚺𝒘,

and 𝜆 is a trade-off hyper-parameter.

This formulation is general enough to embrace all the previously given formulations. The
design of an effective algorithm is nevertheless nontrivial due to the nonconvexity of the term∑𝑁
𝑖=1 𝑔𝑖 (𝒘)2.

Alternative Convex Formulation
An interesting convex reformulation as a second-order cone program (SOCP) was proposed
in Mausser and Romanko (2014). Consider the formulation (11.10) after solving for 𝜃:

minimize
𝒘

𝑁∑︁
𝑖=1

(
1
𝑁
𝒘T𝚺𝒘 − 𝑤𝑖 (𝚺𝒘)𝑖

)2

subject to 𝒘 ∈ W.

Instead of using the sum of the squares in the objective, we can focus on the worst-case
performance:

minimize
𝒘

√︃
1
𝑁
𝒘T𝚺𝒘 −min

𝑖

√︁
𝑤𝑖 (𝚺𝒘)𝑖

subject to 𝒘 ∈ W.

At this point, by defining the dummy variable 𝒛 = 𝚺𝒘 and identifying the first term in the
objective as the variable 𝑝 and the second term as the variable 𝑡, we can rewrite the problem
as the following SOCP:

minimize
𝒘,𝒛, 𝑝,𝑡

𝑝 − 𝑡
subject to 𝒛 = 𝚺𝒘,

𝑁 𝑝2 ≥ 𝒘T𝚺𝒘,
𝑡2 ≤ 𝑤𝑖𝑧𝑖, 𝑖 = 1, . . . , 𝑁,
𝑝, 𝑡 ≥ 0,
𝒛 ≥ 0,
𝒘 ∈ W.

Note that the constraints 𝑡2 ≤ 𝑤𝑖𝑧𝑖 are called hyperbolic constraints (also known as rotated
second-order constraints) and can be written as the following second-order cone constraint
(Lobo et al., 1998): [ 2𝑡

𝑤𝑖 − 𝑧𝑖

]
2
≤ 𝑤𝑖 + 𝑧𝑖 .
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Similarly, constraints of the form 𝑤𝑖 (𝚺𝒘)𝑖 ≥ 𝑏𝑖𝒘T𝚺𝒘 can be rewritten as second-order cone
constraints: [ 2

√
𝑏𝑖𝚺

1/2𝒘
𝑤𝑖 − (𝚺𝒘)𝑖

]
2
≤ 𝑤𝑖 + (𝚺𝒘)𝑖 .

Unfortunately, solving an SOCP has a higher complexity than solving a QP, as described
in Section B.1, Appendix B. Therefore, as reported in Mausser and Romanko (2014), this
formulation does not seem to be advantageous or competitive in terms of deriving fast practical
algorithms.

Illustrative Example
Figure 11.10 shows the distribution of the portfolio weights and risk contribution for the 1/𝑁
portfolio, the naive diagonal RPP, the vanilla convex RPP, and the general nonconvex RPP (in
this case including an upper bound on the weights of 0.15 for illustration purposes).
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Figure 11.10 Portfolio allocation and risk contribution of general nonconvex RPP
(with 𝑤𝑖 ≤ 0.15) compared to benchmarks (1/𝑁 portfolio, naive diagonal RPP, and
vanilla convex RPP).

11.7.2 Algorithms
The previous nonconvex formulations can be solved with any general-purpose solver, cf.
Mausser and Romanko (2014). As a more convenient and efficient alternative, we will
now develop several practical iterative algorithms tailored to the problem formulations in
(11.9)–(11.13) that produce a sequence of iterates 𝒘0, 𝒘1, 𝒘2, . . .
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As the initial point of these iterative algorithms, one option is to use the solution provided by
the vanilla convex formulation considered in Section 11.6 (effectively ignoring any additional
constraints inW and any additional objective function). However, some additional step is
necessary to make sure that point is feasible taking into account all the constraints inW. A
simpler alternative may be to simply use the 1/𝑁 portfolio.

SCA Method
The SCA method can again be employed in this nonconvex case to develop efficient algorithms
as proposed in Feng and Palomar (2015); for details on SCA, the reader is referred to
Section B.8 in Appendix B.

Consider the objective function in the unified formulation (11.13):

𝑈 (𝒘) =
𝑁∑︁
𝑖=1

𝑔𝑖 (𝒘)2 + 𝜆𝐹 (𝒘).

One convenient way to convexify this function producing a quadratic function, which will be
amenable for a QP solver, is to linearize the terms 𝑔𝑖 (𝒘) around the current point 𝒘𝑘:

𝑔𝑖 (𝒘) ≈ 𝑔𝑖 (𝒘𝑘) + ∇𝑔𝑖 (𝒘𝑘)T
(
𝒘 − 𝒘𝑘

)
.

This produces the following surrogate function for𝑈 (𝒘, 𝒘𝑘):

�̃� (𝒘, 𝒘𝑘) =
𝑁∑︁
𝑖=1

(
𝑔𝑖 (𝒘𝑘) + ∇𝑔𝑖 (𝒘𝑘)T

(
𝒘 − 𝒘𝑘

) )2 + 𝜆𝐹 (𝒘) + 𝜏
2

𝒘 − 𝒘𝑘
2

2 ,

where the last term is a regularizer to obtain a strongly convex function as required by SCA.

Finally, the approximated QP can be written (ignoring unnecessary constant terms) as

minimize
𝒘

1
2𝒘

T𝑸𝑘𝒘 + 𝒘T𝒒𝑘 + 𝜆𝐹 (𝒘)
subject to 𝒘 ∈ W,

(11.14)

where
𝑸𝑘 ≜ 2

(
𝑱𝑘

)T
𝑱𝑘 + 𝜏𝑰,

𝒒𝑘 ≜ 2
(
𝑱𝑘

)T
𝒈𝑘 − 𝑸𝑘𝒘𝑘 ,

and the vector of functions 𝑔𝑖 and its Jacobian matrix at point 𝒘𝑘 are

𝒈𝑘 ≜
[
𝑔1(𝒘𝑘), . . . , 𝑔𝑁 (𝒘𝑘)

]T
,

𝑱𝑘 ≜


∇𝑔1(𝒘𝑘)T

...

∇𝑔𝑁 (𝒘𝑘)T

 .
This approximated QP can be solved directly with a QP solver or, depending on the constraints
inW, even in closed form as developed in Feng and Palomar (2015).

The overall SCA method, termed Successive Convex optimization for RIsk Parity portfolio
(SCRIP), is summarized in Algorithm 11.1. For additional details and more advanced
algorithms, the reader is referred to (Feng & Palomar, 2015).
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Algorithm 11.1: SCRIP to solve problem (11.13).
1: Choose initial point 𝒘0 ∈ W and sequence {𝛾𝑘};
2: Set 𝑘 ← 0;
3: repeat
4: Calculate risk concentration terms 𝒈𝑘 and Jacobian matrix 𝑱𝑘 for current point 𝒘𝑘;
5: Solve approximated QP problem (11.14) and keep solution as �̂�𝑘+1;
6: 𝒘𝑘+1 ← 𝒘𝑘 + 𝛾𝑘 (�̂�𝑘+1 − 𝒘𝑘);
7: 𝑘 ← 𝑘 + 1;
8: until convergence;

Alternate Linearization Method
The alternate linearization method (ALM) was proposed in Bai et al. (2016) to solve the
formulation in (11.10), whose objective is

𝐹 (𝒘, 𝜃) =
𝑁∑︁
𝑖=1

(𝑤𝑖 (𝚺𝒘)𝑖 − 𝜃)2 =
𝑁∑︁
𝑖=1

(
𝒘T𝑴𝑖𝒘 − 𝜃

)2
,

where matrix 𝑴𝑖 is defined to be of the same size as 𝚺 containing the same 𝑖th row,
[𝑴𝑖]𝑖,: = [𝚺]𝑖,:, and zeros elsewhere.

The idea is to introduce an additional variable 𝒚 and then define

𝐹 (𝒘, 𝒚, 𝜃) =
𝑁∑︁
𝑖=1

(
𝒘T𝑴𝑖 𝒚 − 𝜃

)2
,

subject to 𝒚 = 𝒘. Then, the algorithm optimizes 𝒘 and 𝒚 sequentially (and also 𝜃) by
minimizing the following two QP approximations of 𝐹 (𝒘, 𝒚, 𝜃):

𝑄1(𝒘, 𝒚𝑘 , 𝜃) ≜ 𝐹 (𝒘, 𝒚𝑘 , 𝜃) + ∇2𝐹 (𝒚𝑘 , 𝒚𝑘 , 𝜃)T(𝒘 − 𝒚𝑘) + 1
2𝜇
∥𝒘 − 𝒚𝑘 ∥22,

𝑄2(𝒘𝑘+1, 𝒚, 𝜃) ≜ 𝐹 (𝒘𝑘+1, 𝒚, 𝜃) + ∇1𝐹 (𝒘𝑘+1, 𝒘𝑘+1, 𝜃)T(𝒚 − 𝒘𝑘+1) + 1
2𝜇
∥𝒚 − 𝒘𝑘+1∥22,

where 𝜇 is some chosen positive scalar and

∇1𝐹 (𝒘, 𝒚, 𝜃) = 2
𝑁∑︁
𝑖=1

(
𝒘T𝑴𝑖 𝒚 − 𝜃

)
𝑴𝑖 𝒚,

∇2𝐹 (𝒘, 𝒚, 𝜃) = 2
𝑁∑︁
𝑖=1

(
𝒘T𝑴𝑖 𝒚 − 𝜃

)
𝑴T
𝑖 𝒘.

11.7.3 Numerical Experiments
To evaluate the algorithms empirically, we use a universe of 𝑁 = 200 stocks from the S&P
500 and compare their convergence in terms of iterations as well as CPU time. We include
the upper bound on the weights 𝑤𝑖 ≤ 0.008 so that the formulation cannot be framed in the
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convex case considered in Section 11.6, and we use the simple initial point 𝑤𝑖 = 1/𝑁 so that
we can better observe the convergence.

Convergence for Formulation in (11.10)
We start with the nonconvex formulation in (11.10), which, in fact, is not recommended
since the terms 𝑤𝑖 (𝚺𝒘)𝑖 squared can become very small and lead to numerical issues; a
practical heuristic is to scale up the covariance matrix 𝚺 by some large number like 104

(Mausser & Romanko, 2014). For this reason, the formulations based on the normalized terms
𝑤𝑖 (𝚺𝒘)𝑖 /(𝒘T𝚺𝒘) are preferred for numerical stability, like in formulation (11.11).
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Figure 11.11 Convergence of different algorithms for the nonconvex RPP
formulation (11.10).

Figure 11.11 shows the convergence of two general-purpose nonlinear solvers as well as the
methods ALM and SCA. It is clear that the nonlinear solvers are less efficient as they do not
exploit the problem structure. The SCA method is clearly the fastest to converge.

Convergence for Formulation in (11.11)
We now focus on the formulation in (11.11), which is preferred because the risk terms are
normalized and do not suffer from numerical issues. Figure 11.12 shows the convergence of
two general-purpose nonlinear solvers as well as the SCA method, which exhibits a much
faster convergence.
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Figure 11.12 Convergence of different algorithms for the nonconvex RPP
formulation (11.11) .

11.8 Summary
Diversification is a crucial principle in portfolio design, exemplified by the well-known phrase,
“don’t put all your eggs in one basket.” Some key points are:

• The widely used 1/𝑁 portfolio (or equally weighted portfolio) effectively diversifies
capital allocation. However, a more advanced strategy is to diversify risk allocation, as
implemented by risk parity portfolios.

• In risk parity portfolios, the risk measure of interest (e.g., volatility) is expressed as the
sum of individual risk contributions from each asset. This provides a more refined control
of the risk compared to simply using a single risk value for the overall portfolio.

• Risk parity formulations can be classified into three levels of complexity:

– naive diagonal formulation: the covariance matrix is assumed diagonal and the solution
simplifies to the inverse-volatility portfolio (which ignores the assets’ correlations);

– vanilla convex formulations: simple long-only portfolios are considered and the problems
can be rewritten in convex form with efficient algorithms; and

– general nonconvex formulations: admit any realistic constraint and extended objective
functions at the expense of becoming nonconvex problems that require a more careful
resolution (but efficient iterative algorithms can still be derived).
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Exercises
11.1 (Change of variable) Show why 𝚺𝒙 = 𝒃/𝒙 can be equivalently solved as 𝑪𝒙 =

𝒃/𝒙, where 𝑪 is the correlation matrix defined as 𝑪 = 𝑫−1/2𝚺𝑫−1/2 with 𝑫 a diagonal
matrix containing diag(𝚺) along the main diagonal. Would it be possible to use instead
𝑪 = 𝑴−1/2𝚺𝑴−1/2, where 𝑴 is not necessarily a diagonal matrix?

11.2 (Naive diagonal risk parity portfolio) If the covariance matrix is diagonal, 𝚺 = 𝑫, then
the system of nonlinear equations 𝚺𝒙 = 𝒃/𝒙 has the closed-form solution 𝒙 =

√︁
𝒃/diag(𝑫).

Explore whether a closed-form solution can be obtained for the rank-one plus diagonal case
𝚺 = 𝒖𝒖T + 𝑫.

11.3 (Vanilla convex risk parity portfolio) The solution to the formulation

maximize
𝒙≥0

𝒃T log(𝒙)
subject to

√
𝒙T𝚺𝒙 ≤ 𝜎0

is
𝜆𝚺𝒙 = 𝒃/𝒙 ×

√
𝒙T𝚺𝒙.

Can you solve for 𝜆 and rewrite the solution in a more compact way without 𝜆?

11.4 (Newton’s method) Newton’s method requires computing the direction 𝒅 = H−1∇ 𝑓 or,
equivalently, solving the system of linear equations H 𝒅 = ∇ 𝑓 for 𝒅. Explore whether a more
efficient solution is possible by exploiting the structure of the gradient and Hessian:

∇ 𝑓 = 𝚺𝒙 − 𝒃/𝒙,
H = 𝚺 + Diag(𝒃/𝒙2).

11.5 (MM algorithm) The MM algorithm requires the computation of the largest eigenvalue
𝜆max of matrix 𝚺, which can be obtained from the eigenvalue decomposition of the matrix. A
more efficient alternative is the power iteration method. Program both methods and compare
their computational complexity.

11.6 (Coordinate descent vs. SCA methods) Consider the vanilla convex formulation

minimize
𝒙≥0

1
2𝒙

T𝚺𝒙 − 𝒃T log(𝒙).

Implement the cyclical coordinate descent method and the parallel SCA method in a high-level
programming language (e.g., R, Python, Julia, or MATLAB) and compare the convergence
against the CPU time for these two methods. Then, re-implement these two methods in a
low-level programming language (e.g., C, C++, C#, or Rust) and compare the convergence
again. Comment on the difference observed.
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Graph-Based Portfolios

“Too much and too little wine. Give him none, he cannot find truth; give him too much, the same.”

— Blaise Pascal

Amid an overload of information in the modern era, graphs provide a convenient and compact
way to represent big data, analyze the structure of large networks, and extract patterns that
may otherwise go unnoticed. In the context of financial data, graphs of assets provide key
information for modern portfolio design that may be incorporated, for example, into the basic
mean–variance portfolio formulation (which obtains the portfolio as a trade-off between the
expected return and the risk measured by the variance). Nevertheless, exactly how to use this
graph information in the portfolio optimization process is still an open question. This chapter
explores some attempts in the literature.

12.1 Introduction
Markowitz’s mean–variance portfolio (Markowitz, 1952) formulates the portfolio design as a
trade-off between the expected return 𝒘T𝝁 and the risk measured by the variance 𝒘T𝚺𝒘 (see
Chapter 7 for details):

maximize
𝒘

𝒘T𝝁 − 𝜆

2 𝒘
T𝚺𝒘

subject to 𝒘 ∈ W,

where 𝜆 is a hyper-parameter that controls the investor’s risk-aversion andW denotes an
arbitrary constraint set, such asW = {𝒘 | 1T𝒘 = 1, 𝒘 ≥ 0}.

Unfortunately, Markowitz’s mean–variance portfolio is severely affected by the ever-present
estimation errors in the mean vector 𝝁 and covariance matrix 𝚺. The question is whether
this portfolio design can be improved with knowledge of the graph of assets by somehow
capitalizing on the key connections revealed by the graph connectivity pattern.

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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Graphs and Distance Matrices
Graph-based portfolios are constructed from the graph information of the assets, which can be
conveniently encoded in the form of a distance matrix containing the distance between each
pair of assets. There are numerous methods to acquire this graph information. We start with
two simple approaches and then consider two more sophisticated graph estimation methods
from Chapter 5.

A popular and simple way to obtain a distance matrix 𝑫 is directly from the assets’ correlations
(Mantegna, 1999) as

𝐷𝑖 𝑗 =

√︂
1
2
(1 − 𝜌𝑖 𝑗), (12.1)

where 𝜌𝑖 𝑗 is the correlation between assets 𝑖 and 𝑗 ; an alternative is 𝐷𝑖 𝑗 = 1 − 𝜌2
𝑖 𝑗 . This is

equivalent to the Euclidean distance between the standardized columns of the data matrix
𝑿 . In more detail, denote the de-meaned and normalized 𝑖th column of the data matrix
by �̃�𝑖 = (𝒙𝑖 − 𝜇𝑖)/𝜎𝑖, where 𝜇𝑖 and 𝜎𝑖 are the mean and volatility of 𝒙𝑖, respectively.
Then, the empirical value of the correlation can be written as 𝜌𝑖 𝑗 = 1

𝑇
�̃�T
𝑖 �̃� 𝑗 , where 𝑇 is the

number of observations, and the normalized squared Euclidean distance between �̃�𝑖 and �̃� 𝑗 is
1
𝑇
∥�̃�𝑖 − �̃� 𝑗 ∥22 = 2(1 − 𝜌𝑖 𝑗), which coincides with 𝐷𝑖 𝑗 in (12.1) up to a scaling factor. Needless

to say, other distance functions could be used to compute the distance matrix; for example,
the 𝑝-norm or Minkowski metric 𝐷𝑖 𝑗 = ∥�̃�𝑖 − �̃� 𝑗 ∥ 𝑝, where ∥𝒂∥ 𝑝 ≜

(∑𝑇
𝑡=1 |𝑎𝑖 |𝑝

)1/𝑝, which
for 𝑝 = 1 becomes the Manhattan distance and for 𝑝 = 2 the Euclidean distance.

A drawback of such a correlation-based distance matrix is that each element only contains
information involving two assets, ignoring the rest of the assets. A more holistic definition is
to compute a new distance matrix �̃� with elements containing the Euclidean distance between
pairs of columns of 𝑫 (López de Prado, 2016):

�̃�𝑖 𝑗 = ∥𝒅𝑖 − 𝒅 𝑗 ∥2, (12.2)

where 𝒅𝑖 is the 𝑖th column of 𝑫. Thus, each element of �̃� is a function of the entire correlation
matrix rather than a particular correlation value like in 𝑫. In other words, 𝐷𝑖 𝑗 is the distance
between two assets while �̃�𝑖 𝑗 indicates the closeness in similarity of these assets with the rest
of the universe.

Example 12.1 (Distance matrix of a toy example) Consider the following correlation matrix
of three variables (López de Prado, 2016):

𝑪 =


1 0.7 0.2

0.7 1 −0.2
0.2 −0.2 1

 .
The corresponding correlation-based distance matrix (12.1) is

𝑫 =


0 0.3873 0.6325

0.3873 0 0.7746
0.6325 0.7746 0
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and the Euclidean distance matrix of correlation distances (12.2) is

�̃� =


0 0.5659 0.9747

0.5659 0 1.1225
0.9747 1.1225 0

 .
As an alternative to these heuristic definitions of graph distance matrices, Chapter 5 offers an
extensive overview of graphs and presents a wide variety of graph estimation methods derived
from data. For financial time series corresponding to 𝑇 observations of 𝑁 assets, with the
observations denoted 𝒙 (𝑡 ) ∈ R𝑁 , for 𝑡 = 1, . . . , 𝑇, the recommended methods in Section 5.6
are:1

• Heavy-tailed Markov random field (MRF) with degree control in (5.13) (Cardoso et al.,
2021):

maximize
𝒘≥0

log gdet(L(𝒘)) − 𝑁 + 𝜈
𝑇

𝑇∑︁
𝑡=1

log
(
𝜈 + (𝒙 (𝑡 ) )TL(𝒘)𝒙 (𝑡 )

)
subject to 𝔡(𝒘) = 1,

(12.3)

where gdet(·) denotes the generalized determinant of a matrix (defined as the product
of nonzero eigenvalues), the weight vector 𝒘 is a compact representation of the graph
information, L(𝒘) is the Laplacian operator that produces the Laplacian matrix 𝑳 from
the weights, 𝔡(𝒘) is the degree operator that gives the degrees of the nodes, and 𝜈 is a
hyper-parameter that controls the degree of heavy-tailness.

• 𝑘-component heavy-tailed MRF with degree control (Cardoso et al., 2021):

maximize
𝒘≥0,𝑭∈R𝑁×𝑘

log gdet(L(𝒘)) − 𝑁 + 𝜈
𝑇

𝑇∑︁
𝑡=1

log
(
𝜈 + (𝒙 (𝑡 ) )TL(𝒘)𝒙 (𝑡 )

)
+𝛾Tr

(
𝑭TL(𝒘)𝑭

)
subject to 𝔡(𝒘) = 1, 𝑭T𝑭 = 𝑰,

(12.4)

which incorporates the regularization term Tr(𝑭TL(𝒘)𝑭), controlled by the hyper-
parameter 𝛾; the additional variable 𝑭 is to enforce the low-rank property in the Laplacian
matrix (i.e., enforce 𝑳 = L(𝒘) to be rank 𝑁 − 𝑘), which corresponds to a 𝑘-component
graph, that is, a graph with 𝑘 clusters.

After solving these graph learning formulations, the result is contained in the graph Laplacian
matrix 𝑳 = L(𝒘), from which a matrix akin to the correlation matrix can be obtained as

𝑪 = abs(𝑳),

where abs(·) denotes the elementwise absolute value (basically, it keeps the diagonal elements
equal to 1 and makes the off-diagonal elements nonnegative). Then, the distance matrix can
be obtained as in (12.1): 𝐷𝑖 𝑗 =

√︃
1
2 (1 − 𝐶𝑖 𝑗).

1 The R package fingraph, based on Cardoso et al. (2021), contains efficient implementations for the two
formulations (12.3) and (12.4); namely, the functions learn_regular_heavytail_graph() for the
heavy-tailed MRF (12.3) and learn_kcomp_heavytail_graph() for the 𝑘-component heavy-tailed MRF
(12.4) (Cardoso & Palomar, 2023).

https://github.com/convexfi/fingraph
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12.2 Hierarchical Clustering and Dendrograms
Clustering is a multivariate statistical data analysis used in many fields, including machine
learning, data mining, pattern recognition, bioinformatics, and financial markets. It is an
unsupervised classification method that groups elements into clusters of similar characteristics
based on the data.

Hierarchical clustering refers to the formation of a recursive nested clustering. It builds a
binary tree of data points that represents nested groups of similar points based on a measure
of distance. On the other hand, partitional clustering finds all the clusters simultaneously
as a partition of the data points without imposing any hierarchical structure. One benefit of
hierarchical clustering is that it allows exploring data on different levels of granularity.

A dendrogram is simply a visual representation of such a tree that encodes the successive
or hierarchical clustering. It provides a highly interpretable complete description of the
hierarchical clustering in a graphical format. This is one of the main reasons for the popularity
of hierarchical clustering methods. For instance, in Example 12.1, items #1 and #2 have the
smallest distance of 0.5659 and would be clustered together first, followed by item #3. This is
illustrated in the dendrogram in Figure 12.1, which shows in a tree structure this bottom-up
hierarchical clustering process.

3 1 2

Figure 12.1 Dendrogram of toy Example 12.1.

Basic Procedure
Hierarchical clustering requires a distance matrix 𝑫 and proceeds to sequentially cluster
items based on distance (Hastie et al., 2009; James et al., 2013). Strategies for hierarchical
clustering can be divided into two basic paradigms: agglomerative (bottom-up) and divisive
(top-down). Bottom-up strategies start with every item representing a singleton cluster and
then combine the clusters sequentially, reducing the number of clusters at each step until only
one cluster is left. Alternatively, top-down strategies start with all the items in one cluster and
recursively divide each cluster into smaller clusters. Each level of the hierarchy represents
a particular grouping of the data into disjoint clusters of observations. The entire hierarchy
represents an ordered sequence of such groupings.

Consider the bottom-up approach in which, at each step, the two closest (least dissimilar)
clusters are merged into a single cluster, producing one less cluster at the next higher level.
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This process requires a measure of dissimilarity between two clusters and different definitions
of the distance between clusters can produce radically different dendrograms. In addition,
there are different ways to merge the clusters, termed linkage clustering; most notably:2

• single linkage: the distance between two clusters is the minimum distance between any two
points in the clusters, which is related to the so-called minimum spanning tree;

• complete linkage: the distance between two clusters is the maximum of the distance between
any two points in the clusters;

• average linkage: the distance between two clusters is the average of the distance between
any two points in the clusters; and

• Ward’s method: the distance between two clusters is the increase of the squared error from
when two clusters are merged, which is related to distances between centroids of clusters
(Ward, 1963).

The effect of the linkage clustering method is very important as it significantly affects the
hierarchical clustering obtained (Raffinot, 2018a). Single linkage tends to produce a “chaining”
effect in the tree (described in Section 12.3.1) and an imbalance of large and small groups,
whereas complete linkage typically produces more balanced groups, and average linkage
is an intermediate case. Ward’s method often produces similar results to average linkage.
Figure 12.2 shows the dendrograms corresponding to the four different linkage methods for
some S&P 500 stocks corresponding to different sectors during 2015–2020. Various numbers
of clusters can be achieved by cutting the tree at distinct heights; for instance, four clusters
can be acquired through suitable cuts, although they differ depending on the linkage methods
used.

Number of Clusters
Traversing the dendrogram top-down, one starts with a giant cluster containing all the items
all the way down to 𝑁 singleton clusters, each containing a single item. In practice, however,
it may not be necessary or convenient to deal with 𝑁 singleton clusters, in order to avoid
overfitting of the data.

Representing the data by fewer clusters necessarily loses certain fine details, but achieves
simplification. However, choosing the best number of clusters is not easy: too few clusters and
the algorithm may fail to find true patterns; too many clusters and it may discover spurious
patterns that do not really exist. Thus, it is convenient to have an automatic way of detecting
the most appropriate number of clusters to avoid overfitting.

One popular way to determine the number of clusters is the so-called gap statistic (Tibshirani
et al., 2001). Basically, it compares the logarithm of the empirical within-cluster dissimilarity
and the corresponding one for uniformly distributed data, which is a distribution with no
obvious clustering.

2 Hierarchical clustering is a fundamental method available in most programming languages; for example, the
base function hclust() in R and the method scipy.cluster.hierarchy.linkage() from the Python
library scipy.
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Figure 12.2 Dendrograms of S&P 500 stocks (with cut to produce four clusters).

Quasi-Diagonalization of Correlation Matrix
Hierarchical clustering can be used to reorder the items in the correlation matrix so that similar
assets (i.e., items that cluster early) are placed closer to each other, whereas dissimilar assets
are placed far apart. This is called matrix seriation or matrix quasi-diagonalization and it is a
very old statistical technique used to rearrange the data to show the inherent clusters clearly.
This rearranges the original correlation matrix of assets into a quasi-diagonal correlation
matrix, revealing similar assets as blocks along the main diagonal, whereas the correlation
matrix of the original randomly ordered items presents no visual pattern.

To illustrate this process, Figure 12.3 shows the heatmaps of the original correlation matrix
(with randomly ordered stocks) and the quasi-diagonal version (i.e., after a reordering of
the stocks to better visualize the correlated stocks along the diagonal blocks) based on the
hierarchical clustering (using single linkage). From the quasi-digonal correlation matrix
one can clearly identify four clusters, which can also be observed in the dendrograms in
Figure 12.2.
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Figure 12.3 Effect of seriation in the correlation matrix of S&P 500 stocks.

12.3 Hierarchical Clustering-Based Portfolios
An alternative to using the noisy estimates of the mean vector 𝝁 and covariance matrix 𝚺 in
the mean–variance formulation is to design portfolios based on the graph of assets. This may
produce more robust portfolios, more diversified, and with better risk-adjusted performance.
Indeed, once the assets are hierarchically clustered, a variety of portfolios can be conveniently
designed without relying so much on the noisy estimates of the mean vector and covariance
matrix.

Hierarchical clustering aims to achieve diversification by a mechanism that distributes capital
weights appropriately across the hierarchically nested clusters. The diversification scheme
indicates which stocks are isolated far away from the bulk of stocks and should receive a
higher weight as they are contributors to diversification. The whole process can be visualized
based on the hierarchical tree layout.

The general description of hierarchical clustering-based portfolios is simple. The idea is to
start with the total capital at the top and then proceed to allocate the capital through the
hierarchical clustering along the dendrogram in a top-down manner. The starting point is the
top giant cluster, which contains all the items, and the method proceeds down sequentially,
where each cluster is successively divided into two sub-clusters. Every time a cluster is divided
into two sub-clusters, the weight of the cluster has to be split into the two sub-clusters and the
portfolios for the sub-clusters have to be designed.

The different hierarchical clustering-based portfolios (considered next in detail) are fully
described by the following characteristics:

1. distance matrix: used to define the graph (e.g., correlation-based distance matrix in (12.1),
distance matrix of the columns of such distance matrix as in (12.2), or obtained from some
more sophisticated graph learning procedure);
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2. linkage method: employed in the hierarchical clustering process (e.g., single, complete,
average, or Ward);

3. clustering stopping criterion: used to stop the hierarchical clustering process (e.g., all the
way down to single-item clusters or early stopping based on the gap statistic);

4. splitting criterion: to recursively split the assets (e.g., simply bisection or based on the
dendrogram);

5. intra-weight allocation: used within clusters; and
6. inter-weight allocation: used across clusters.

The following subsections explore in detail several hierarchical clustering-based portfolios,
namely, the hierarchical 1/𝑁 portfolio, the hierarchical risk parity portfolio, and the hierarchical
equal risk contribution portfolio.

12.3.1 Hierarchical 1/𝑁 Portfolio
In 2011, a simple graph-based portfolio termed the cluster-based waterfall portfolio was
proposed in Papenbrock (2011). The approach is based on the hierarchical tree obtained
from the correlation-based distance matrix in (12.1). The allocation process goes over the
dendrogram in a top-down manner, splitting the weights equally at each splitting point (i.e.,
the 1/𝑁 portfolio or equally weighted portfolio from Section 6.4.3). Figure 12.4 illustrates
this top-down process of equal weight splitting.
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12.5%
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50%

25%25%
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Figure 12.4 Illustration of the hierarchical 1/𝑁 portfolio construction in a top-down
manner.

It is important to realize that the choice of linkage method has a significant effect on the
concentration of the weight allocation, as illustrated in Figure 12.5. Basically, single linkage
suffers from the “chaining” effect by which assets are branched out one by one, resulting in
very high weights on some stocks; complete linkage produces more even groups and weights;
average linkage lies somewhere in between, and Ward’s method is similar to complete linkage
producing slightly even more balanced groups and more equal weights. Note that the regular
1/𝑁 portfolio lies on the extreme of totally equalized weights, which amounts to not using
any graph information at all, and is hence referred to as the naive 1/𝑁 portfolio, as opposed
to the hierarchical 1/𝑁 portfolio, which is based on the graph information.

Summary of the hierarchical 1/𝑁 portfolio (Papenbrock, 2011):

1. distance matrix: correlation-based distance matrix 𝐷𝑖 𝑗 =
√︃

1
2 (1 − 𝜌𝑖 𝑗) as in (12.1);
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Figure 12.5 Chaining effect of different linkage methods on the hierarchical 1/𝑁
allocation.

2. linkage method: recommended methods are single linkage (for high-risk investors willing
to take high stakes in single assets) and Ward’s method (for risk-averse investors with less
concentration on single assets);

3. clustering stopping criterion: all the way down to single-item clusters;
4. splitting criterion: following the dendrogram;
5. intra-weight allocation: 1/𝑁 portfolio; and
6. inter-weight allocation: 1/𝑁 portfolio with 𝑁 = 2, that is, 50%–50% split at each

branching.

Numerical Results
We compare different versions of the hierarchical 1/𝑁 portfolio along with some benchmarks.
We first compare the hierarchical 1/𝑁 portfolio with the four different linkage methods along
with the naive 1/𝑁 portfolio (illustrated in Figure 12.5). Figure 12.6 shows the portfolio
weights: in this particular case the average linkage coincides with Ward’s method. Figure 12.7
shows the cumulative P&L and drawdown of the portfolios for a single illustrative backtest:
as already indicated in the original publication (Papenbrock, 2011), Ward’s method is a good
choice and will be used subsequently.

Now we compare the use of the correlation-based distance matrix in (12.1), which was the
choice in Papenbrock (2011), with the correlation-based distance-of-distance matrix in (12.2),
as used in López de Prado (2016), as well as the graphs estimated via (12.3) and (12.4).
Figure 12.8 compares the portfolio allocations, whereas Figure 12.9 shows the cumulative
P&L and drawdown of the portfolios for a single illustrative backtest. In this particular case,
it seems that the simple correlation-based distance-of-distance matrix in (12.2) shows a better
drawdown, but more exhaustive backtests are necessary before concluding anything.

Finally, we compare the selected version of the hierarchical 1/𝑁 portfolio (using Ward’s
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Figure 12.6 Portfolio allocation of hierarchical 1/𝑁 portfolios with different linkage
methods.
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Figure 12.7 Backtest performance of hierarchical 1/𝑁 portfolios with different
linkage methods.

method for the linkage and the correlation-based distance-of-distance matrix in (12.2)) with the
following benchmarks: naive 1/𝑁 portfolio, global minimum variance portfolio (GMVP), and
Markowitz mean–variance portfolio (MVP). Figure 12.10 compares the portfolio allocations,
from where we can clearly see the difference in diversification. Figure 12.11 shows the
cumulative P&L and drawdown of the portfolios for a single illustrative backtest: as expected,
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Figure 12.8 Portfolio allocation of hierarchical 1/𝑁 portfolios with different
distance matrices.
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Figure 12.9 Backtest performance of hierarchical 1/𝑁 portfolios with different
distance matrices.

the MVP shows the worst drawdown (due to the sensitivity to the estimation of 𝝁), followed by
GMVP and 1/𝑁 portfolio, with the hierarchical 1/𝑁 portfolio having the mildest drawdown.
Nevertheless, the reader is reminded that this is just a single anecdotal backtest and a proper
empirical evaluation based on multiple randomized backtests is necessary, as explored further
in Section 12.4.
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Figure 12.10 Portfolio allocation of hierarchical 1/𝑁 portfolio along benchmarks.
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Figure 12.11 Backtest performance of hierarchical 1/𝑁 portfolio along benchmarks.

12.3.2 Hierarchical Risk Parity (HRP) Portfolio
In 2016, a graph-based portfolio was proposed (López de Prado, 2016) called the hierarchical
risk parity (HRP) portfolio. The method is based on the hierarchical tree obtained from the
correlation-based distance-of-distance matrix in (12.2) and the single linkage method. The
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allocation process goes over the dendrogram in a top-down manner, splitting the weights
based on the inverse-variance portfolio (IVarP).

Before going into the details of HRP, let us start by recalling that the global minimum variance
portfolio with budget constraint is formulated (see Section 6.5.1 in Chapter 6) as

minimize
𝒘

𝒘T𝚺𝒘

subject to 𝒘T1 = 1,

with solution

𝒘 =
𝚺−11

1T𝚺−11
.

If the covariance matrix 𝚺 is diagonal, with diagonal elements denoted by 𝝈2 = diag(𝚺),
then the solution simplifies to the inverse-variance portfolio:

𝒘 =
𝝈−2

1T𝝈−2 , (12.5)

which, for the particular case of 𝑁 = 2 assets, becomes[
𝑤1
𝑤2

]
=

[
𝜎−2

1 /(𝜎−2
1 + 𝜎−2

2 )
𝜎−2

2 /(𝜎−2
1 + 𝜎−2

2 )

]
=

[
𝜎2

2 /(𝜎2
1 + 𝜎2

2 )
𝜎2

1 /(𝜎2
1 + 𝜎2

2 )

]
. (12.6)

We are now ready to go over the HRP portfolio design process. Similarly to the hierarchical
1/𝑁 portfolio, the allocation process goes over the dendrogram in a top-down manner, splitting
the weights at each splitting point. A first difference in the HRP method proposed in López de
Prado (2016) is that the splitting is based on bisection (i.e., dividing the items into two halves)
rather than the natural structure given by the dendrogram, as illustrated in Figure 12.12. With
bisection splitting, the dendrogram still contributes with the ordering of the assets. A priori,
one cannot say which of the two methods will perform better and this will be empirically
evaluated later. The second main difference is that instead of basing the weight splitting on the
1/𝑁 portfolio with 𝑁 = 2, which leads to a 50%–50% split of the budget, the weight splitting
is based on the IVarP with 𝑁 = 2 in (12.6). In order to compute the variances of the two
branches 𝜎2

1 and 𝜎2
2 , the method uses, at each branch, the IVarP (12.5) (which presumably

is not too far from the optimal GMVP since we are dealing with a quasi-diagonal matrix).
Algorithm 12.1 formalizes HRP portfolio construction.

Summary of the HRP portfolio (López de Prado, 2016):

1. distance matrix: correlation-based distance-of-distance matrix in (12.2);
2. linkage method: single linkage;
3. clustering stopping criterion: all the way down to single-item clusters;
4. splitting criterion: directly bisection ignoring the grouping sizes from the dendrogram;
5. intra-weight allocation: IVarP; and
6. inter-weight allocation: IVarP for 𝑁 = 2 as in (12.6).

The HRP portfolio can be interpreted as a refined version of the inverse-variance portfolio.
Indeed, at each step, given two subsets, the portfolio weights are scaled based on the inverse of
the variances while ignoring the correlation between the subsets (presumably these subsets are
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Figure 12.12 Comparison of bisection splitting and dendrogram-based splitting.

not highly correlated). The only point where correlations are considered is in the computation
of the variances of each of the subsets. In fact, when the covariance matrix is diagonal, then
the inverse-variance portfolio, the global minimum variance portfolio, and the HRP portfolio
coincide. A connection between the HRP portfolio and the minimum-variance portfolio is
further outlined in Section 12.3.4.

Algorithm 12.1: HRP portfolio.
1: Initialize list of groups of items L = {𝐿0}, with 𝐿0 = {1, . . . , 𝑁}, and unit weights

𝒘 = 1;
2: repeat
3: Choose a tuple 𝐿𝑖 ∈ L with |𝐿𝑖 | > 1;
4: Partition 𝐿𝑖 into two subsets, 𝐿 (1)

𝑖
and 𝐿 (2)

𝑖
; two options are:

• bisection split: following the dendrogram ordering, simply split it into two subsets
of approximately equal size: |𝐿 (1)

𝑖
| = round( |𝐿𝑖 |/2);

• dendrogram split: follow the dendrogram split of this set into two subsets (i.e., not
only ordering but size of subsets too);

5: Define the variance of each subset 𝐿 ( 𝑗 )
𝑖
, 𝑗 = 1, 2, as (�̃�2

𝑖 ) ( 𝑗 ) = �̃� ( 𝑗 )T
𝑖

𝚺 ( 𝑗 )
𝑖

�̃� ( 𝑗 )
𝑖

, where
𝚺 ( 𝑗 )
𝑖

is the covariance matrix of the elements in 𝐿 ( 𝑗 )
𝑖

and �̃� ( 𝑗 )
𝑖

is the inverse-variance
portfolio in (12.5);

6: Compute the split factor as in (12.6): 𝛼𝑖 = (�̃�2
𝑖 ) (2)/((�̃�2

𝑖 ) (1) + (�̃�2
𝑖 ) (2) );

7: Rescale elements 𝑛 ∈ 𝐿 (1)
𝑖

in 𝒘 by a factor of 𝛼𝑖 and elements 𝑛 ∈ 𝐿 (2)
𝑖

in 𝒘 by a
factor of (1 − 𝛼𝑖);

8: until |𝐿𝑖 | = 1,∀𝐿𝑖 ∈ 𝐿;
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Numerical Results
We now compare the HRP portfolios (both with bisection split and dendrogram split) with
the following benchmarks: global minimum variance portfolio (GMVP) and inverse-variance
portfolio (IVarP).

Figure 12.13 shows the portfolio weights. The GMVP concentrates most of the weights
into two assets, whereas the rest are more diversified. The HRP portfolios do not differ
too much from the IVarP. Figure 12.14 shows the cumulative P&L and drawdown of the
portfolios for a single illustrative backtest. The HRP portfolios seem to slightly improve on
the IVarP; in addition, the graphs estimated via (12.3) and (12.4) seem to be better than the
correlation-based distance-of-distance matrix in (12.2).
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Figure 12.13 Portfolio allocation of HRP portfolios and benchmarks.

12.3.3 Hierarchical Equal Risk Contribution (HERC) Portfolio
In 2018, a refined and extended version of the hierarchical 1/𝑁 portfolio of Section 12.3.1 and
the HRP portfolio of Section 12.3.2 was proposed in (Raffinot, 2018b) called the hierarchical
equal risk contribution (HERC) portfolio. Basically, the two main differences are:

• Early stopping in the hierarchical clustering to automatically select the appropriate number
of clusters based on the gap statistic (Tibshirani et al., 2001), a technique already used in
hierarchical clustering asset allocation (Raffinot, 2018a), as opposed to clustering all the
way down to single assets as typically done in hierarchical clustering.

• Use of a general equal risk contribution to split the weights at each splitting point (which
can be based on alternative measures of risk to the variance used in (12.6), such as standard
deviation, conditional value-at-risk, conditional drawdown-at-risk, and so on:[

𝑤1
𝑤2

]
=

[
RC1/(RC1 + RC2)
RC2/(RC1 + RC2)

]
, (12.7)
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Figure 12.14 Backtest performance of HRP portfolios and benchmarks.

where RC𝑖 denotes the risk contribution of of the 𝑖th cluster. Observe that if RC𝑖 = 1/𝜎2
𝑖 ,

then we recover (12.6).

The main findings in Raffinot (2018b) can be summarized as follows:

[T]he hierarchical 1/𝑁 portfolio is difficult to beat, but HERC portfolios based on downside risk measures
achieve statistically better risk-adjusted performances, especially those based on the conditional drawdown-
at-risk.

Figure 12.15 illustrates the effect of early stopping in the hierarchical clustering process with
a hierarchical 1/𝑁 portfolio. In particular a toy dendrogram is considered with five assets
grouped into three and two clusters.

Summary of the HERC portfolio (Raffinot, 2018b):

1. distance matrix: correlation-based distance-of-distance matrix in (12.2);
2. linkage method: Ward’s method;
3. clustering stopping criterion: gap statistic (Tibshirani et al., 2001);
4. splitting criterion: following the dendrogram;
5. intra-weight allocation: 1/𝑁 portfolio; and
6. inter-weight allocation: equal risk constribution as in (12.7).
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Figure 12.15 Effect of early stopping in the hierarchical clustering process.

Numerical Results
For simplicity, for the weight splitting we simply use the two risk contribution measures,
RC𝑖 = 1 and RC𝑖 = 1/𝜎2

𝑖 , leading to the 50%–50% split as in the hierarchical 1/𝑁 portfolio
and to (12.6) as in the HRP portfolio.

We now compare the HERC portfolios (both with bisection split and dendrogram split) with the
following benchmarks: 1/𝑁 portfolio, hierarchical 1/𝑁 portfolio, inverse-variance portfolio
(IVarP), and HRP portfolio. Figure 12.16 shows the portfolio weights, whereas Figure 12.17
shows the cumulative P&L and drawdown of the portfolios for a single illustrative backtest. It
is difficult to conclude anything from this single backtest and more exhaustive backtests are
necessary.
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Figure 12.16 Portfolio allocation of HERC portfolios and benchmarks.
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Figure 12.17 Backtest performance of HERC portfolios and benchmarks.

12.3.4 From Portfolio Risk Minimization to Hierarchical Portfolios
The essence of the hierarchical portfolios covered in this section lies in successive partitioning
of the set of assets with a proper inter-set capital allocation and intra-set portfolio allocation.
To be more specific, at each round of this successive partitioning, we partition a set of assets,
with covariance matrix 𝚺, into two subsets 𝐴 and 𝐵, with covariance matrices 𝚺𝐴 and 𝚺𝐵,
respectively. Then, the portfolio is constructed as

𝒘 ∝
[

1
𝜈 (𝚺𝐴)𝒘(𝚺𝐴)

1
𝜈 (𝚺𝐵 )𝒘(𝚺𝐵)

]
, (12.8)

where 𝜈 (·) and 𝒘 (·) denote some measure of risk and portfolio construction, respectively,
for a set of assets with given covariance matrix. The first component 1/𝜈(·) provides the
capital allocation into the two subsets (inversely proportional to the risk), whereas the second
component 𝒘(·) gives the (normalized) portfolio allocation for each subset.

The particular form of 𝜈(·) and 𝒘(·) in (12.8) depends on each type of hierarchical portfolio.
For example, in the case of the HRP portfolio covered in Section 12.3.2:

• the intra-weight (normalized) allocation is given by the inverse-variance portfolio (12.5),

𝒘(𝚺) = 𝝈−2

1T𝝈−2 ,

where 𝝈2 = diag(𝚺) denotes the variance of the assets, and
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• the measure of risk (whose inverse gives the capital or inter-weight allocation) is measured
by the variance (12.6),

𝜈 (𝚺) = 𝒘(𝚺)T 𝚺 𝒘(𝚺).

However, the basic structure of hierarchical portfolios (12.8) is heuristic and suboptimal,
which is understandable since the motivation was not optimality but stability against estimation
errors. One reason for the lack of optimality can be seen in the fact that the portfolios in each
of the two groups, 𝒘(𝚺𝐴) and 𝒘(𝚺𝐵), are oblivious to each other and the two groups are only
jointly adjusted in the final normalization step of (12.8) (note the notation ∝ which requires a
normalization that depends on all the elements). On the other hand, portfolios designed based
on the minimization of some properly chosen measure of risk are not heuristic by definition
but optimal according to the design criterion. Can we make an explicit connection between
the two paradigms? Can we somehow derive an expression similar to (12.8) but more formally
justified and optimally chosen?

A positive answer was provided in Cotton (2023) as described next. Consider the global
minimum variance portfolio (see Section 6.5.1 in Chapter 6):

minimize
𝒘

𝒘T𝚺𝒘

subject to 𝒘T1 = 1.

Interestingly, by partitioning 𝚺 as

𝚺 =

[
𝚺𝐴 𝚺𝐴𝐵
𝚺𝐵𝐴 𝚺𝐵

]
,

the optimal solution can be written (up to a scaling factor) in a form reminiscent to (12.8) as

𝒘 ∝ 𝚺−11 =

[
(𝚺c

𝐴)−1𝒃𝐴
(𝚺c

𝐵)−1𝒃𝐵

]
,

where 𝚺c
𝐴 and 𝚺c

𝐵 are the Schur complements of 𝚺𝐴 and 𝚺𝐵,3 respectively,

𝚺c
𝐴 = 𝚺𝐴 − 𝚺𝐴𝐵𝚺−1

𝐵 𝚺𝐵𝐴,

𝚺c
𝐵 = 𝚺𝐵 − 𝚺𝐵𝐴𝚺−1

𝐴 𝚺𝐴𝐵,

and
𝒃𝐴 = 1 − 𝚺𝐴𝐵𝚺−1

𝐵 1,
𝒃𝐵 = 1 − 𝚺𝐵𝐴𝚺−1

𝐴 1.

Finally, this optimal solution can be further rewritten in a form similar to (12.8) as

𝒘 ∝
[ 1
𝜈 (𝚺c

𝐴
,𝒃𝐴)𝒘(𝚺

c
𝐴, 𝒃𝐴)

1
𝜈 (𝚺c

𝐵 ,𝒃𝐵 )𝒘(𝚺
c
𝐵, 𝒃𝐵)

]
, (12.9)

3 The Schur complement of a block matrix is a key tool in the fields of numerical analysis, statistics, and matrix
analysis. For our motivation, it suffices to know that it naturally appears in the inverse of a 2 × 2 matrix:[

𝚺𝐴 𝚺𝐴𝐵

𝚺𝐵𝐴 𝚺𝐵

]−1

=

[ (
𝚺𝐴 − 𝚺𝐴𝐵𝚺−1

𝐵 𝚺𝐵𝐴

)−1 0
0

(
𝚺𝐵 − 𝚺𝐵𝐴𝚺−1

𝐴 𝚺𝐴𝐵

)−1

]
·
[

𝑰 −𝚺𝐴𝐵𝚺−1
𝐵

𝚺𝐵𝐴𝚺−1
𝐴 𝑰

]
.
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where the (normalized) allocation is

𝒘(𝚺, 𝒃) = 𝚺−1𝒃

𝒃T𝚺−1𝒃

and the measure of risk is

𝜈(𝚺, 𝒃) = (𝒘(𝚺, 𝒃))T 𝚺 𝒘(𝚺, 𝒃) = 1
𝒃T𝚺−1𝒃

.

At this point it is important to realize that optimal portfolio in (12.9) becomes a hierarchical
portfolio (12.8) if one replaces 𝚺c

𝐴 → 𝚺𝐴 and 𝒃𝐴 → 1 (and similarly for 𝚺c
𝐵 and 𝒃𝐵). This

observation naturally leads to the idea of transitioning from one set of parameters to the other
in a smooth way to provide a continuum ranging from a hierarchical portfolio to a minimum
risk portfolio as some scalar parameter 𝛾 goes from 0 to 1. There are multiple ways of doing
such a smooth transition; some examples include:

• convex combination:

𝚺 (𝛾)
𝐴

= (1 − 𝛾)𝚺𝐴 + 𝛾𝚺c
𝐴 = 𝚺𝐴 − 𝛾𝚺𝐴𝐵𝚺−1

𝐵 𝚺𝐵𝐴,

𝒃 (𝛾)
𝐴

= (1 − 𝛾)1 + 𝛾𝒃𝐴 = 1 − 𝛾𝚺𝐴𝐵𝚺−1
𝐵 1;

• geodesic-convex combination (Wiesel, 2012):

𝚺 (𝛾)
𝐴

= 𝚺1/2
𝐴

(
𝚺−1/2
𝐴

𝚺c
𝐴𝚺
−1/2
𝐴

)𝛾
𝚺1/2
𝐴
,

𝒃 (𝛾)
𝐴

= 𝒃𝛾
𝐴
,

where the matrix power is defined via the power of the eigenvalues.

12.4 Numerical Experiments
After looking at several graph-based portfolios and observing their performance over single
backtests, we now resort to an empirical evaluation based on multiple randomized backtests.
In particular, we take a dataset of the S&P 500 stocks over the period 2015–2020 and generate
200 resamples each with 𝑁 = 50 randomly selected stocks and a random period of two years.
Then, for each resample, we perform a walk-forward backtest with a lookback window of one
year, reoptimizing the portfolio every month. Note that more exhaustive backtests should be
conducted with a wide variety of data before drawing any firm conclusion.

Splitting: Bisection vs. Dendrogram
We start by comparing the two splitting methods considered: direct bisection (after reordering
the assets with the dendrogram) and following the natural splits of the dendrogram, as
illustrated in Figure 12.12. In principle, one may expect that following the natural dendrogram
should be more faithful to the structure in the actual data as opposed to bisection, which
somehow breaks the dendrogram. Interestingly, the empirical evaluation in Figure 12.18
seems to suggest otherwise. One possible explanation is that bisection provides more balanced
clusters while still using the reordering information provided by the dendrogram.
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HERC IVarP - dendrogram

HERC IVarP - bisection

HRP - dendrogram

HRP - bisection

IVarP

HERC 1/N  - dendrogram

HERC 1/N  - bisection

Hierarchical 1/N  - dendrogram

Hierarchical 1/N  - bisection
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Figure 12.18 Comparison of graph-based portfolios: bisection vs. dendrogram
splitting.

Graph Estimation: Simple vs. Sophisticated
Then we evaluate whether the more sophisticated graph estimation methods can bring any
benefit to the portfolios. In principle, one may expect a positive answer, but the empirical
results in Figure 12.19 show that this is not so clear and further analysis is required.

HRP (k -comp-heavy-tail graph)

HRP (regular-heavy-tail graph)

HRP (original)

IVarP

Hierarchical 1/N  (k -comp-heavy-tail graph)

Hierarchical 1/N  (regular-heavy-tail graph)

Hierarchical 1/N  (original)

1/N

0.0 0.5 1.0 1.5 2.0 2.5

Sharpe ratio

Figure 12.19 Comparison of graph-based portfolios: simple vs. sophisticated graph
learning methods.

Final Comparison
Finally, we perform a comparison of the graph-based portfolios (using the simple graph-based
distance-of-distance matrix in (12.2)), along with the benchmarks 1/𝑁 portfolio and IVarP:

• hierarchical 1/𝑁 portfolio
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• HERC 1/𝑁 portfolio
• HRP portfolio
• HERC IVarP.

The empirical results in Table 12.1 and Figures 12.20–12.21 show that the various methods do
not appear significantly different and a more exhaustive comparison is needed before drawing
any clear conclusion.

Table 12.1 Comparison of selected graph-based portfolios: performance measures.

Portfolio Sharpe
ratio

Annual
return

Annual
volatility

Sortino
ratio

Max
drawdown

CVaR
(0.95)

1/𝑁 1.01 14% 14% 1.39 11% 2%
Hierarchical 1/𝑁 0.81 12% 14% 1.12 11% 2%
HERC 1/𝑁 0.99 14% 14% 1.31 11% 2%
IVarP 1.04 13% 12% 1.44 10% 2%
HRP 0.91 11% 12% 1.26 10% 2%
HERC IVarP 0.89 12% 13% 1.21 10% 2%

max drawdown annual volatility
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Figure 12.20 Comparison of selected graph-based portfolios: barplots of maximum
drawdown and annualized volatility.

12.5 Summary
Graphs provide a convenient and compact way to represent big data, exposing the underlying
structure and existing patterns that may otherwise go unnoticed. In the context of portfolio
design, the following key takeaway points can be identified.

• In finance, graphs can represent the relationship among assets: each asset is a node and
their pairwise relationships are represented by edges of different strength.

• Financial graphs can be learned automatically from collected data (see Chapter 5). The
recommended graph learning formulations are the heavy-tailed Markov random field (12.3)
or, if a clustered graph is desired, the 𝑘-component version (12.4).
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Figure 12.21 Comparison of selected graph-based portfolios: boxplots of Sharpe
ratio.

• Hierarchical clustering methods can be used to partition the assets into clusters with
different levels of detail from the graph information.

• Graph information of assets should be taken into account in the portfolio formulation.
Further work needs to be done, but some notable examples include: the hierarchical 1/𝑁
portfolio, the hierarchical risk parity portfolio, and the hierarchical equal risk contribution
portfolio.

Exercises
12.1 (Learning heavy-tailed financial graphs)

a. Download market data corresponding to 𝑁 assets (e.g., stocks or cryptocurrencies) during
a period with 𝑇 observations, and form the data matrix 𝑿 ∈ R𝑇×𝑁 .

b. Learn a Gaussian MRF graph:

maximize
𝒘≥0

log gdet(L(𝒘)) − Tr(L(𝒘)𝑺)
subject to 𝔡(𝒘) = 1,

where 𝑺 is the sample covariance matrix of the data, L(𝒘) is the Laplacian operator that
produces the Laplacian matrix 𝑳 from the weights 𝒘, and 𝔡(𝒘) is the degree operator that
gives the degrees of the nodes.

c. Learn a heavy-tailed MRF graph directly:

maximize
𝒘≥0

log gdet(L(𝒘)) − 𝑁 + 𝜈
𝑇

𝑇∑︁
𝑡=1

log
(
𝜈 + (𝒙 (𝑡 ) )TL(𝒘)𝒙 (𝑡 )

)
subject to 𝔡(𝒘) = 1,

where 𝒙 (𝑡 ) is the 𝑡th row of the data matrix 𝑿.

d. Learn a heavy-tailed MRF graph by solving the sequence of Gaussianized problems for
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𝑘 = 1, 2, . . .
maximize

𝒘≥0
log gdet(L(𝒘)) − Tr(L(𝒘)𝑺𝑘)

subject to 𝔡(𝒘) = 1,

where 𝑺𝑘 is the weighted sample covariance matrix

𝑺𝑘 =
1
𝑇

𝑇∑︁
𝑡=1

𝑤𝑘𝑡 × 𝒙 (𝑡 ) (𝒙 (𝑡 ) )T,

with weights 𝑤𝑘𝑡 =
𝑁 + 𝜈

𝜈 + (𝒙 (𝑡 ) )TL(𝒘𝑘)𝒙 (𝑡 ) .

e. Plot the graphs and compare them visually.

f. Compute the dendrogram for each of the graphs and compare them.

12.2 (Hierarchical 1/𝑁 portfolio)

a. Download market data corresponding to 𝑁 assets during a period with 𝑇 observations,
and form the data matrix 𝑿 ∈ R𝑇×𝑁 .

b. Learn the graph distance matrix based on (i) a simple distance matrix from the distance
between the time series of asset pairs, and (ii) a heavy-tailed MRF graph formulation.

c. Construct the hierarchical 1/𝑁 portfolio.
d. Plot the portfolio allocation and perform a backtest (comparing with the 1/𝑁 portfolio).

12.3 (Hierarchical risk parity (HRP) portfolio)

a. Download market data corresponding to 𝑁 assets during a period with 𝑇 observations,
and form the data matrix 𝑿 ∈ R𝑇×𝑁 .

b. Learn the graph distance matrix based on (i) a simple distance matrix from the distance
between the time series of asset pairs, and (ii) a heavy-tailed MRF graph formulation.

c. Construct the HRP portfolio.
d. Plot the portfolio allocation and perform a backtest (comparing with the inverse-variance

portfolio).

12.4 (Hierarchical equal risk contribution (HERC) portfolio)

a. Download market data corresponding to 𝑁 assets during a period with 𝑇 observations,
and form the data matrix 𝑿 ∈ R𝑇×𝑁 .

b. Learn the graph distance matrix based on (i) a simple distance matrix from the distance
between the time series of asset pairs, and (ii) a heavy-tailed MRF graph formulation.

c. Construct the HERC portfolio.
d. Plot the portfolio allocation and perform a backtest (comparing with the hierarchical 1/𝑁

portfolio and HRP portfolio).

12.5 (From minimum variance portfolio to hierarchical portfolio)

a. Derive the inverse of the 2 × 2 block matrix

𝚺 =

[
𝚺𝐴 𝚺𝐴𝐵
𝚺𝐵𝐴 𝚺𝐵

]
,
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identifying the Schur complements of 𝚺𝐴 and 𝚺𝐵 defined, respectively, as

𝚺c
𝐴 = 𝚺𝐴 − 𝚺𝐴𝐵𝚺−1

𝐵 𝚺𝐵𝐴,

𝚺c
𝐵 = 𝚺𝐵 − 𝚺𝐵𝐴𝚺−1

𝐴 𝚺𝐴𝐵.

b. Derive the global minimum variance portfolio

minimize
𝒘

𝒘T𝚺𝒘

subject to 𝒘T1 = 1

in the form (up to a scaling factor)

𝒘 ∝ 𝚺−11 =

[
(𝚺c

𝐴)−1𝒃𝐴
(𝚺c

𝐵)−1𝒃𝐵

]
,

where
𝒃𝐴 = 1 − 𝚺𝐴𝐵𝚺−1

𝐵 1,
𝒃𝐵 = 1 − 𝚺𝐵𝐴𝚺−1

𝐴 1.

c. Rewrite the solution in the form

𝒘 ∝
[ 1
𝜈(𝚺c

𝐴
,𝒃𝐴)𝒘

(
𝚺c
𝐴, 𝒃𝐴

)
1

𝜈(𝚺c
𝐵 ,𝒃𝐵)𝒘

(
𝚺c
𝐵, 𝒃𝐵

) ] ,
for properly defined (normalized) allocation 𝒘(𝚺, 𝒃) and measure of risk 𝜈(𝚺, 𝒃).
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13

Index Tracking Portfolios

“If you have assumed a character beyond your strength, you have both played a part ill, and have fallen in an
unbecoming manner: you have gone aground.”

— Epictetus

“I never met another man I’d rather be. And even if that’s a delusion, it’s a lucky one.”

— Charles Bukowski

Can we outsmart the market? The efficient-market hypothesis states that the price of a security
already contains all the publicly available information about the future (Fama, 1970), although
another line of thought supports precisely the opposite view in favor of inefficient and irrational
markets (Shiller, 1981). In any case, beating the market is routinely promised by investment
funds, hedge funds, financial experts, but do they keep up their promises? Empirical analysis
of data shows that about 95% of funds do not outperform the market (Malkiel, 1973).

This chapter explores the topic of market or index tracking as an alternative to active investment
strategies that attempt to beat the market: from heuristic and discretionary approaches, to more
sophisticated optimization formulations, and even the most recent techniques to automatically
choose the number of active assets in a statistically controlled way.

13.1 Active vs. Passive Strategies
Strategies followed by investors can be classified into two main families:

• Active strategies: the premise is that the market is not perfectly efficient (Shiller, 1981)
and through expertise one can add value by choosing high-performing assets and beat the
market performance. Examples include the portfolios paradigms presented in the previous
chapters, namely: mean–variance portfolios (Chapter 7), high-order portfolios (Chapter 9),
portfolios with alternative measures of risk (Chapter 10), risk parity portfolios (Chapter 11),
and graph-based portfolios (Chapter 12).

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.

341



342 Index Tracking Portfolios

• Passive strategies: the assumption is that the market is efficient (Fama, 1970), in the sense
that prices reflect all available information, and as a consequence the market cannot be
beaten in the long run (Malkiel, 1973). Passive investing methods seek to avoid the fees and
limited performance that may occur with frequent trading and instead focus on infrequent
rebalancing. This chapter deals with the problem of index tracking as a way of passive
investment (Benidis et al., 2018a; Prigent, 2007).

13.1.1 Beating the Market
Can investors consistently beat the market? One only hears from the winners. Nobody writes
articles celebrating the worst-performing mutual fund manager. However, to perform a proper
data analysis, we also need to collect data from the losers and separate luck from skill.

Data clearly shows that individual investors who trade stocks directly pay a tremendous
performance penalty for active trading (B. M. Barber & Odean, 2000). Perhaps expert financial
managers can do better?

The percentage of fund managers who do not outperform the index can vary depending on the
time period, the index being used as a benchmark, and the specific group of fund managers
being analyzed. However, numerous studies have found that around 85%–95% of actively
managed mutual funds run by professional fund managers fail to outperform their respective
benchmark indices over the long term (Malkiel, 1973).

Some interesting and even provocative conclusions include (Malkiel, 1973):

investors are far better off buying and holding an index fund than attempting to buy and sell individual
securities or actively managed mutual funds;

and

the market prices stocks so efficiently that a blindfolded chimpanzee throwing darts at the stock listings can
select a portfolio that performs as well as those managed by the experts.

As a consequence, most investors have figured out that they are not good at stock-picking or
managing trades; most professionals are not either. Thus, paying high mutual fund expenses
to a manager who underperforms a benchmark makes little sense. This realization has led to
the rise of indices and inexpensive exchange-traded funds (ETFs).

13.1.2 What is a Financial Index?
A financial index is defined as a collection of carefully selected assets to capture the value
of a specific market or a segment of it. An index is effectively equivalent to a hypothetical
portfolio of assets; however, one cannot invest directly in it, that is, an index is not a financial
instrument that can be traded.

An index is defined by the universe of assets composing it and also the percentage of the
composition. The most common type of index follows a capitalization-weighted (cap-weighted)
approach:1 the assets are weighted based on the ratio of their market capitalization (number

1 Apart from the common cap-weighted indices (weighted according to the market capitalization), there are other
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of outstanding shares multiplied by share price) to the overall capitalization of the assets
that compose the index. The index value is then proportional to the weighted average of the
capitalization of the underlying assets.

Standard & Poor’s 500 (S&P 500) is one of the world’s best-known (cap-weighted) indices
and one of the most commonly used benchmarks for the U.S. stock market. Figure 13.1 shows
the price of the S&P 500 index over more than a decade. As can be observed, the S&P 500
has historically risen and reasonable returns can be obtained simply by following the market
without active risk management (this still holds after adjusting the price for inflation assuming
a 2% annual inflation rate). Note that this period includes two severe crises: the 2007–2008
global financial crisis and the COVID-19 recession (starting around February 2020).
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Figure 13.1 Price evolution of the S&P 500 index.

While it is difficult to give a precise number of existing financial indices, as new indices are
created and old indices are retired or replaced regularly, it is safe to say that there are thousands
of financial indices that cover a wide range of asset classes, sectors, and regions. Some of
the most well-known indices include the S&P 500 (USA), Dow Jones Industrial Average
(USA), Nasdaq Composite (USA), Hang Seng Index (Hong Kong), Shanghai Shenzhen CSI
300 Index (mainland China), Nikkei 225 (Japan), FTSE 100 (UK), DAX (Germany), and
IBEX 35 (Spain), among many others.

13.1.3 Index Tracking
An index is just a definition based on a hypothetical portfolio of assets and cannot be directly
traded. In practice, one has to construct a real portfolio that tracks or mimics the index as
closely as possible. Index tracking, also known as index replication, is a passive portfolio
management strategy that attempts to reproduce the performance of a market index.

In the current financial markets, there are a staggering number of ETFs that precisely track

types of index construction methods, such as price weighted, equal weighted, fundamentally weighted, and
factor weighted.
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any given index and investors can directly trade them. However, these ETFs still have to be
constructed by financial managers. For example, as of 2023, there are over 250 ETFs that
track the S&P 500 index, with the most popular one being the SPDR S&P 500 ETF, which
happens to be the largest and oldest ETF in the world. Figure 13.2 shows the S&P 500 index
together with the SPDR S&P 500 ETF (under the ticker SPY). As can be observed from
the plot, its value is approximately 1/10 of the cash S&P 500 level. Nevertheless, this ratio
is not exactly maintained in the long run, as it goes approximately from 1/14 to 1/10 over
time during 2007–2023. This is not critical since for hedging purposes it is the short-term
variations that matter.
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Figure 13.2 Tracking of the S&P 500 index by the SPDR S&P 500 ETF.

The most straightforward approach to create a tracking portfolio is by buying appropriate
quantities of all the assets that compose the index, so-called full replication. This technique
requires knowledge of the precise index composition, which is not always available in real
time. It also needs a regular rebalancing of all the portfolio positions as the index composition
is updated (including the less liquid assets), which translates into transaction costs.

Due to the aforementioned transaction cost reasons and also logistic arguments (managing a
smaller portfolio is more convenient), it is advantageous from a practical standpoint to hold
active positions only on a reduced basket of representative assets of the whole index universe.
For example, instead of keeping an active portfolio of 500 assets to track the S&P 500 index,
it may be better and simpler to invest in, say, only 20 assets properly selected to represent the
index. This is referred to as sparse index tracking or portfolio compression (Benidis et al.,
2018a, 2018b; Jansen & Van Dijk, 2002; Machkour, Palomar, & Muma, 2024; Maringer &
Oyewumi, 2007; Scozzari et al., 2013; Xu et al., 2016). Interestingly, this problem is related
to sparse regression techniques in statistics, as described next.
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13.2 Sparse Regression
A vector is sparse if it has many elements equal to zero. Sparsity is a very important property
in a wide variety of problems where proper control of the sparsity level is desired (Elad,
2010).

The cardinality of a vector 𝒙 ∈ R𝑁 , denoted by card(𝒙), refers to the number of nonzero
elements:

card(𝒙) ≜
𝑁∑︁
𝑖=1

1{𝑥𝑖 ≠ 0},

where 1{·} denotes the indicator function. It is often written as the ℓ0-pseudo-norm ∥𝒙∥0,
which is not a norm (in fact, it is not even convex).

13.2.1 Problem Formulation
Sparse regression refers to a regression problem with the additional requirement that the
solution has to be sparse. Some common formulations of sparse regression includes:

• Regularized sparse least squares (LS):

minimize
𝒙

∥𝑨𝒙 − 𝒃∥22 + 𝜆∥𝒙∥0,

where the parameter 𝜆 can be chosen to enforce more or less sparsity in the solution.

• Constrained sparse LS:
minimize

𝒙
∥𝑨𝒙 − 𝒃∥22

subject to ∥𝒙∥0 ≤ 𝑘,

where 𝑘 is a parameter to control the sparsity level.

• Sparse underdetermined system of linear equations:

minimize
𝒙

∥𝒙∥0
subject to 𝑨𝒙 = 𝒃,

where the system of linear equations 𝑨𝒙 = 𝒃 is underdetermined (so that it has an infinite
number of solutions).

Unfortunately, the cardinality operator is noncontinuous, nondifferentiable, and nonconvex,
which means that developing practical algorithms under sparsity is not trivial. As a matter of
fact, this has been a well-researched topic for decades and mature approximate methods are
currently available, as described next.

13.2.2 Methods for Sparse Regression
The most common approach to deal with the cardinality operator is to approximate it with
a more convenient form for optimization methods. Figure 13.3 shows the following two
approximations (along with the indicator function):
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• ℓ1-norm approximation: ∥𝒙∥0 is simply approximated by ∥𝒙∥1. In the univariate case, it
means that the indicator function 1{𝑡 ≠ 0} is approximated by the absolute value |𝑡 |.

• Concave approximation: ∥𝒙∥0 is better approximated by a concave function (rendering
the sparse regression problem nonconvex). In the univariate case, it means that the
indicator function 1{𝑡 ≠ 0} is approximated by a concave function, such as the log-function
log(1+ 𝑡/𝜀), where 𝜀 is a parameter controlling the accuracy of the approximation, although
many other concave approximation have been proposed (Candès et al., 2008).
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Figure 13.3 Indicator function and approximations.

ℓ1-Norm Approximation
The most popular algorithm for sparse regression is undoubtedly the LASSO (least absolute
shrinkage and selection operator) (Tibshirani, 1996), which solves the following convex
quadratic problem based on the ℓ1-norm approximation:

minimize
𝒙

∥𝑨𝒙 − 𝒃∥22
subject to ∥𝒙∥1 ≤ 𝑡,

where 𝑡 is a parameter to control the sparsity level.

Another popular method for sparse regression is the elastic net (Zou & Hastie, 2005), which
overcomes some of the limitations of the LASSO. In particular, if groups of variables are
highly correlated, the LASSO tends to select one variable from a group and ignore the others.
The elastic net is a regularized regression method that linearly combines the ℓ1 and ℓ2 penalties
of the LASSO and ridge methods.

It is worth noting that nonnegativity constraints alone can also induce sparsity in the solution
(Meinshausen, 2013).

Similarly, the sparse resolution of an underdetermined system of linear equations can be
recovered in practice, under some technical conditions, as a linear program (Candès & Tao,



13.2 Sparse Regression 347

2005; Donoho, 2006):
minimize

𝒙
∥𝒙∥1

subject to 𝑨𝒙 = 𝒃.

Concave Approximation
In some cases, the ℓ1-norm approximation is not good enough and one needs to resort to a
more refined concave approximation (as illustrated in Figure 13.3):

∥𝒙∥0 ≈
𝑁∑︁
𝑖=1

𝜙( |𝑥𝑖 |),

where 𝜙(·) is an appropriate concave function, such as the popular log-function

𝜙(𝑡) = log(1 + 𝑡/𝜀).

Alternative concave approximations can be used (Candès et al., 2008), such as the arc-tangent
function or the ℓ𝑝-norm for 0 < 𝑝 < 1.

However, a concave approximation leads to a nonconvex problem formulation, such as

minimize
𝒙

∥𝑨𝒙 − 𝒃∥22 + 𝜆
𝑁∑︁
𝑖=1

log
(
1 + |𝑥𝑖 |

𝜀

)
.

Fortunately, we can use the majorization–minimization framework to derive iterative methods
to solve problems with concave approximations of the cardinality, as explored next. Other
families of algorithms have also been successfully employed such as iteratively reweighted
least squares (IRLS) minimization (Daubechies et al., 2010).

13.2.3 Preliminaries on MM
The majorization–minimization (MM) method (or framework) approximates a difficult
optimization problem by a sequence of simpler approximated problems. We now give a
concise description. For details, the reader is referred to Section B.7 in Appendix B, as well
as the concise tutorial in Hunter and Lange (2004), the long tutorial with applications in Sun
et al. (2017), and the convergence analysis in Razaviyayn et al. (2013).

Suppose the following (difficult) problem is to be solved:

minimize
𝒙

𝑓 (𝒙)
subject to 𝒙 ∈ X,

where 𝑓 (·) is the (possibly nonconvex) objective function and X is a (possibly nonconvex)
set. Instead of attempting to directly obtain a solution 𝒙★ (either a local or global solution),
the MM method will produce a sequence of iterates 𝒙0, 𝒙1, 𝒙2, . . . that will converge to 𝒙★.

More specifically, at iteration 𝑘 , MM approximates the objective function 𝑓 (𝒙) by a surrogate
function around the current point 𝒙𝑘 (essentially, a tangent upper bound), denoted by 𝑢

(
𝒙; 𝒙𝑘

)
,

leading to the sequence of (simpler) problems:

𝒙𝑘+1 = argmin
𝒙∈X

𝑢
(
𝒙; 𝒙𝑘

)
, 𝑘 = 0, 1, 2, . . .



348 Index Tracking Portfolios

In order to guarantee convergence of the iterates, the surrogate function 𝑢
(
𝒙; 𝒙𝑘

)
has to satisfy

the following technical conditions (Razaviyayn et al., 2013; Sun et al., 2017):

• upper bound property: 𝑢
(
𝒙; 𝒙𝑘

)
≥ 𝑓 (𝒙);

• touching property: 𝑢
(
𝒙𝑘; 𝒙𝑘

)
= 𝑓

(
𝒙𝑘

)
; and

• tangent property: 𝑢
(
𝒙; 𝒙𝑘

)
must be differentiable with ∇𝑢

(
𝒙; 𝒙𝑘

)
= ∇ 𝑓 (𝒙).

The surrogate function 𝑢
(
𝒙; 𝒙𝑘

)
is also referred to as a majorizer because it is an upper bound

of the original function. The fact that, at each iteration, first the majorizer is constructed and
then it is minimized gives the name majorization–minimization to the method.

13.2.4 Iterative Reweighted ℓ1-Norm Minimization
We now employ the MM framework to derive an iterative algorithm to solve sparse regression
problems. For illustration purposes, we will focus on the following formulation with a concave
approximation of the cardinality operator:

minimize
𝒙

𝑁∑︁
𝑖=1

log
(
1 + |𝑥𝑖 |

𝜀

)
subject to 𝑨𝒙 = 𝒃.

(13.1)

Recall that many other concave functions can be used similarly (Candès et al., 2008).

In order to use MM, we need a key component: a majorizer of the concave function log(1+𝑡/𝜀),
which means that it has to be an upper-bound tangent on the point of interest.

Lemma 13.1 (Majorizer of the log function) The concave function 𝜙(𝑡) = log(1 + 𝑡/𝜀) is
majorized at 𝑡 = 𝑡0 by its linearization:

𝜙(𝑡) ≤ 𝜙(𝑡0) + 𝜙(𝑡0)′ (𝑡 − 𝑡0) = 𝜙(𝑡0) +
1

𝜀 + 𝑡0
(𝑡 − 𝑡0).

According to Lemma 13.1, the term log (1 + |𝑥𝑖 |/𝜀) is majorized at 𝑥𝑘𝑖 (up to an irrelevant
constant) by 𝛼𝑘𝑖 |𝑥𝑖 | with weight 𝛼𝑘𝑖 = 1/(𝜀 + |𝑥𝑘𝑖 |).

Concluding, we can solve the nonconvex problem (13.1) by solving the following sequence of
convex problems (Candès et al., 2008), for 𝑘 = 0, 1, 2, . . .:

minimize
𝒙

𝑁∑︁
𝑖=1

𝛼𝑘𝑖 |𝑥𝑖 |

subject to 𝑨𝒙 = 𝒃,

(13.2)

where the objective function is a weighted ℓ1-norm with weights 𝛼𝑘𝑖 = 1/(𝜀 + |𝑥𝑘𝑖 |). That is,
the concave approximation of the sparse regression in (13.1) has been effectively solved by a
sequence of iterative reweighted ℓ1-norm minimization problems as in (13.2) (Candès et al.,
2008).
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13.3 Sparse Index Tracking
The problem of sparse index tracking is in fact an instance of sparse regression and a variety of
methods have been proposed in the literature to deal with the difficulty of cardinality constraint
or sparsity control (Benidis et al., 2018a, 2018b; Jansen & Van Dijk, 2002; Maringer &
Oyewumi, 2007; Scozzari et al., 2013; Xu et al., 2016).

13.3.1 Tracking Error
The return of an index or benchmark 𝑟b

𝑡 is obtained from the returns of the 𝑁 constituent
assets 𝒓𝑡 ∈ R𝑁 via the definition of the index portfolio 𝒃𝑡 > 0 (normalized to 1T𝒃𝑡 = 1) as

𝒓T
𝑡 𝒃𝑡−1 = 𝑟

b
𝑡 , 𝑡 = 1, . . . , 𝑇, (13.3)

where the vector 𝒃𝑡 denotes the proportion of capital allocated to the assets (see Section 6.1.2
for details of the notation). Note that it is also possible to define a portfolio in terms of number
of shares instead of capital allocation.

If the portfolio is fixed over time, 𝒃𝑡 = 𝒃, then the notation becomes more compact. Denoting
by 𝑿 ∈ R𝑇×𝑁 the matrix containing the return vectors 𝒓𝑡 along the rows and by 𝒓b ∈ R𝑇 the
vector containing the returns of the index, we can then write

𝑿𝒃 = 𝒓b. (13.4)

However, it is important to remark that in most practical cases the index portfolio changes
over time and the notation in (13.3) is the correct one.

The goal is to design a sparse portfolio 𝒘𝑡 such that 𝒓T
𝑡 𝒘𝑡−1 ≈ 𝑟b

𝑡 as in (13.3). For simplicity
of notation, we can assume a fixed portfolio over time, 𝒘𝑡 = 𝒘, and then the goal can be
written as the approximation 𝑿𝒘 ≈ 𝒓b similarly to (13.4). Thus, probably the simplest way to
define the tracking error (TE) is

TE =
1
𝑇

𝒓b − 𝑿𝒘
2

2 , (13.5)

which fits naturally in the context of sparse regression of Section 13.2. Further expanding this
with 𝑿𝒃 = 𝒓b leads to

TE = (𝒃 − 𝒘)T 1
𝑇
𝑿T𝑿 (𝒃 − 𝒘),

which can be interpreted as an approximation of an alternative definition of the tracking error
based on 𝒃 :

TEb = (𝒃 − 𝒘)T𝚺(𝒃 − 𝒘),

where 𝚺 is the covariance matrix of the returns. However, this requires knowledge of 𝒃, which
may or may not be available. In addition, in most practical cases the index portfolio 𝒃𝑡 changes
over time. Thus, the empirical error measure in (13.5) is preferred.

The tracking error definition in (13.5) is the most widely adopted measure in the literature
(Benidis et al., 2018a, 2018b; Jansen & Van Dijk, 2002; Scozzari et al., 2013; Shapcott, 1992;
Xu et al., 2016), with some exceptions that involve the portfolio defined in terms of number of
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shares (Beasley et al., 2003; Maringer & Oyewumi, 2007). Other more sophisticated measures
of error are considered in Section 13.4.

Fixed vs. Time-Varying Portfolio
The tracking error definition in (13.5) is very convenient because it fits naturally in the context
of sparse regression of Section 13.2. However, it is important to remark that in most practical
cases the index portfolio changes over time. For example, for cap-weighted indices (the most
common ones), the normalized portfolio evolves by definition as

𝒃𝑡 =
𝒃𝑡−1 ⊙ (1 + 𝒓𝑡 )
𝒃T
𝑡−1 (1 + 𝒓𝑡 )

.

As a consequence, it makes little sense to try to approximate this time-varying portfolio 𝒃𝑡
with a constant portfolio 𝒘 (except for the convenience of the simplicity of notation). In
addition, even if we really wanted a fixed portfolio 𝒘, this would imply a frequent rebalancing
(with the corresponding transaction cost) because the normalized portfolio would otherwise
naturally change over time (see (6.1) in Chapter 6 for details) as

𝒘𝑡 =
𝒘𝑡−1 ⊙ (1 + 𝒓𝑡 )
𝒘T
𝑡−1 (1 + 𝒓𝑡 )

.

Interestingly, it is still possible to express a tracking error with more realistic time-varying
portfolios in the same convenient form as (13.5). The key is the following approximation
based on the assumption that the index is being tracked, 𝒓T

𝑡 𝒘𝑡−1 ≈ 𝑟b
𝑡 :

𝒘𝑡 ≈
𝒘𝑡−1 ⊙ (1 + 𝒓𝑡 )

1 + 𝑟b
𝑡

≈ 𝒘0 ⊙ 𝜶𝑡 ,

where 𝒘0 is the initial portfolio and

𝜶𝑡 =
𝑡∏
𝑡 ′=1

1 + 𝒓𝑡 ′
1 + 𝑟b

𝑡 ′
(13.6)

denotes weights based on the cumulative returns. This allows us to write the portfolio return
as

𝒓T
𝑡 𝒘𝑡−1 ≈ 𝒓T

𝑡 (𝒘0 ⊙ 𝜶𝑡−1) = 𝒓T
𝑡 𝒘0,

where 𝒓𝑡 = 𝒓𝑡 ⊙ 𝜶𝑡−1 are properly weighted returns.

Thus, we can finally write the tracking error, similarly to (13.5), as

TEtime-varying =
1
𝑇

𝒓b − �̃�𝒘
2

2 , (13.7)

where now �̃� contains the weighted returns 𝒓𝑡 along the rows and 𝒘 denotes the initial
portfolio 𝒘0.

Summarizing, the formulation in (13.5) assumes a fixed portfolio (as in most of the literature),
which can be considered as a rough approximation, whereas (13.7) provides a more accurate
approximation.
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Figure 13.4 shows the tracking error over time with 𝐾 = 20 active assets under the ap-
proximation (or assumption) of a fixed portfolio 𝒘 as in (13.5) and with the more accurate
approximation of a time-varying portfolio as in (13.7), which shows improved results.
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Figure 13.4 Tracking error over time of the S&P 500 index assuming fixed and
time-varying portfolios.

Linear vs. Log-Returns
Computing the portfolio returns as in (13.3)–(13.4) or, simply, using the expression 𝑿𝒘
implicitly assumes the use of linear returns in 𝑿 and 𝒓b (recall that linear returns are additive
along assets, cf. Chapter 6).

Nevertheless, one can similarly use log-returns in 𝑿 and 𝒓b and define the tracking error in
terms of log-returns. The log-returns 𝒓log

𝑡 and the linear returns 𝒓lin are related (see Chapter 6)
as

𝒓log
𝑡 = log

(
1 + 𝒓lin

𝑡

)
≈ 𝒓lin

𝑡 ,

because log(1+𝑥) ≈ 𝑥 for small 𝑥. Thus, the log-returns of the portfolio 𝒘 can be approximated
as

log
(
1 + 𝒘T𝒓lin

𝑡

)
≈ 𝒘T𝒓log

𝑡 .

In practice, the difference between using linear or log-returns is negligible.

Plain vs. Cumulative Returns
It is worth pointing out that minimizing the error in terms of the period-by-period returns
(plain returns) does not directly imply a better track of the cumulative returns (or price) over
time. The reason is that the errors in the returns can accumulate over time on a more positive
or negative side. If one really wants to control the long-term deviation of the cumulative
returns, then the error measure should properly reflect this, for example, by using long-term
returns rather than period-by-period returns or even by using cumulative returns (Benidis et al.,
2018a). However, in numerous instances, tracking an index in the short term is essential for
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hedging purposes against other investments. In such cases, the objective is not to outperform
the index, and it is the period-by-period returns that truly matter.

The price error can be measured by the tracking error in terms of the cumulative returns as

TEcum =
1
𝑇

𝒓b,cum − 𝑿cum𝒘
2

2 , (13.8)

where 𝑿cum (similarly 𝒓b,cum) denotes the cumulative returns, whose rows can be obtained as

𝒓cum
𝑡 ≈

𝑡∑︁
𝑡 ′=1

𝒓𝑡 ′ .

For the case of linear returns, this expression follows from the approximation
𝑡∏
𝑡 ′=1

(
1 + 𝒓T

𝑡 ′𝒘
)
− 1 ≈

𝑡∏
𝑡 ′=1

exp
(
𝒓T
𝑡 ′𝒘

)
− 1 = exp

(
𝑡∑︁
𝑡 ′=1

𝒓T
𝑡 ′𝒘

)
− 1 ≈

(
𝑡∑︁
𝑡 ′=1

𝒓𝑡 ′

)T

𝒘,

where we have used 1 + 𝒂T𝒘 ≈ exp(𝒂T𝒘). For log-returns, it follows from

log

(
𝑡∏
𝑡 ′=1

(
1 + 𝒓T

𝑡 ′𝒘
))

=

𝑡∑︁
𝑡 ′=1

log
(
1 + 𝒓T

𝑡 ′𝒘
)
≈

(
𝑡∑︁
𝑡 ′=1

𝒓𝑡 ′

)T

𝒘.

Figure 13.5 shows the tracking of the index price with 𝐾 = 20 active assets using plain and
cumulative returns in the definition of tracking error as in (13.5) and (13.8), respectively.
Clearly, the cumulative returns provide a much better tracking of the index price (although
not of the tracking error in terms of returns).
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Figure 13.5 Tracking over time of the S&P 500 index using plain returns and
cumulative returns.

Summary of Tracking Errors
Figure 13.6 summarizes the different tracking error definitions previously defined (ignoring
the difference between linear and log-returns). To recall, the different data matrices employed
are:
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• 𝑿: contains the plain returns 𝒓𝑡 along the rows;

• �̃�: contains the weighted plain returns 𝒓𝑡 = 𝒓𝑡 ⊙ 𝜶𝑡−1 along the rows (with 𝜶𝑡 in (13.6));

• 𝑿cum: contains the cumulative returns 𝒓cum
𝑡 ≈ ∑𝑡

𝑡 ′=1 𝒓𝑡 ′ along the rows; and

• �̃�cum: contains the weighted cumulative returns
∑𝑡
𝑡 ′=1 𝒓𝑡 ′ .

Assuming w fixed

Tracking of
   returns

Tracking of
   prices

Assuming w time-varying

X X
cum

X
cum

X
~ ~

Figure 13.6 Different data matrices employed in the definition of tracking error.

13.3.2 Problem Formulation
Formulating the index tracking problem is quite straightforward in terms of a sparse regression
problem:

minimize
𝒘

1
𝑇

𝒓b − 𝑿𝒘
2

2 + 𝜆∥𝒘∥0
subject to 𝒘 ∈ W,

(13.9)

where the parameter 𝜆 controls the level of sparsity in the portfolio,W denotes an arbitrary
constraint set, such asW = {𝒘 | 1T𝒘 = 1, 𝒘 ≥ 0}, and matrix 𝑿 contains the returns of the
assets (any version of returns as explored in Section 13.3.1).

Index tracking is a type of passive investment that avoids the expensive transaction costs
incurred by frequent trading associated with active portfolio management. Therefore, it may
be advantageous to explicitly control the turnover in the formulation (13.9) by adding a penalty
term or constraint to control the turnover ∥𝒘−𝒘0∥1, where 𝒘0 is the current portfolio (Benidis
et al., 2018a, 2018b). In practice, other variations on the basic index tracking formulation
(13.9) are commonly used and will be explored in Section 13.4.

Recall that the cardinality operator on the portfolio ∥𝒘∥0 is noncontinuous, nondifferentiable,
and nonconvex, which means that developing practical algorithms under sparsity is not trivial.
We will start with some heuristic methods and build up to the state-of-the-art solutions based
on MM.

13.3.3 Methods for Sparse Index Tracking
An important observation is that if we knew a priori the active assets, then the index tracking
would be a trivial convex regression problem without the difficulty of sparsity control. This
leads to two-step approaches that first select the active assets and then proceed with the
weight computation (Jansen & Van Dijk, 2002). Nevertheless, such two-step approaches are
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not optimal and one can always do better by solving the problem jointly in a single step.
Several methods have been proposed in the literature; some of them are computationally
intensive, such as mixed integer programming or differential evolution techniques (Maringer &
Oyewumi, 2007), while others are computationally feasible but theoretically cannot guarantee
to produce a globally optimal solution, such as the iterative reweighted ℓ1-norm optimization
method (Benidis et al., 2018a, 2018b) or the projected gradient method (Xu et al., 2016).

Naive Two-Step Design
This approach first selects the desired 𝐾 active assets from the universe of 𝑁 assets (with
𝐾 ≪ 𝑁) in some heuristic way (Jansen & Van Dijk, 2002). This can be done, for example,
based on

• the weight of the assets in the index definition (e.g., the largest 𝐾 assets in 𝒃);
• the market capitalization of the assets; or
• the strength of correlation between the assets and the index.

Once the active assets have been selected, then the weights are taken directly from the index
definition 𝒃 if available; otherwise, one can simply do a dense regression to obtain a proxy
for 𝒃.

In more detail, we can define the Boolean pattern vector 𝒔 ∈ R𝑁 based on the selected assets:

𝑠𝑖 =

{
1 if the 𝑖th asset is selected,
0 otherwise,

so that 1T𝒔 = 𝐾 . Then, we can explicitly write the weights 𝒘 proportional to the definition in
𝒃 (although properly scaled so that 1T𝒘 = 1):

𝒘 =
𝒃 ⊙ 𝒔

1T(𝒃 ⊙ 𝒔) ,

where ⊙ denotes the Hadamard (elementwise) product.

Two-Step Design with Refitted Weights
This approach refines the previous one by trying to refit the weights after the selection of the
active assets (Jansen & Van Dijk, 2002). To be exact, after the 𝐾 assets have been selected and
the Boolean pattern vector 𝒔 has been computed, we can form a simple regression problem
over the active assets without having to deal with the sparsity issue. Thus, the original problem
(13.9) becomes

minimize
𝒘

1
𝑇

𝒓b − 𝑿𝒘
2

2

subject to 𝒘 ∈ W,

𝑤𝑖 = 0 if 𝑠𝑖 = 0

or, equivalently,

minimize
𝒘

1
𝑇

𝒓b − 𝑿𝒘
2

2

subject to 𝒘 ∈ W,

𝒘 ≤ 𝒔.
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Mixed Integer Programming Formulation
In mixed integer programming (MIP), variables are allowed to be constrained to a discrete
set, making the problem nonconvex and generally with an exponential worst-case complexity.
This makes this approach impractical unless the dimensionality of the problem (number of
assets) is very small (Scozzari et al., 2013).

The MIP formulation of (13.9) can be written in terms of the Boolean pattern vector 𝒔, which
is now a variable:

minimize
𝒘,𝒔

1
𝑇

𝒓b − 𝑿𝒘
2

2

subject to 𝒘 ∈ W,

𝒘 ≤ 𝒔, 1T𝒔 = 𝐾, 𝑠𝑖 ∈ {0, 1}.

Evolutionary Algorihms
Evolutionary algorithms are a family of optimization and search techniques inspired by the
process of natural evolution. They operate on populations of candidate solutions, called
individuals, which evolve over time while attempting to improve their fitness. Successful
solutions are selected and combined to produce new candidate solutions akin to the natural
selection process in living organisms.

Evolutionary algorithms have been applied to a wide range of problems, including optimization,
machine learning, and game playing. They are particularly suitable for complex, multimodal,
and noisy search spaces, where traditional optimization methods might struggle. Some key
advantages include their ability to explore large solution spaces, robustness against local
optima, and parallelization potential.

Some popular evolutionary algorithms include genetic algorithms and differential evolution.
Genetic algorithms use a binary or symbolic representation for solutions and apply genetic
operators like selection, crossover, and mutation to evolve populations of chromosomes.
Differential evolution focuses on continuous optimization problems and is known for its
ability to tackle high-dimensional, non-linear, and noisy problems.

Evolutionary algorithms have been employed for index tracking as a way to solve the compli-
cated nonconvex mixed-integer problem formulation. Some examples include Shapcott (1992),
Beasley et al. (2003), and Maringer and Oyewumi (2007). Nevertheless, the computational
complexity of evolutionary algorithms can be high since a population of solutions have to be
evolved over many generations to properly explore the nonconvex fitness surface.

Iterative Reweighted ℓ1-Norm Method
Two main approaches were considered in Section 13.2 for sparse regression: based on the
ℓ1-norm approximation and based on a concave approximation. Unfortunately, the commonly
used method based on the ℓ1-norm ∥𝒘∥1 cannot be used in the context of portfolio optimization
due to the portfolio constraints 1T𝒘 = 1 and 𝒘 ≥ 0 that lead trivially to

∥𝒘∥1 = 1T𝒘 = 1.

Thus, we need to resort to a more refined concave approximation of (13.9); for example, based
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on the log approximation:

minimize
𝒘

1
𝑇

𝒓b − 𝑿𝒘
2

2 + 𝜆
𝑁∑︁
𝑖=1

log
(
1 + |𝑤𝑖 |

𝜀

)
subject to 𝒘 ∈ W.

(13.10)

This nonconvex problem can then be addressed with the MM framework to obtain a convenient
iterative procedure called the iterative reweighted ℓ1-norm method and summarized in
Algorithm 13.1.2

Algorithm 13.1: Iterative reweighted ℓ1-norm method to solve the approximated sparse
index tracking problem (13.10).

1: Choose initial point 𝒘0 ∈ W;
2: Set 𝑘 ← 0;
3: repeat
4: Compute weights

𝛼𝑘𝑖 =
1

𝜀 +
��𝑤𝑘
𝑖

�� ;
5: Solve the following weighted ℓ1-norm problem to obtain 𝒘𝑘+1:

minimize
𝒘

1
𝑇

𝒓b − 𝑿𝒘
2

2 + 𝜆
𝑁∑︁
𝑖=1

𝛼𝑘𝑖 |𝑤𝑖 |

subject to 𝒘 ∈ W;

6: 𝑘 ← 𝑘 + 1;
7: until convergence;

Since (13.10) is a nonconvex problem, the algorithm may potentially get stuck in a local
minimum. In practice, for highly sparse solutions this behavior can be observed. To deal with
this issue, one can start with more dense solutions, corresponding to a small value of 𝜆, and
then sequentially increase the sparsity level by increasing 𝜆 (Benidis et al., 2018a, 2018b).

It is interesting to remark that the main step of Algorithm 13.1 requires solving an ℓ2-norm
weighted ℓ1-norm problem, which can be done with a quadratic program solver (assuming
the feasible setW only contains linear and quadratic terms). Nevertheless, it is possible in
most practical cases, to further majorize the problem in order to obtain a closed-form solution
without the need for a solver (Benidis et al., 2018a, 2018b).

2 The R package sparseIndexTracking implements Algorithm 13.1 based on Benidis et al. (2018b) and
Benidis et al. (2018a) as well as a number of extensions covered in Section 13.4 (Benidis & Palomar, 2019).

https://cran.r-project.org/package=sparseIndexTracking
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13.3.4 Numerical Experiments
Convergence of the Iterative Reweighted ℓ1-Norm Method

Figure 13.7 illustrates the convergence of the iterative reweighted ℓ1-norm method described
in Algorithm 13.1. We can see that the convergence is extremely fast and that two to three
iterations seem to reap most of the benefit.
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Figure 13.7 Convergence of the iterative reweighted ℓ1-norm method for sparse
index tracking.

Comparison of Algorithms
We now compare the tracking of the S&P 500 index based on different tracking methods,
namely:

• the naive two-step approach with proportional weights to the index definition;
• the two-step approach with refitted weights;
• the iterative reweighted ℓ1-norm method in Algorithm 13.1; and
• the MIP formulation (although the computational complexity is too high).

Figure 13.8 shows the tracking error over time of the S&P 500 index with 𝐾 = 20 active assets
(the MIP method is excluded due to its huge computational cost). The tracking portfolios are
computed on a rolling-window basis with a lookback period of two years and recomputed
every six months. To get a more complete picture, Figure 13.9 explores the trade-off of
tracking error vs. the number of active assets 𝐾 (including the MIP method). We can observe
that, as expected, the joint designs are superior to the traditional two-step approaches. While
the MIP formulation is impractical due to the huge computational cost, the iterative reweighted
ℓ1-norm method exhibits low complexity, making it a suitable approach in practice. For more
exhaustive numerical comparisons, the reader is referred to Benidis et al. (2018b) and Benidis
et al. (2018a).

Comparison of Formulations
Finally, we consider again the comparison between assuming a fixed portfolio and a time-
varying one in the definition of tracking error as in (13.5) and (13.7), respectively. This
comparison was already illustrated in Figure 13.4 in terms of tracking error over time. For a
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Figure 13.8 Tracking error over time of the S&P 500 index for different algorithms.
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Figure 13.9 Tracking error of the S&P 500 index vs. active assets for different
algorithms.

more complete comparison, Figure 13.10 shows the trade-off of tracking error vs. cardinality.
Indeed, the error definition in (13.7) under a time-varying portfolio is slightly more accurate.

13.4 Enhanced Index Tracking
Enhanced index tracking refers to variations on the basic index tracking formulation (13.9).
They generally attempt to increase returns by building portfolios around index-like positions
but then adding tactical tilts toward specific styles or individual stocks. This has been used
by professional portfolio managers for decades (Xu et al., 2022) and some examples will be
explored next.
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Figure 13.10 Tracking error of the S&P 500 index vs. active assets assuming fixed
and time-varying portfolios.

13.4.1 Alternative Tracking Error Measures
The tracking error used in Section 13.3 is based on the ℓ2-norm between the achieved returns
𝑿𝒘 and the benchmark returns 𝒓b:

TE(𝒘) = 1
𝑇

𝒓b − 𝑿𝒘
2

2 . (13.11)

This is a very simple way to measure the size of the tracking error and one could consider
many other alternatives by either changing the norm (e.g., using the ℓ1-norm or the ℓ𝑝-norm
(Beasley et al., 2003)) or changing the error measure altogether, such as the excess return
1
𝑇

1T (
𝑿𝒘 − 𝒓b) (Beasley et al., 2003; Dose & Cincotti, 2005), the downside risk, value at

risk, or conditional value at risk (as defined in Chapter 6 and explored in detail in Chapter 10
for portfolio design). We now consider the downside risk and the ℓ1-norm tracking error for
illustration purposes.

Downside Risk Error Measure
A particularly interesting alternative is the downside risk that only takes into account when
the achieved returns are worse than those of the benchmark,

DR(𝒘) = 1
𝑇

(𝒓b − 𝑿𝒘
)+2

2
, (13.12)

where the operator (·)+ ≜ max(0, ·) only considers returns smaller than the benchmark. This
falls into the realm of enhanced index tracking.

It is worth pointing out that while using this tracking error measure may have the benefit
of possibly beating the index, it is not appropriate for hedging purposes since that requires
tracking the index in both directions.

Two key observations arise regarding portfolio optimization under the downside risk DR(𝒘).
First, DR(𝒘) is a convex function of 𝒘 and, therefore, it can be effectively optimized in
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practice with an appropriate solver. Second, it can be easily majorized for the purpose of
using the MM method; in particular, we can choose a majorizer with the form of an ℓ2-norm
and then the methods presented in Section 13.3 can be readily employed.

Lemma 13.2 (Majorizer of the downside risk) The downside risk function DR(𝒘) in (13.12)
is majorized at 𝒘 = 𝒘0 by TE(𝒘) in (13.11) with shifted benchmark returns 𝒓b:

DR(𝒘) ≤ 1
𝑇

𝒓b − 𝑿𝒘
2

2 ,

where 𝒓b = 𝒓b +
(
𝑿𝒘0 − 𝒓b)+ (Benidis et al., 2018a, 2018b).

The shifted benchmark returns 𝒓b in Lemma 13.2 have an interesting interpretation: they are
an improvement of the original returns 𝒓b for those returns that were outperformed by the
nominal portfolio 𝒘0.

According to Lemma 13.2, index tracking under the downside risk can still be accomplished
with Algorithm 13.1 under a slight modification: at each iteration 𝑘 , use the shifted benchmark
returns

(
𝒓b) 𝑘 = 𝒓b +

(
𝑿𝒘𝑘 − 𝒓b)+ .

ℓ1-Norm Tracking Error
The TE in (13.11) is based on the ℓ2-norm, but this is a rather arbitrary choice. In fact, one
may argue that the ℓ1-norm would make more sense:

TE1(𝒘) =
1
𝑇

𝒓b − 𝑿𝒘


1 . (13.13)

This error measure is a convex function and, furthermore, it can be conveniently majorized in
the form of an ℓ2-norm as in the case of the tracking error considered in Section 13.3.

Lemma 13.3 (Majorizer of the ℓ1-norm TE) The ℓ1-norm tracking error function TE1(𝒘)
in (13.13) is majorized at 𝒘 = 𝒘0 by a weighted version of the TE(𝒘) in (13.11):

TE1(𝒘) ≤
1
𝑇

𝒓b − 𝑿𝒘
2

2,𝜶 ,

where ∥𝒙∥22,𝜶 ≜
∑𝑇
𝑖=1 𝛼𝑖𝑥

2
𝑖 is the squared weighted ℓ2-norm with weights 𝜶 = 1/(2|𝒓b− 𝑿𝒘0 |).

See Section B.7 in Appendix B for details.

The weights in the weighted ℓ2-norm TE in Lemma 13.3 have a natural interpretation: their
role is to down-weight the errors so that they grow in an approximately linear fashion like in
the ℓ1-norm, as expected.

According to Lemma 13.3, index tracking under the ℓ1-norm TE can still be accomplished
with Algorithm 13.1 under a slight modification: at each iteration 𝑘 , use the weighted ℓ2-norm
with weights 𝜶𝑘 = 1/(2|𝒓b − 𝑿𝒘𝑘 |).

13.4.2 Robust Tracking Error Measures
Robustness against outliers in the data is paramount in order to mitigate the effects of data
contamination and avoid being sensitive or even breaking down (Section 3.5 in Chapter 3
covers the topic of robust estimators).
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Any tracking error measure can be made robust to make it less sensitive to outliers. For
illustration purposes, take the tracking error in (13.11) used in Section 13.3. This measure is
based on the ℓ2-norm between the achieved returns 𝑿𝒘 and the benchmark returns 𝒓b, but the
ℓ2-norm is not a robust measure because it is sensitive to (anomalous) large errors due the the
squaring operation. Of course, one alternative is to use the ℓ1-norm tracking error in (13.13),
which is naturally robust.

Alternatively, we can make the ℓ2-norm robust with the Huber penalty function (Huber, 2011):

𝜙hub(𝑥) =
{
𝑥2, |𝑥 | ≤ 𝑀,
𝑀 (2|𝑥 | − 𝑀) , |𝑥 | > 𝑀,

which essentially behaves as the square function 𝑥2 for arguments up to a magnitude of 𝑀
and as a linear function otherwise (this way outliers are not amplified). We can then define a
Huberized version of the tracking error:

Hub-TE(𝒘) = 1
𝑇

𝑇∑︁
𝑡=1

𝜙hub(𝑟b
𝑡 − 𝑿𝑡 ,:𝒘), (13.14)

which is a convex function. In addition, it can be conveniently majorized in the form of an
ℓ2-norm as in the case of the tracking error considered in Section 13.3.

Lemma 13.4 (Majorizer of the Huberized TE) The Huberized tracking error function
Hub-TE(𝒘) in (13.14) is majorized at 𝒘 = 𝒘0 by a weighted version of the TE(𝒘) in (13.11):

Hub-TE(𝒘) ≤ 1
𝑇

𝒓b − 𝑿𝒘
2

2,𝜶 + const.,

where ∥𝒙∥22,𝜶 ≜
∑𝑇
𝑖=1 𝛼𝑖𝑥

2
𝑖 is the squared weighted ℓ2-norm with weights

𝜶 = min
(
1,

𝑀

|𝒓b − 𝑿𝒘0 |

)
,

and the term const. refers to an irrelevant constant term (Benidis et al., 2018a, 2018b).

The weights in the Huberized TE have a very natural interpretation: their role is to down-weight
the errors that are larger than 𝑀 in magnitude so that the squared values grow linearly instead.

According to Lemma 13.4, index tracking under the Huberized TE can still be accomplished
with Algorithm 13.1 under a slight modification: at each iteration 𝑘 , use the weighted ℓ2-norm
with weights

𝜶𝑘 = min
(
1,

𝑀

|𝒓b − 𝑿𝒘𝑘 |

)
.

13.4.3 Holding Constraints
In practice, portfolios typically have holding constraints:

• upper bounds (𝒘 ≤ 𝒖): this is to avoid risk from allocating too much budget to a single
asset and to promote diversification; and
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• lower bounds (𝒘 ≥ 𝒍): this is to avoid very small positions that are irrelevant to the overall
portfolio and just complicate the logistics.

These bound constraints are trivial linear inequality constraints. However, when dealing with
sparsity, the lower bounds become incompatible with sparse solutions. In this case, the lower
bounds should only become active for active assets:

𝑤𝑖

{
≥ 𝑙𝑖, if 𝑤𝑖 > 0,
= 0, otherwise.

These complicated nonconvex constraints can be easily incorporated into evolutionary
algorithms (Beasley et al., 2003; Maringer & Oyewumi, 2007). Interestingly, they can also be
approximated and solved via the MM framework in a convenient way (Benidis et al., 2018a,
2018b).

13.4.4 Group Sparsity
Stocks and other financial assets are classified and grouped together into sectors and industries.
This organization is convenient for investors in order to easily diversify their investment across
different sectors (which presumably are less correlated than stocks within each sector).

All the index tracking formulations considered thus far are able to control the sparsity of
the portfolio via the term ∥𝒘∥0. Nevertheless, it is possible to have a more refined control
by taking account of stock industry profiles. One way is by replacing the overall sparsity
term ∥𝒘∥0 by a “group sparsity” term that is able to construct a portfolio composed of a
specific number of stocks concentrating on a few industries, and ensures both industry-wise
and within-industry sparsity (Xu et al., 2022).

13.4.5 Numerical Experiments
We now compare the tracking of the S&P 500 index based on different tracking error measures
of the cumulative returns, namely:

• TE in (13.11);
• Huberized TE in (13.14);
• ℓ1-norm TE in (13.13); and
• DR in (13.12).

Figure 13.11 shows the tracking over time with approximately 𝐾 = 20 active assets. The
tracking portfolios are computed on a rolling-window basis with a lookback period of two
years and recomputed every six months. As expected, one can observe that the design based
on the downside risk beats the market (suitable for investment purposes) while the other
measures generally track the index in both directions (appropriate for hedging purposes).

13.5 Automatic Sparsity Control
The sparse index tracking formulation in (13.9) includes the regularization term 𝜆∥𝒘∥0 in
the objective, where 𝜆 is a hyper-parameter to be chosen in order to get the desired level of
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Figure 13.11 Tracking over time of the S&P 500 index under different tracking error
measures.

sparsity. Alternatively, it can be formulated by moving the sparsity term to the constraints as
∥𝒘∥0 ≤ 𝑘 , with 𝑘 denoting the desired level of sparsity. Either way, by properly adjusting the
sparsity hyper-parameter, 𝜆 or 𝑘 , different points on the error vs. sparsity trade-off curves in
Figures 13.9–13.10 can be achieved.

In practice, however, the goal is to choose a proper operating point on the error vs. sparsity
trade-off curve, preferably without having to compute the whole trade-off curve. Is there a
convenient way to tune the sparsity hyper-parameter to get a proper operating point in the
trade-off curve?

13.5.1 False Discovery Rate (FDR)
To properly answer the question of how to choose the operating point on the trade-off curve,
we need to introduce some concepts from statistics and hypothesis testing. In particular, a key
quantity when deciding whether to use a variable or not in a regression problem is the false
discovery rate (FDR), which refers to the probability of wrongly including a variable.

In some applications, such as genomics, including the wrong variables can be catastrophic as
it implies that some gene is incorrectly associated with some medical condition. In finance,
for example, hundreds of papers have been written attempting to discover factors that explain
the cross-section of expected returns, but are these results false? Apparently so. Based on a
hypothesis testing analysis of empirical tests since 1967, it seems that most claimed research
findings in financial economics are likely false (Harvey et al., 2016).

Controlling the FDR would be an ideal and sound way to decide whether to include a variable
and this was achieved in the seminal paper by Benjamini and Hochberg (1995). Since then,
many FDR-controlling methods have been proposed, with the most popular one being based
on the concept of knockoffs (R. F. Barber & Candès, 2015). Knockoffs are fictitious variables
that are created for the purpose of FDR control; they need to mimic the covariance structure
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of the original variables and this can be computationally demanding since this requires the
estimation of the covariance matrix, which can be difficult in high-dimensional settings.

More recently, a more practical method for FDR control called T-Rex (for Terminating-
Random EXperiments) was proposed based on the concept of dummies (Machkour et al.,
2025). Dummies are also fictitious variables used to control the FDR, but they are easy to
generate since they do not require following the same covariance structure of the original
variables. Instead, dummies can be sampled from any univariate probability distribution. The
T-Rex method effectively reduces the computation time by two orders of magnitude compared
to the competing methods.

13.5.2 FDR for Index Tracking
In the context of sparse index tracking, instead of selecting the sparsity level through trial
and error, a more robust approach would be to precisely control the FDR. However, the
interpretation of FDR is slightly different in this case because, strictly speaking, all the assets
in the definition of an index are valid variables to be selected. Nevertheless, once an asset has
been selected, it is typically the case that many other assets become redundant because they
are highly correlated with that selected asset. In this sense we can say that selecting these
irrelevant assets would be a “false discovery” and it is to be avoided.

The application of the T-Rex method to sparse index tracking with FDR control was developed
in Machkour, Palomar, and Muma (2024).3 Rather than having to fix or tune the hyper-
parameter 𝜆 in (13.9), it automatically selects the assets to be included by controlling the
FDR.

13.5.3 Numerical Experiments
We now compare the tracking portfolios obtained from the sparse penalized regression
formulation in (13.9) with the FDR-controlling T-Rex method (Machkour, Palomar, & Muma,
2024). The tracking portfolios are computed on a rolling-window basis with a lookback period
of two years and recomputed every six months.

Figure 13.12 shows the tracking error over time in terms of the plain returns (13.5) and
cumulative returns (13.8), as well as the cardinality of the portfolios over time. As can be
seen, the formulation in (13.9) is very sensitive to the choice of the parameter 𝜆, producing
very different results in terms of tracking error and cardinality. On the other hand, the
FDR-controlling T-Rex method automatically chooses the appropriate sparsity level without
having to tune any parameter. The computational cost of T-Rex is slightly higher than that of
solving (13.9) for a fixed 𝜆 but lower than solving (13.9) for a whole range of values for 𝜆.

3 The R package TRexSelector (Machkour, Tien, et al., 2024) implements the T-Rex method based on
Machkour et al. (2025) and Machkour, Palomar, and Muma (2024).

https://cran.r-project.org/package=TRexSelector
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Figure 13.12 Tracking over time of the S&P 500 index with and without FDR
control.

13.6 Summary
Active and passive strategies play a major role in the financial investment arena, both having
theoretical and practical justifications albeit stemming from opposite views of the markets.
Some key takeaways include:

• Passive investing methods seek to avoid the fees and limited performance that may occur
with frequent active trading.

• Index tracking is the mainstream approach for passive investment and simply tries to mimic
an index, based on the assumption that the market is efficient and cannot be beaten.

• In current markets, there are thousands of financial indices that cover a wide range of asset
classes, sectors, and regions (e.g., the S&P 500). There are even more ETFs that precisely
track any given index and investors can directly trade them (e.g., there are hundreds of
ETFs that track the S&P 500 index).
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• Sparse index tracking is closely related to a fundamental problem in statistics called sparse
regression. Its goal is to approximate an index but using a small number of active assets.
The mathematical problem formulation requires a tracking error measure and a mechanism
to control the sparsity level.

• A variety of tracking error measures can be used for index tracking, such as the ℓ2-norm
tracking error (13.11), the downside risk (13.12), the ℓ1-norm version (13.13), and the
Huberized robust version (13.14), among others.

• Many algorithms have been proposed for index tracking capable of controlling the sparsity
or cardinality level. The iterative reweighted ℓ1-norm method in Algorithm 13.1 provides
the best combination of tracking error while controlling the sparsity at a low computational
cost.

• In practice, deciding the sparsity level is typically done by trial and error while tuning
some hyper-parameter in a laborious and computationally demanding way. The recently
proposed FDR-controlling index tracking method is able to automatically determine the
sparsity based on statistically sound hypothesis testing techniques.

Exercises
13.1 (Indices and ETFs) Download price data corresponding to some financial indices (e.g.,
the S&P 500, Dow Jones Industrial Average, Nasdaq) and some ETFs that track each of these
indices (e.g., SPY for the S&P 500 index). Plot each index along with the corresponding
ETFs in a linear and a logarithmic scale. Assess the tracking capabilities.

13.2 (Active vs. passive investments) Download price data corresponding to some mutual
funds and compare with appropriate financial indices. Plot the price time series and compute
some performance measure, such as the Sharpe ratio, to compare their performance. Do these
results support the efficient-market hypothesis, promoted by Fama, or the inefficient and
irrational markets, promoted by Shiller?

13.3 (Sparse regression via ℓ1-norm) Generate an underdetermined system of linear equations
𝑨𝒙 = 𝒃 with 𝑨 ∈ R5×10. Then, solve the following sparse underdetermined system of linear
equations via brute force (i.e., trying all possible 210 patterns for the variable 𝒙):

minimize
𝒙

∥𝒙∥0
subject to 𝑨𝒙 = 𝒃.

Finally, solve the following linear program and compare the solution with the previous one:

minimize
𝒙

∥𝒙∥1
subject to 𝑨𝒙 = 𝒃.

13.4 (Sparse least squares) Generate an overdetermined system of linear equations 𝑨𝒙 = 𝒃
with 𝑨 ∈ R10×5. Consider the resolution of the sparse regression problem

minimize
𝒙

∥𝑨𝒙 − 𝒃∥22
subject to ∥𝒙∥0 ≤ 𝑘
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via the following list of methods and plot the trade-off curve of regression error vs. sparsity
level for each method:

a. Brute force (i.e., trying all possible 25 patterns for the variable 𝒙).

b. ℓ1-norm approximation:

minimize
𝒙

∥𝑨𝒙 − 𝒃∥22 + 𝜆∥𝒙∥1.

c. Concave approximation using a general-purpose nonlinear solver:

minimize
𝒙

∥𝑨𝒙 − 𝒃∥22 + 𝜆
𝑁∑︁
𝑖=1

log
(
1 + |𝑥𝑖 |

𝜀

)
.

d. Concave approximation again, but using the iterative reweighted ℓ1-norm method.

13.5 (Cap-weighted indices) The portfolio of a cap-weighted index is defined in terms of
the market capitalization. Denoting by 𝒑𝑡 the prices of the 𝑁 assets at time 𝑡 and by 𝒏 the
number of outstanding shares of the 𝑁 assets. The capital portfolio of the assets is defined to
be proportional to the market capitalization 𝒏 ⊙ 𝒑𝑡 , which leads to the normalized portfolio

𝒃𝑡 =
𝒏 ⊙ 𝒑𝑡
𝒏T 𝒑𝑡

.

Show that this normalized portfolio can also be expressed as

𝒃𝑡 =
𝒃𝑡−1 ⊙ (1 + 𝒓𝑡 )
𝒃T
𝑡−1 (1 + 𝒓𝑡 )

,

where the returns are defined as

𝒓𝑡 =
𝒑𝑡 − 𝒑𝑡−1

𝒑𝑡−1
=

𝒑𝑡
𝒑𝑡−1
− 1.

13.6 (Tracking error measures) Download price data corresponding to some financial index
(e.g., the S&P 500, Dow Jones Industrial Average, Nasdaq) and some ETFs that track the
index (e.g., SPY for the S&P 500 index). Compute different error tracking measures, namely
the ℓ2-norm tracking error, the downside risk, the ℓ1-norm tracking error, and the Huberized
tracking error. Finally, plot a histogram of the tracking errors as a more complete picture of
the tracking performance (note that the previous error measures are summarizations of the
histogram).

13.7 (Two-stage index tracking methods) Download price data corresponding to some
financial index, such as the S&P 500, and the corresponding constituent 𝑁 assets for some
period of time. Then, construct the benchmark return vector 𝒓b and the assets’ return matrix
𝑿, and formulate the sparse index tracking problem

minimize
𝒘

1
𝑇

𝒓b − 𝑿𝒘
2

2

subject to 1T𝒘 = 1, 𝒘 ≥ 0,
∥𝒘∥0 ≤ 𝐾.
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a. Solve the problem via a naive two-stage approach: simply select the 𝐾 active assets with
some heuristic and then renormalize so that 1T𝒘 = 1.

b. Solve the problem via a two-stage approach with refitting of weights: select the 𝐾 active
assets as before and then solve the convex regression problem with the selected assets.

Plot the trade-off curve of regression error vs. sparsity level 𝐾 for each method.

13.8 (Sparse index tracking methods via concave sparsity approximation) Download price
data corresponding to some financial index, such as the S&P 500, and the corresponding
constituent 𝑁 assets for some period of time. Then, construct the benchmark return vector 𝒓b

and the assets’ return matrix 𝑿, and formulate the sparse index tracking problem

minimize
𝒘

1
𝑇

𝒓b − 𝑿𝒘
2

2 + 𝜆∥𝒘∥0
subject to 1T𝒘 = 1, 𝒘 ≥ 0

for different values of the hyper-parameter 𝜆.

a. Approximate the sparsity regularizer with the concave log-function:

minimize
𝒘

1
𝑇

𝒓b − 𝑿𝒘
2

2 + 𝜆
𝑁∑︁
𝑖=1

log
(
1 + |𝑤𝑖 |

𝜀

)
subject to 1T𝒘 = 1, 𝒘 ≥ 0.

Then solve the problem with a general-purpose nonconvex solver.

b. Apply the majorization–minimization approach to get the iterative reweighted ℓ1-norm
method that solves sequentially, 𝑘 = 0, 1, 2, . . . , the following:

minimize
𝒘

1
𝑇

𝒓b − 𝑿𝒘
2

2 + 𝜆
𝑁∑︁
𝑖=1

𝛼𝑘𝑖 |𝑤𝑖 |

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

where

𝛼𝑘𝑖 =
1

𝜀 +
��𝑤𝑘
𝑖

�� .
Plot the trade-off curve of regression error vs. sparsity level for each method (by varying the
hyper-parameter 𝜆).

13.9 (Sparse index tracking for downside risk) Download price data corresponding to some
financial index, such as the S&P 500, and the corresponding constituent 𝑁 assets for some
period of time. Then, construct the benchmark return vector 𝒓b and the assets’ return matrix
𝑿, and formulate the sparse index tracking problem

minimize
𝒘

1
𝑇

(𝒓b − 𝑿𝒘
)+2

2
+ 𝜆∥𝒘∥0

subject to 1T𝒘 = 1, 𝒘 ≥ 0

for different values of the hyper-parameter 𝜆.
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a. Approximate the sparsity regularizer with the concave log-function and solve the problem
with a general-purpose nonconvex solver.

b. Apply the majorization–minimization approach to get the iterative reweighted ℓ1-norm
method that solves sequentially the following convex problem:

minimize
𝒘

1
𝑇

(𝒓b − 𝑿𝒘
)+2

2
+ 𝜆

𝑁∑︁
𝑖=1

𝛼𝑘𝑖 |𝑤𝑖 |

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

where

𝛼𝑘𝑖 =
1

𝜀 +
��𝑤𝑘
𝑖

�� .
c. Apply the majorization–minimization approach fully to get the iterative reweighted ℓ1-norm

method that solves sequentially the following convex problem:

minimize
𝒘

1
𝑇

(𝒓b) 𝑘 − 𝑿𝒘
2

2
+ 𝜆

𝑁∑︁
𝑖=1

𝛼𝑘𝑖 |𝑤𝑖 |

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

where now (
𝒓b) 𝑘 = 𝒓b +

(
𝑿𝒘𝑘 − 𝒓b)+ .

Plot the trade-off curve of regression error vs. sparsity level for each method (by varying the
hyper-parameter 𝜆).

13.10 (FDR-controlling method for sparse index tracking) Download price data correspond-
ing to some financial index, such as the S&P 500, and the corresponding constituent 𝑁 assets
for some period of time. Then, construct the benchmark return vector 𝒓b and the assets’ return
matrix 𝑿, and formulate the sparse index tracking problem

minimize
𝒘

1
𝑇

𝒓b − 𝑿𝒘
2

2 + 𝜆∥𝒘∥0
subject to 1T𝒘 = 1, 𝒘 ≥ 0.

a. Approximate the sparsity regularizer with the ℓ1-norm:

minimize
𝒘

1
𝑇

𝒓b − 𝑿𝒘
2

2 + 𝜆∥𝒘∥1
subject to 1T𝒘 = 1, 𝒘 ≥ 0.

Then solve the problem for different values of 𝜆 and plot the trade-off curve of regression
error vs. sparsity level.

b. Employ the T-Rex method to automatically choose the active assets with FDR control.
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14

Robust Portfolios

“Nobody’s easier to fool [ . . . ] than the person who is convinced that he is right.”

— Haruki Murakami, 1Q84

“In theory there is no difference between theory and practice, while in practice there is.”

— Benjamin Brewster

“By failing to prepare, you are preparing to fail.”

— Benjamin Franklin

Markowitz’s mean–variance portfolio optimizes a trade-off between expected return and risk
measured by the variance. This formulation requires a prior estimation of some parameters:
the mean vector and covariance matrix of the assets. In ideal conditions, this would be a
perfectly fine approach. In practice, however, this fails miserably due to estimation errors in
these parameters, which is one of the reasons why Markowitz’s portfolio has not been widely
adopted by practitioners. This has been referred to as the “Markowitz optimization enigma”
and portfolio optimization problems have been called “estimation-error maximizers.”

The parameters of an optimization problem have to be estimated and they will inevitably contain
estimation errors. The naive approach simply ignores the existence of such estimation errors
and proceeds as if the parameters were perfectly known. This leads to totally unacceptable
solutions due to their instability and sensitivity to errors. Fortunately, several approaches have
been proposed in the literature to mitigate such sensitivity.

This chapter explores two main approaches to deal with the error sensitivity:

• Robust optimization is a way to formulate optimization problems such that they are aware
of the possible errors in the parameters. This approach goes back to the 1990s in the
operations research literature and can be effectively applied to portfolio optimization.

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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• Resampling and bootstrapping methods constitute the bread and butter in the statistics
literature. They rely on a smart resampling of the data to obtain multiple solutions that are
then aggregated to form the final stable solution.

The good news is that these two philosophies are very mature and do not destroy the convexity
(if any) of the original portfolio formulation.

14.1 Introduction
Markowitz’s mean–variance portfolio (Markowitz, 1952) formulates the portfolio design as a
trade-off between the expected return 𝒘T𝝁 and the risk measured by the variance 𝒘T𝚺𝒘 (see
Chapter 7 for details):

maximize
𝒘

𝒘T𝝁 − 𝜆

2 𝒘
T𝚺𝒘

subject to 𝒘 ∈ W,

where (𝝁,𝚺) are the parameters, 𝜆 is a hyper-parameter that controls the investor’s risk
aversion, andW denotes an arbitrary constraint set, such asW = {𝒘 | 1T𝒘 = 1, 𝒘 ≥ 0}.

In practice, the parameters (𝝁,𝚺) are unknown and have to be estimated using historical data
𝒙1, . . . , 𝒙𝑇 containing the past 𝑇 observations of the assets’ returns. There is a wide span of
different estimators, ranging from the simplest sample estimators to the more sophisticated
shrinkage heavy-tailed maximum likelihood estimators (see Chapter 3 for a variety of
estimation techniques). Regardless of the estimation method employed, there will always be
an estimation error that depends on the number of observations. In practice, the amount of
available historical data is limited (lack of stationarity does not help either) and the estimates
�̂� and �̂� will be very noisy, particularly �̂� (Best & Grauer, 1991; Chopra & Ziemba, 1993;
Michaud, 1989); see Section 3.2 in Chapter 3 for more details.

This is, in fact, the “Achilles’ heel” of portfolio optimization: the estimations �̂� and �̂�
will inevitably contain estimation noise which will lead to erratic portfolio designs. This is
why Markowitz’s portfolio has not been fully embraced by practitioners. This was clearly
summarized by Michaud in the context of mean–variance formulations (Michaud, 1989):

• Portfolio optimization problems are “estimation-error maximizers.”
• “Optimal” portfolios are financially meaningless (absence of significant investment value).

Figure 14.1 illustrates the sensitivity of the mean–variance portfolio (with 𝜆 = 1) for six
different realizations of the estimation error in the parameters. As can be observed, the
behavior is totally erratic because the solutions are too sensitive to the errors in the parameters.
In fact, each realization is very different from the others and this is unacceptable from a
practical standpoint. One cannot let the portfolio allocation depend on the flap of a butterfly’s
wings.

14.2 Robust Portfolio Optimization
After a brief introduction to robust optimization, we will illustrate its application to portfolio
design based on the mean–variance formulation, although the techniques can be applied to
other portfolio formulations.
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Figure 14.1 Sensitivity of the naive mean–variance portfolio.

14.2.1 Robust Optimization
Consider a general mathematical optimization problem with optimization variable 𝒙 making
explicit the dependency of the functions on the parameter 𝜽:

minimize
𝒙

𝑓0(𝒙; 𝜽)
subject to 𝑓𝑖 (𝒙; 𝜽) ≤ 0,

ℎ𝑖 (𝒙; 𝜽) = 0,
𝑖 = 1, . . . , 𝑚,
𝑖 = 1, . . . , 𝑝,

where 𝑓0 is the objective function, 𝑓𝑖, 𝑖 = 1, . . . , 𝑚, are the inequality constraint functions,
and ℎ𝑖, 𝑖 = 1, . . . , 𝑝, are the equality constraint functions. The parameter 𝜽 is something
given externally and not to be optimized. For example, in the case of the mean–variance
portfolio, we have 𝜽 = (𝝁,𝚺). We denote a solution to this problem by 𝒙★(𝜽), where the
dependency on 𝜽 is again made explicit.

In practice, however, 𝜽 is unknown and has to be estimated as 𝜽. The problem, of course,
is that the solution obtained by solving the optimization problem using the estimated 𝜽,
denoted by 𝒙★(𝜽), differs from the desired one: 𝒙★(𝜽) ≠ 𝒙★(𝜽). The question is whether it is
still approximately equal, 𝒙★(𝜽) ≈ 𝒙★(𝜽), or totally different. The answer depends on each
particular problem formulation; for the mean–variance portfolio formulation it turns out to be
quite different (as illustrated in Figure 14.1).

There are several ways to make the problem robust to parameter errors:

• Stochastic optimization relies on a probabilistic modeling of the parameter (Birge &
Louveaux, 2011; Prekopa, 1995; Ruszczynski & Shapiro, 2003) and may include:

– expectations: average behavior;
– chance constraints: probabilistic constraints.

• Worst-case robust optimization relies on the definition of an uncertainty set for the parameter
(Ben-Tal & Nemirovski, 2008; Ben-Tal et al., 2009; Bertsimas et al., 2011; Lobo, 2000).
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Stochastic Optimization
In stochastic robust optimization, the estimated parameter 𝜽 is modeled as a random variable
that fluctuates around its true value 𝜽 . For convenience, the true value is modeled as a random
variable around the estimated value (with an additive noise) as

𝜽 = 𝜽 + 𝜹,

where 𝜹 is the estimation error modeled as a zero-mean random variable with some distribution
such as Gaussian. In practice, it is critical to choose the covariance matrix (or shape) of the
error term properly.

Then, rather than using a naive and wrong constraint of the form

𝑓
(
𝒙; 𝜽

)
≤ 𝛼,

we can use the “average constraint”

IE𝜽 [ 𝑓 (𝒙; 𝜽)] ≤ 𝛼,

where the expectation is with respect to the random variable 𝜽 . The interpretation is that the
constraint will be satisfied on average, which is a relaxation of the true constraint.

It is important to point out that this stochastic average constraint preserves convexity. That
is, if 𝑓 (·; 𝜽) is convex for each 𝜽, then its expected value over 𝜽 is also convex (the sum of
convex functions preserves convexity, see Appendix A for details).

In practice, the expected value can be implemented in different ways, for example:

• brute-force sampling: simply sample the random variable 𝜽 𝑆 times and use the constraint

1
𝑆

𝑆∑︁
𝑖=1

𝑓 (𝒙; 𝜽𝑖) ≤ 𝛼;

• adaptive sampling: sample the random variable 𝜽 in a smart and efficient way at each
iteration while the problem is being solved;
• closed-form expression: compute the expected value in closed form whenever possible (see

Example 14.1);
• stochastic programming: a wide variety of numerical methods have been developed for

stochastic optimization under the umbrella of stochastic programming (Birge & Louveaux,
2011; Prekopa, 1995; Ruszczynski & Shapiro, 2003).

Example 14.1 (Stochastic average constraint in closed form) Suppose we have the quadratic
constraint 𝑓 (𝒙; 𝜽) = (𝒄T𝒙)2, where the parameter is 𝜽 = 𝒄, modeled as 𝒄 = 𝒄 + 𝜹, where 𝜹 is
zero-mean with covariance matrix 𝑸. Then the expected value is

IE𝜽 [ 𝑓 (𝒙; 𝜽)] = IE𝜹

[ (
(𝒄 + 𝜹)T𝒙

)2
]

= IE𝜹

[
(𝒄T𝒙)2 + 𝒙T𝜹𝜹T𝒙

]
= (𝒄T𝒙)2 + 𝒙T𝑸𝒙,

which, interestingly, has the form of the naive version plus a quadratic regularization term.
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The problem with expectations and satisfying constraints on average is that there is no
control about any specific realization of the estimation error. This relaxed control may not
be acceptable in many applications as the constraint will be violated in many instances.
The worst-case approach (considered later) tries to deal with this issue, but it may be too
conservative. Chance constraints attempt to achieve a compromise between being too relaxed
or overly conservative. They are also based on a statistical modeling of the estimation error,
but instead of focusing on the average they focus on satisfying the constraint with some high
probability (say, 95% of the cases). In this approach, the naive constraint 𝑓 (𝒙; 𝜽) ≤ 𝛼 is
replaced with

Pr [ 𝑓 (𝒙; 𝜽) ≤ 𝛼] ≥ 𝜖,

where 𝜖 is the confidence level, say, 𝜖 = 0.95 for 95%. Unfortunately, chance or probabilistic
constraints are generally very hard to deal with and one typically has to resort to approximations
(Ben-Tal & Nemirovski, 2008; Ben-Tal et al., 2009).

Worst-Case Robust Optimization
In worst-case robust optimization, the parameter 𝜽 is not characterized statistically. Instead, it
is assumed to lie within an uncertainty region near the estimated value:

𝜽 ∈ U𝜽 ,

whereU𝜽 is the uncertainty set centered at 𝜽 .

In practice, it is critical to choose the shape and size of the uncertainty set properly. Typical
choices for the shape for a size of 𝜖 are:

• spherical set: U𝜽 =
{
𝜽 | ∥𝜽 − 𝜽 ∥2 ≤ 𝜖

}
;

• box set: U𝜽 =
{
𝜽 | ∥𝜽 − 𝜽 ∥∞ ≤ 𝜖

}
;

• ellipsoidal set: U𝜽 =

{
𝜽 |

(
𝜽 − 𝜽

)T
𝑺−1 (𝜽 − 𝜽 ) ≤ 𝜖2

}
, where 𝑺 ≻ 0 defines the shape of

the ellipsoid.

Then, rather than using a naive and wrong constraint of the form

𝑓
(
𝒙; 𝜽

)
≤ 𝛼,

we can use the worst-case constraint

sup
𝜽∈U�̂�

𝑓 (𝒙; 𝜽) ≤ 𝛼.

The interpretation is that the constraint will be satisfied for any point inside the uncertainty
set, which is a conservative approach.

It is important to point out that this worst-case constraint preserves convexity. That is, if
𝑓 (·; 𝜽) is convex for each 𝜽 , then its worst case over 𝜽 is also convex (the pointwise maximum
of convex functions preserves convexity, see Appendix A for details).

In practice, the expected value can be implemented in different ways, for example:



378 Robust Portfolios

• brute-force sampling: simply sample the uncertainty setU𝜽 𝑆 times and use the constraint

max
𝑖=1,...,𝑆

𝑓 (𝒙; 𝜽𝑖) ≤ 𝛼

or, equivalently, include 𝑆 constraints

𝑓 (𝒙; 𝜽𝑖) ≤ 𝛼, 𝑖 = 1, . . . , 𝑆;

• adaptive sampling algorithms: sample the uncertainty setU𝜽 in a smart and efficient way
at each iteration while the problem is being solved;
• closed-form expression: compute the supremum in closed form whenever possible (see

Example 14.2);
• via Lagrange duality: in some cases, it is possible to rewrite the worst-case supremum as

an infimum that can later be combined with the outer portfolio optimization layer;
• saddle-point optimization: as a last resort, since the worst-case design is expressed in the

form of a min–max (minimax) formulation, numerical methods specifically designed for
minimax problems or related saddle-point problems can be used (Bertsekas, 1999; Tütüncü
& Koenig, 2004).

Example 14.2 (Worst-case constraint in closed form) Suppose we have the quadratic
constraint 𝑓 (𝒙; 𝜽) = (𝒄T𝒙)2, where the parameter is 𝜽 = 𝒄 and belongs to a spherical
uncertainty set

U = {𝒄 | ∥𝒄 − 𝒄∥2 ≤ 𝜖} .

Then, the worst-case value is

sup
𝒄∈U
|𝒄T𝒙 | = sup

∥𝜹 ∥≤ 𝜖
| (𝒄 + 𝜹)T𝒙 |

= |𝒄T𝒙 | + sup
∥𝜹 ∥≤ 𝜖

|𝜹T𝒙 |

= |𝒄T𝒙 | + 𝜖 ∥𝒙∥2,

where we have used the triangle inequality and the Cauchy–Schwarz inequality (with upper
bound achieved by 𝜹 = 𝜖 𝒙/∥𝒙∥2). Again, this expression has the form of the naive version
plus a regularization term.

As a final note, it is worth mentioning that worst-case uncertainty philosophy can be applied
to probability distributions, referred to as distributional uncertainty models or distributionally
robust optimization (Bertsimas et al., 2011).

14.2.2 Robust Worst-Case Portfolios
For portfolio design, we will focus on the worst-case robust optimization philosophy, due to
its simplicity and convenience (Goldfarb & Iyengar, 2003; Lobo, 2000; Tütüncü & Koenig,
2004); see also textbooks such as Cornuejols and Tütüncü (2006) and Fabozzi et al. (2007).
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Worst-Case Mean Vector 𝝁

To study the uncertainty in 𝝁, we consider the global maximum return portfolio (GMRP) for
an estimated mean vector �̂� (see Chapter 6 for details):

maximize
𝒘

𝒘T �̂�

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

which is is known to be terribly sensitive to estimation errors.

We will instead use the worst-case formulation:

maximize
𝒘

inf𝝁∈U𝝁
𝒘T𝝁

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

where typical choices for the uncertainty regionU𝝁 are the ellipsoidal and box sets considered
next.

Lemma 14.1 (Worst-case mean vector under ellipsoidal uncertainty set) Consider the
ellipsoidal uncertainty set for 𝝁

U𝝁 =
{
𝝁 = �̂� + 𝜅𝑺1/2𝒖 | ∥𝒖∥2 ≤ 1

}
,

where 𝑺1/2 is the symmetric square-root matrix of the shape 𝑺 (a typical choice is the
covariance matrix scaled with the number of observations, 𝑺 = (1/𝑇)𝚺) and 𝜅 determines
the size of the ellipsoid. Then, the worst-case value of 𝒘T𝝁 is

inf
𝝁∈U𝝁

𝒘T𝝁 = inf
∥𝒖 ∥≤1

𝒘T( �̂� + 𝜅𝑺1/2𝒖)

= 𝒘T �̂� + 𝜅 inf
∥𝒖 ∥≤1

𝒘T𝑺1/2𝒖

= 𝒘T �̂� − 𝜅 ∥𝑺1/2𝒘∥2,

which follows from the Cauchy–Schwarz inequality with 𝒖 = −𝑺1/2𝒘/∥𝑺1/2𝒘∥2.

Lemma 14.2 (Worst-case mean vector under box uncertainty set) Consider the box
uncertainty set for 𝝁

U𝝁 = {𝝁 | −𝜹 ≤ 𝝁 − �̂� ≤ 𝜹} ,

where 𝜹 is the half-width of the box in all dimensions. Then, the worst-case value of 𝒘T𝝁 is

inf
𝝁∈U𝝁

𝒘T𝝁 = 𝒘T �̂� − |𝒘 |T𝜹,

where |𝒘 | denotes the elementwise absolute value of 𝒘.

Thus, under an ellipsoidal uncertainty set as in Lemma 14.1, the robust version of the GMRP
is

maximize
𝒘

𝒘T �̂� − 𝜅 ∥𝑺1/2𝒘∥2
subject to 1T𝒘 = 1, 𝒘 ≥ 0,

which is still a convex problem but now the problem complexity has increased to that of a
second-order cone program (from a simple linear program in the naive formulation).



380 Robust Portfolios

Similarly, under a box uncertainty set as in Lemma 14.2, the robust version of the GMRP is

maximize
𝒘

𝒘T �̂� − |𝒘 |T𝜹
subject to 1T𝒘 = 1, 𝒘 ≥ 0,

which is still a convex problem and can be rewritten as a linear program after getting rid of
the absolute value (see Appendix A for details). In fact, under the constraints 1T𝒘 = 1 and
𝒘 ≥ 0, the problem can be reduced to a naive GMRP where �̂� is replaced by �̂� − 𝜹.

There are other uncertainty sets that can also be considered, such as the ℓ1-norm ball. The
following example illustrates a rather interesting case of how the otherwise heuristic quintile
portfolio (see Section 6.4.4 in Chapter 6 for details) can be formally derived as a robust
portfolio.

Example 14.3 (Quintile portfolio as a robust portfolio) The quintile portfolio is a heuristic
portfolio widely used by practitioners (see Section 6.4.4 in Chapter 6 for details). It selects
the top fifth of the assets (one could also select a different fraction of the assets) over which
the capital is equally allocated. This is a common-sense heuristic portfolio widely used in
practice. Interestingly, it can be shown to be the optimal solution to the worst-case GMRP
with an ℓ1-norm ball uncertainty set around the estimated mean vector (Zhou & Palomar,
2020):

U𝝁 = { �̂� + 𝒆 | ∥𝒆∥1 ≤ 𝜖} .

Worst-Case Covariance Matrix 𝚺

To study the uncertainty in 𝚺, we consider the global minimum variance portfolio (GMVP)
for an estimated mean vector �̂� (see Chapter 6 for details):

minimize
𝒘

𝒘T�̂�𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

which is sensitive to estimation errors (albeit not as much as the previous sensitivity to errors
in 𝝁).

We will instead use the worst-case formulation:

minimize
𝒘

sup𝚺∈U𝚺
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

where typical choices for the uncertainty regionU𝚺 are the spherical, ellipsoidal, and box
sets considered next.

Lemma 14.3 (Worst-case covariance matrix under a data spherical uncertainty set) Consider
the spherical uncertainty set for the data matrix 𝑿 ∈ R𝑇×𝑁 containing 𝑇 observations of the
𝑁 assets,

U𝑿 =
{
𝑿 | ∥𝑿 − �̂�∥F ≤ 𝜖

}
,

where 𝜖 determines the size of the sphere. Then, the worst-case value of
√
𝒘T𝚺𝒘 under a
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sample covariance matrix estimation �̂� = 1
𝑇
�̂�T �̂� is

sup
𝑿∈U𝑿

√︄
𝒘T

(
1
𝑇
𝑿T𝑿

)
𝒘 = sup

𝑿∈U𝑿

1
√
𝑇
∥𝑿𝒘∥2

= sup
∥𝚫∥F≤ 𝜖

1
√
𝑇

( �̂� + 𝚫)𝒘
2

=
1
√
𝑇

�̂�𝒘


2 + sup
∥𝚫∥F≤ 𝜖

1
√
𝑇
∥𝚫𝒘∥2

=
1
√
𝑇

�̂�𝒘


2 +
1
√
𝑇
𝜖 ∥𝒘∥2,

where the third equality follows from the triangle inequality and is achieved when �̂�𝒘 and
𝚫𝒘 are aligned.

Lemma 14.4 (Worst-case covariance matrix under an ellipsoidal uncertainty set) Consider
the ellipsoidal uncertainty set for 𝚺

U𝚺 =

{
𝚺 ⪰ 0 |

(
vec(𝚺) − vec(�̂�)

)T
𝑺−1 (vec(𝚺) − vec(�̂�)

)
≤ 𝜖2

}
,

where vec(·) denotes the operator that stacks the matrix argument into a vector, matrix 𝑺
gives the shape of the ellipsoid, and 𝜖 determines the size. Then, the worst-case value of
𝒘T𝚺𝒘 given by the convex semidefinite problem

maximize
𝚺

𝒘T𝚺𝒘

subject to
(
vec(𝚺) − vec(�̂�)

)T
𝑺−1 (vec(𝚺) − vec(�̂�)

)
≤ 𝜖2

𝚺 ⪰ 0,

can be rewritten as the Lagrange dual problem:

minimize
𝒁

Tr
(
�̂�

(
𝒘𝒘T + 𝒁

) )
+ 𝜖

𝑺1/2 (
vec(𝒘𝒘T) + vec(𝒁)

)
2

subject to 𝒁 ⪰ 0,

which is a convex semidefinite problem.

Lemma 14.5 (Worst-case covariance matrix under a box uncertainty set) Consider the box
uncertainty set for 𝚺

U𝚺 =

{
𝚺 ⪰ 0 | 𝚺 ≤ 𝚺 ≤ 𝚺

}
,

where 𝚺 and 𝚺 denote the elementwise lower and upper bounds, respectively. Then, the
worst-case value of 𝒘T𝚺𝒘, given by the convex semidefinite problem

maximize
𝚺

𝒘T𝚺𝒘

subject to 𝚺 ≤ 𝚺 ≤ 𝚺,
𝚺 ⪰ 0,
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can be rewritten as the Lagrange dual problem (Lobo, 2000)

minimize
𝚲,𝚲

Tr
(
𝚲𝚺

)
− Tr

(
𝚲𝚺

)
subject to

[
𝚲 − 𝚲 𝒘
𝒘T 1

]
⪰ 0

𝚲 ≥ 0, 𝚲 ≥ 0,

which is a convex semidefinite problem.

Thus, under a spherical uncertainty set for the data matrix as in Lemma 14.3, the robust
version of the GMVP is

minimize
𝒘

(�̂�𝒘


2 + 𝜖 ∥𝒘∥2
)2

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

which is still a convex problem but now the problem complexity has increased to that of a
second-order cone program (from a simple quadratic program in the naive formulation).

Interestingly, this problem bears a striking resemblance to a common heuristic called Tikhonov
regularization:

minimize
𝒘

�̂�𝒘
2

2 + 𝜖 ∥𝒘∥
2
2

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

where the objective function can be rewritten as𝒘T 1
𝑇

(
�̂�T �̂�+𝜖 𝑰

)
𝒘, which leads to a regularized

sample covariance matrix (see Section 3.6.1 in Chapter 3 for details on shrinkage).

Regarding the worst-case formulations that involve the Lagrange dual problem, the outer and
inner minimizations can be simply written as a joint minimization. For example, under an
ellipsoidal uncertainty set for the covariance matrix as in Lemma 14.4, the robust version of
the GMVP is (Feng & Palomar, 2016)

minimize
𝒘,𝑾 ,𝒁

Tr
(
�̂� (𝑾 + 𝒁)

)
+ 𝜖

𝑺1/2 (vec(𝑾) + vec(𝒁))


2

subject to
[
𝑾 𝒘
𝒘T 1

]
⪰ 0

1T𝒘 = 1, 𝒘 ≥ 0,
𝒁 ⪰ 0,

which is still a convex problem but now the problem complexity has increased to that of a
semidefinite program (from a simple quadratic program in the naive formulation). Note that
the first matrix inequality is equivalent to 𝑾 ⪰ 𝒘𝒘T and, at an optimal point, it can be shown
to be satisfied with equality 𝑾 = 𝒘𝒘T.

Worst-Case Mean Vector 𝝁 and Covariance Matrix 𝚺

The previous worst-case formulations against uncertainty in the mean vector 𝝁 and the
covariance matrix 𝚺 can be trivially combined under the mean–variance portfolio formulation.

For illustrative purposes, we consider the the mean–variance worst-case portfolio formulation
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under box uncertainty sets for 𝝁 and 𝚺, as in Lemmas 14.2 and 14.5, given by

maximize
𝒘,𝚲,𝚲

𝒘T �̂� − |𝒘 |T𝜹 − 𝜆

2

(
Tr

(
𝚲𝚺

)
− Tr

(
𝚲𝚺

) )
subject to 1T𝒘 = 1, 𝒘 ≥ 0,[

𝚲 − 𝚲 𝒘
𝒘T 1

]
⪰ 0,

𝚲 ≥ 0, 𝚲 ≥ 0,

which is a convex semidefinite problem.

Other more sophisticated uncertainty sets can be considered for the mean vector and the
covariance matrix, such as based on factor modeling (Goldfarb & Iyengar, 2003).

Other Worst-Case Performance Measures
Apart from the mean–variance framework for portfolio optimization, many other portfolio
designs can be formulated based on other objective functions or performance measures
(see Chapter 10 for details), as well as higher-order moments (see Chapter 9) or risk-parity
portfolios (see Chapter 11). Each such formulation can be robustified so that the solution
becomes more stable and robust against estimation errors in the parameters. For example, the
worst-case Sharpe ratio can be easily managed, as well as the the worst-case value-at-risk
(VaR) (El Ghaoui et al., 2003).

14.2.3 Numerical Experiments
The effectiveness of the different robust portfolio formulations depends on the shape as well
as the size of the uncertainty region. These are parameters that have to be properly chosen
and tuned to the type of data and nature of the financial market. Therefore, it is easy to overfit
the model to the training data and extra care has to be taken.

The goal of a robust design should be in making the solution more stable and less sensitive
to the error realization, but not necessarily improving the performance. In other words, one
should aim at gaining robustness but not the best performance for a given backtest compared
to a naive design.

We now evaluate robust portfolios under errors in the mean vector 𝝁. Recall that robustness
for the covariance matrix 𝚺 is not as critical, because the bottleneck in the estimation part is
on the mean vector (see Chapter 3 for details).

Sensitivity of Robust Portfolios
The extreme sensitivity of a naive mean–variance portfolio was shown in Figure 14.1. We
now repeat the same numerical experiment with a robust formulation (still with 𝜆 = 1).

Figure 14.2 shows the sensitivity of a robust portfolio under an ellipsoidal uncertainty set
for the mean vector 𝝁 over six different realizations of the estimation error. Compared to
Figure 14.1, it is clearly more stable and less sensitive. Many other variations in the robust
formulation can be similarly considered with similar results.
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Figure 14.2 Sensitivity of the robust mean–variance portfolio under an ellipsoidal
uncertainty set for 𝝁.

Comparison of Naive vs. Robust Portfolios
Now that we have empirically observed the improved stability of mean–variance robust
designs, we can assess their performance (with box and ellipsoidal uncertainty sets for the
mean vector 𝝁) in comparison with the naive design. Backtests are conducted for 50 randomly
chosen stocks from the S&P 500 during 2017–2020.

Figure 14.3 shows the empirical distribution of the achieved mean–variance objective, as well
as the Sharpe ratio, calculated over 1,000 Monte Carlo noisy observations. We can see that
the robust designs avoid the worst-case realizations (the left tail in the distributions) at the
expense of not achieving the best-case realizations (the right tail); thus, they are more stable
and robust as expected.

Figure 14.4 shows the cumulative return and drawdown of the naive and robust mean–variance
portfolios for an illustrative backtest. We can observe how the robust portfolios do indeed
seem to be more robust. However, this is just a single backtest and more exhaustive multiple
backtest are necessary.

Finally, multiple backtests are conducted for 200 realizations of 50 randomly chosen stocks
from the S&P 500 from random periods during 2015–2020. Figure 14.5 shows the results in
terms of the Sharpe ratio and drawdown, confirming that the robust portfolios are superior to
the naive portfolio.

14.3 Portfolio Resampling
We will first give an overview of resampling methods in statistics and then apply them to
portfolio optimization.
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Figure 14.3 Empirical performance distribution of naive vs. robust mean–variance
portfolios.

14.3.1 Resampling Methods
Estimating a parameter 𝜽 with the value 𝜽 is of little use if one does not know how good that
estimate is. In statistical inference, confidence intervals are key as they allow us to localize
the true parameter on some interval with, say, 95% confidence. Traditionally, the derivation
and analysis of confidence intervals was very theoretical with heavy use of mathematics.
Resampling methods, instead, resort to computer-based numerical techniques for assessing
statistical accuracy without formulas (Efron & Tibshirani, 1993).

In statistics, resampling is the creation of new samples based on a single observed sample
block. Suppose we have 𝑛 observations, 𝒙1, . . . , 𝒙𝑛, of a random variable 𝒙 from which we
estimate some parameters 𝜽 as

𝜽 = 𝑓 (𝒙1, . . . , 𝒙𝑛),

where 𝑓 (·) denotes the estimator. The estimation 𝜽 is a random variable because it is based on
𝑛 random variables. It may seem that the only possible way to characterize the distribution of
the estimation would be to somehow have access to more realizations of the random variable
𝒙. However, this is precisely when resampling methods help to do some “magic.” The most
popular methods include cross-validation and the bootstrap (Efron & Tibshirani, 1993).
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Figure 14.4 Backtest of naive vs. robust mean–variance portfolios.
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Figure 14.5 Multiple backtests of naive vs. resampled mean–variance portfolios.

Cross-Validation
Cross-validation is a type of resampling method widely used in portfolio backtesting (see
Chapter 8) and machine learning (see Chapter 16). The idea is simple and consists of dividing
the 𝑛 observations into two groups: a training set for fitting or learning the estimator 𝑓 (·)
and a validation set for assessing its performance. This process can be repeated multiple
times to provide multiple realizations of the performance value, which can then be used to
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compute the empirical performance. For example, 𝑘-fold cross-validation divides the set
into 𝑘 subsets, where each is held back in turn as the validation set while using the others
for training. Leave-one-out cross-validation is an extreme case where the original dataset
of 𝑛 observations is divided into 𝑘 = 𝑛 subsets, which means that for each subset a single
observation is held back from the training process and used later for validation.

The Bootstrap
The bootstrap is a type of resampling method proposed in 1979 by Efron, which appears truly
magical but it is nevertheless based on sound statistical theory (Efron, 1979). In fact, the
name itself (bootstrap) figuratively refers to the seemingly impossible task of lifting oneself
by pulling on one’s bootstraps.

The idea of the bootstrap is to mimic the original sampling process (from which the original
𝑛 observations 𝒙1, . . . , 𝒙𝑛 were generated) by sampling these realizations 𝑛 times with
replacement (some samples will be selected multiple times while others will not be used).
This procedure is repeated 𝐵 times to obtain the bootstrap samples,(

𝒙1, . . . , 𝒙𝑛
)
→

(
𝒙∗(𝑏)1 , . . . , 𝒙∗(𝑏)𝑛

)
, 𝑏 = 1, . . . , 𝐵,

each of which leads to a different realization of the estimation (bootstrap replicates),

𝜽∗(𝑏) = 𝑓

(
𝒙∗(𝑏)1 , . . . , 𝒙∗(𝑏)𝑛

)
, 𝑏 = 1, . . . , 𝐵,

from which measures of accuracy of the estimator (bias, variance, confidence intervals, etc.)
can then be empirically obtained.

The key theoretical result is that the statistical behavior of the random resampled estimates
𝜽∗(𝑏) compared to 𝜽 (taken as the true parameter) faithfully represent the statistics of the
random estimates 𝜽 compared to the true (unknown) parameter 𝜽 . More exactly, the estimations
of accuracy are asymptotically consistent as 𝐵→∞ (under some technical conditions) (Efron
& Tibshirani, 1993). This is a rather surprising result that allows the empirical assessment of
the accuracy of the estimator without having access to the true parameter 𝜽 .

Figure 14.6 illustrates the magic of the bootstrap to estimate the accuracy of the sample mean
estimator (from 𝑛 = 100 observations). In this case, the empirical distribution of the bias
of the estimator is computed via 𝐵 = 1, 000 bootstraps, producing an accurate histogram
compared to the true distribution. In practice, confidence intervals may suffice to assess the
accuracy and fewer bootstraps may be used (even fewer bootstraps are necessary to compute
the standard deviation of the bias).

The Jackknife
The jackknife, proposed in the mid-1950s by M. Quenouille, is the precursor of the bootstrap.
It was derived for estimating biases and standard errors of sample estimators. Given the
𝑛 observations 𝒙1, . . . , 𝒙𝑛, the 𝑖th jackknife sample is obtained by removing the 𝑖th data
point, 𝒙1, . . . , 𝒙𝑖−1, 𝒙𝑖+1, . . . , 𝒙𝑛. This effectively produces 𝐵 = 𝑛 bootstrap samples each with
𝑛 − 1 observations. The jackknife can be shown to be an approximation to the bootstrap;
more exactly, it makes a linear approximation to the bootstrap. Its accuracy depends on how
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Figure 14.6 Empirical distribution of the sample mean bias via the bootstrap.

“smooth” the estimator is; for highly nonlinear functions the jackknife can be inefficient,
sometimes dangerously so.

Variations of the Bootstrap
A number of variations and extensions of the basic bootstrap have been proposed over the
years. Some notable examples include:

• Parametric bootstrap: The original bootstrap methodology mimics the true data distribution
by sampling the observations with replacement. Thus, the procedure is distribution-
independent or nonparametric. However, there are parametric versions of the bootstrap
(Efron & Tibshirani, 1993). The idea is to make some assumption concerning the true
data distribution (for example, assuming the family of Gaussian distributions), estimate the
parameters of the distribution from the observed data, and then generate as much data as
desired using that parametric distribution.

• Block bootstrap: The basic bootstrap method breaks down when the data contains structural
dependency. A variety of block bootstrap methods have been proposed to deal with
dependent data (Lahiri, 1999).

• Random subspace method: The random subspace method was proposed in the context of
decision trees in order to decrease the correlation among trees and avoid overfitting (Ho,
1998). The idea is to let each learner use a randomly chosen subspace of the features. In
fact, this was a key component in the development of random forests in machine learning.

• Bag of little bootstraps: In order to deal with large data sets with a massive number of
observations, the bag of little bootstraps was proposed incorporating features of both the
bootstrap and subsampling to yield a robust, computationally efficient means of assessing
the quality of estimators (Kleiner et al., 2014).
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Bagging
The bootstrap is as a way of assessing the accuracy of a parameter estimate or a prediction;
interestingly, it can also be used to improve the estimate or prediction itself. Bootstrap
aggregating or the acronym bagging refers to a method for generating multiple versions of
some estimator or predictor via the bootstrap and then using these to get an aggregated version
(Breiman, 1996; Hastie et al., 2009). Bagging can improve the accuracy of the basic estimator
or predictor, which typically suffers from sensitivity to the realization of the random data.
Mathematically, bagging is a simple average of the bootstrap replicates:

𝜽bag =
1
𝐵

𝐵∑︁
𝑏=1

𝜽∗(𝑏) .

14.3.2 Portfolio Resampling
In portfolio design, an optimization problem is formulated based on 𝑇 observations of the
assets’ returns, 𝒙1, . . . , 𝒙𝑇 , whose solution is supposedly an optimal portfolio 𝒘. As previously
discussed, this solution is very sensitive to the inherent noise in the observed data or in the
noise in the estimated parameters used in the portfolio formulation, such as the mean vector
�̂� and covariance matrix �̂�.

Fortunately, we can capitalize on the results from the past half-century in statistics; in
particular, we can use resampling techniques, such as the bootstrap and bagging, to improve
the portfolio design.

The idea of resampling was proposed in the 1990s as a way to assess the accuracy of designed
portfolios. The naive approach consists of using the available data to design a series of
mean–variance portfolios and then obtaining the efficient frontier, but this is totally unreliable
due to the high sensitivity of these portfolios on the data realization (the computed efficient
frontier is not realistic and not representative of new data). Instead, resampling allows the
computation of a more reliable efficient frontier, called the resampled efficient frontier, as well
as the identification of statistically equivalent portfolios (Jorion, 1992; Michaud & Michaud,
1998).

In the context of data with temporal structure (as happens with many econometrics time
series), apart from block bootstrap methods, a maximum entropy bootstrap has been proposed
(Vinod, 2006). This method can be applied not only to time series of returns but even directly
to time series of prices, which clearly have a strong temporal structure.

Portfolio Bagging
The technique of aggregating portfolios was considered in 1998 via a bagging procedure
(Michaud & Michaud, 1998, 2007, 2008; Scherer, 2002):

1. Resample the original data (𝒙1, . . . , 𝒙𝑇 ) 𝐵 times via the bootstrap method and estimate
𝐵 different versions of the mean vector and covariance matrix: �̂�∗(𝑏) and �̂�

∗(𝑏) for
𝑏 = 1, . . . , 𝐵.

2. Solve the optimal portfolio 𝒘∗(𝑏) for each bootstrap sample.
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3. Average the portfolios via bagging:

𝒘bag =
1
𝐵

𝐵∑︁
𝑏=1

𝒘∗(𝑏) .

This bagging procedure for portfolio aggregation is simple, and the only bottleneck is the
increase in computational cost by a factor of the number of bootstraps 𝐵 compared to the
naive approach.

Portfolio Subset Resampling
An attempt to reduce the computational cost of the portfolio bagging procedure is the subset
resampling technique (Shen & Wang, 2017). The idea is to sample the asset dimension rather
than the observation (temporal) dimension, which is the same technique used to develop
random forests (Ho, 1998). In more detail, instead of using all the 𝑁 assets, the method
randomly selects a subset, for which a portfolio of reduced dimensionality can be designed,
which translates into a reduced computational cost. A rule of thumb is to select subsets of
⌈𝑁0.7⌉ or ⌈𝑁0.8⌉ assets; for example, for 𝑁 = 50 the size of the subsets would be of 16 or
23, respectively. This procedure is repeated a number of times to finally aggregate all the
computed portfolios. Note that since the portfolios are of reduced dimensionality, zeros are
implicitly used in the elements corresponding to the other dimensions prior to the averaging.

A side benefit from the subset resampling technique, apart from the reduced computational cost,
is that the parameters are better estimated because the ratio of observations to dimensionality is
automatically increased in a significant way (see Chapter 3 for details on parameter estimation).
For example, suppose we have 𝑇 = 252 daily observations; the nominal ratio for 𝑁 = 50
assets would be 𝑇/𝑁 ≈ 5, whereas the ratio for subset resampling would be 𝑇/𝑁0.7 ≈ 16 or
𝑇/𝑁0.8 ≈ 11. Numerical experiments will confirm that this is a good technique in practice.

Portfolio Subset Bagging
Random subset resampling along the asset domain can be straightforwardly combined with
the bootstrap along the temporal domain (Shen et al., 2019). In this case, each bootstrap
sample only contains a subset of the 𝑁 assets.

14.3.3 Numerical Experiments
The goal of portfolio resampling is in making the solution more stable and less sensitive to
the errors in the parameter estimation, gaining in robustness compared to a naive design.

Sensitivity of Resampled Portfolios
The extreme sensitivity of the naive mean–variance portfolio was shown in Figure 14.1. Then,
robust portfolio optimization was shown to be less sensitive in Figure 14.2. We now repeat
the same numerical experiment with resampled portfolios to observe their sensitivity.

Figure 14.7 shows the sensitivity of a bagged portfolio with 𝐵 = 200 bootstrap samples over
six different realizations of the estimation error in the parameters. Compared to Figure 14.1,
it is clear that bagging helps to produce more stable and less sensitive portfolios.
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Figure 14.7 Sensitivity of the bagged mean–variance portfolio.

Comparison of Naive vs. Resampled Portfolios
Now that we have empirically observed the improved stability of mean–variance resampled
portfolios, we can assess their performance in comparison with the naive design. In particular,
we consider resampled portfolios via bagging, subset resampling, and subset bagging.
Backtests are conducted for 50 randomly chosen stocks from the S&P 500 during 2017–2020.

Figure 14.8 shows the empirical distribution of the achieved mean–variance objective, as well
as the Sharpe ratio, calculated over 1,000 Monte Carlo noisy observations. We can observe
that resampled portfolios are more stable and do not suffer from extreme bad realizations
(unlike the naive portfolio). However, the naive portfolio can be superior for some realizations.

Figure 14.9 shows the cumulative return and drawdown of the naive and resampled mean–
variance portfolios for an illustrative backtest. We can observe how the resampled portfolios
seem to be less noisy. However, this is just a single backtest and more exhaustive multiple
backtests are necessary.

Finally, multiple backtests are conducted for 200 realizations of 50 randomly chosen stocks
from the S&P 500 from random periods during 2015–2020. Figure 14.10 shows the results in
terms of the Sharpe ratio and drawdown, confirming that the resampled portfolios are superior
to the naive portfolio.

14.4 Summary
An optimal solution to a portfolio optimization problem typically produces unacceptable
results in practice, which may seem counterintuitive. Why is that and how can we address it?

• Under ideal conditions, the solution to a portfolio formulation should indeed achieve the
desired optimal objective subject to the constraints.

• In reality, however, it may fail miserably. The reason is that the formulation relies on some
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Figure 14.8 Empirical performance distribution of naive vs. resampled
mean–variance portfolios.

parameters, such as the mean vector and covariance matrix, but these parameters have to
be estimated from noisy and scarce data and will inevitably contain estimation errors.

• The end result of naively ignoring the parameter estimation errors in a portfolio formulation
can be catastrophic. For this reason, such portfolio optimization problems have been called
“estimation-error maximizers” with solutions that are financially meaningless.

• Some effective approaches to avoid naive solutions include:

– Robust portfolios: Robust optimization is a mature approach in operations research
that is able to incorporate the fact that the parameters in the formulation will contain
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some unknown errors (rather than naively assuming no errors). This has been widely
developed in the context of portfolio optimization.



394 Robust Portfolios

– Resampled portfolios: Bootstrapping and resampling are mature techniques in statistics
that allow the aggregation of multiple naive solutions into a more stable and reliable
solution. These techniques can be easily applied to portfolio design.

Exercises
14.1 (Sensitivity of naive portfolios)

a. Choose a portfolio optimization formulation.
b. Collect 𝑇 observations of the returns of 𝑁 assets, form the data matrix 𝑿 ∈ R𝑇×𝑁 , and

estimate the mean vector and covariance matrix.
c. Sample 𝐵 times new data matrices 𝑿 (𝑏) ∈ R𝑇×𝑁 , 𝑏 = 1, . . . , 𝐵, from a Gaussian

distribution with the previous mean vector and covariance matrix as true parameters of the
distribution.

d. For each data sample, solve the portfolio optimization obtaining the solutions 𝒘 (𝑏) ,
𝑏 = 1, . . . , 𝐵.

e. Compare the different portfolios 𝒘 (𝑏) :
• Use barplots to visually compare the allocations of the different portfolios.
• Plot a histogram of the objective value achieved by the different portfolios (evaluated

under the original mean vector and covariance matrix used to draw the sampled data).

14.2 (Sensitivity of robust worst-case portfolios) Repeat Exercise 14.1 but using a robust
worst-case version of the portfolio formulation. Compare its sensitivity with that of the naive
portfolio.

14.3 (Sensitivity of resampled portfolios) Repeat Exercise 14.1 but using a bagged version
of the portfolio formulation. Compare its sensitivity with that of the naive portfolio.

14.4 (Worst-case mean vector under an ellipsoidal uncertainty set) Consider the ellipsoidal
uncertainty set for 𝝁:

U𝝁 =
{
𝝁 = �̂� + 𝜅𝑺1/2𝒖 | ∥𝒖∥2 ≤ 1

}
,

where 𝑺1/2 is the symmetric square-root matrix of the shape 𝑺 and 𝜅 determines the size of
the ellipsoid.

Derive the worst-case value of 𝒘T𝝁.

14.5 (Worst-case mean vector under a box uncertainty region) Consider the box uncertainty
region for 𝝁:

U𝝁 = {𝝁 | −𝜹 ≤ 𝝁 − �̂� ≤ 𝜹} ,

where 𝜹 is the half-width of the box in all dimensions.

Derive the worst-case value of 𝒘T𝝁.

14.6 (Worst-case covariance matrix under a data spherical uncertainty region) Consider the
spherical uncertainty region for the data matrix 𝑿 ∈ R𝑇×𝑁 (containing 𝑇 observations of the
𝑁 assets),

U𝑿 =
{
𝑿 | ∥𝑿 − �̂�∥F ≤ 𝜖

}
.
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Derive the worst-case value of 𝒘T𝚺𝒘 under a sample covariance estimation �̂� = 1
𝑇
�̂�T �̂�.

14.7 (Robust worst-case mean–variance portfolio)

a. Formulate a minimax version of the robust worst-case mean–variance portfolio for some
choice of uncertainty sets for the mean vector and covariance matrix.

b. Rewrite the problem in convex form by a brute-force sampling of the uncertainty sets and
solve with a solver.

c. Rewrite the problem in convex form by properly dealing with the worst-case mean vector
and covariance matrix (either deriving the closed form or via Lagrange duality), and solve
with a solver.

d. Compare both solutions (try a different number of samples in the brute-force sampling
approach).

14.8 (Convexity of robust mean–variance portfolio under ellipsoidal covariance matrix)

a. Formulate in minimax form the robust mean–variance portfolio with robustness in the
variance under an ellipsoidal uncertainty set for the covariance matrix.

b. Using the Lagrange dual problem version of the worst-case covariance matrix, rewrite the
robust mean–variance portfolio as a regular (not minimax) optimization problem.

c. Is this optimization problem convex? If not, can you rewrite it in convex form as a
semidefinite program?

14.9 (Robust worst-case maximum Sharpe ratio portfolio) Write down the following portfolio
formulations:

a. Naive formulation of the maximum Sharpe ratio portfolio in convex form.
b. Robust worst-case formulation of the maximum Sharpe ratio portfolio under general

uncertainty sets for the mean vector and covariance matrix.
c. Choose some specific uncertainty regions and rewrite the robust worst-case formulation

of the maximum Sharpe ratio in convex form.

14.10 (Performance of resampled portfolios)

a. Choose a portfolio optimization formulation.
b. Perform a backtest of
• the naive portfolio
• the bagged portfolio
• the subset resampled portfolio
• the subset bagged portfolio.

c. Compare the performance and the computational cost.
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15

Pairs Trading Portfolios

“A drunk man will find his way home, but a drunk bird may get lost forever.”

— Shizuo Kakutani

Pairs trading is a relative-value arbitrage strategy that has been known in the quantitative
finance community since the mid-1980s. It seeks to identify two securities whose prices tend
to stay together. Upon divergence, the undervalued security is bought long and the overvalued
one is sold short, which is typically referred to as a contrarian philosophy (buy when everyone
else is selling and vice versa). When the prices revert back to their historical equilibrium, the
trade is closed and a profit is realized.

Mathematically, the two assets are combined into a virtual asset with mean reversion, that
is, having an historical equilibrium value to which it eventually reverts. A key property of
pairs trading is that it exploits the relative mispricings between the two securities while
maintaining market neutrality (i.e., not being affected by the market trend). This is in contrast
to momentum-based strategies, which precisely try to capture the market trend while treating
the fluctuations as undesired noise. The extension of pairs trading to more than two assets is
referred to as statistical arbitrage.

In a nutshell, while momentum-based strategies capitalize on the price trend, pairs trading
exploits the mean-reverting fluctuations around that trend. This chapter starts with the basic
concepts and covers the whole process, from discovering pairs to trading them based on
sophisticated Kalman modeling techniques.

15.1 Mean Reversion
Mean reversion is a property of a time series that means that there is a long-term average
value around which the series may fluctuate over time but eventually will revert back to (Chan,
2013; Ehrman, 2006; Vidyamurthy, 2004). This property plays a crucial role in pairs trading,
where the mean-reverting time series is artificially constructed by combining two (or more)
assets. The mean reversion allows the trader to buy at a low price with the expectation that
the price will return to the long-term mean over time. When the price reverts back to its

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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historical average, the trader will close the position to realize a profit. Of course, this relies on
the assumption that the historical relationship between the assets will persist in the future,
which carries some risk; careful monitoring is key.

More generally, there are two types of mean reversion that trading strategies commonly exploit
(Chan, 2013):

• Longitudinal or time series mean reversion: This occurs when mean reversion takes place
along the time axis, and there is a long-term average value. The deviation happens at one
point in time in one direction and at another point in time in the opposite direction.

• Cross-sectional mean reversion: This type of mean reversion occurs along the asset axis,
and there is an average value across assets. Some assets deviate in one direction, while
others deviate in the opposite direction (Fabozzi et al., 2010).

Stationarity is a property related to mean reversion, but different. Stationarity refers to the
property that the statistics of a time series remain fixed over time. In that sense, a stationary
time series can be considered mean reverting (Vidyamurthy, 2004), but not the other way
around.

Unit-root stationarity is a specific type of stationarity (Tsay, 2010, 2013). It refers to modeling
the time series with an autoregressive (AR) model with no unit roots (this is related to
an Ornstein–Uhlenbeck process in continuous time). A time series with a unit root is not
stationary and tends to diverge over time. A notable example of unit-root nonstationarity is
the random walk model commonly employed for log-prices (see Chapter 3):

𝑦𝑡 = 𝜇 + 𝑦𝑡−1 + 𝜖𝑡 ,

where 𝑦𝑡 denotes the log-price at period 𝑡, 𝜇 is the drift, and 𝜖𝑡 is the residual. Figure 15.1
shows an example of a time series with a unit root that does not return to the mean in a
controlled way.1 On the other hand, in the absence of a unit root, the time series will not
diverge and will eventually return to the mean; an example is the AR model of order 1 (AR(1)):

𝑦𝑡 = 𝜇 + 𝜌 𝑦𝑡−1 + 𝜖𝑡 ,

with |𝜌 | < 1. Figure 15.2 illustrates an AR(1) time series with no unit root (𝜌 = 0.2) and
𝜇 = 0, which reverts to the mean in a controlled way.

Even though mean reversion and unit-root stationarity are not equivalent concepts, from a
practical standpoint unit-root stationarity is a convenient proxy for mean reversion (Tsay,
2010, 2013). In fact, testing for unit-root stationarity is the de facto approach for determining
mean reversion in practice.

Differencing is an operation commonly used to obtain stationarity (Tsay, 2010, 2013). It refers
to taking differences between consecutive samples of a time series 𝑦1, 𝑦2, 𝑦3, . . . to produce
Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1. The importance of this operation is that a nonstationary time series, such as
a random walk, may become stationary after differencing. This is precisely the case when

1 Mathematically, it can be shown that a random walk in one dimension and even in two dimensions (e.g., a
drunken man walking on a surface) will eventually return to the starting point. Interestingly, this property does
not hold in three dimensions (e.g., a drunken bird flying).
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Figure 15.2 Example of a unit-root stationary AR(1) sequence.

differencing the log-prices of an asset to obtain the log-returns (see Chapter 3 for details);
we then say that log-prices are integrated of order 1 (higher-order differencing can also be
considered).

15.2 Cointegration and Correlation
Mean reversion, as previously described, refers to the tendency of a time series to return to its
long-term average value over time. This property allows for a simple trading strategy: buy
when below the average and sell when above. While it is virtually impossible to find an asset
with controlled and predictable mean reversion, it is much easier to discover pairs of assets
with a combined mean reversion property.

Cointegration
Cointegration refers to a property by which two (or more) assets, while not being mean
reverting individually, may be mean reverting with respect to each other (Chan, 2013; Ehrman,
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2006; Vidyamurthy, 2004). This commonly happens when the series themselves contain
stochastic trends (i.e., they are nonstationary) but nevertheless they move closely together
over time in a way that their difference remains stable (i.e., stationary). Thus, the concept of
cointegration mimics the existence of a long-run equilibrium to which an economic system
converges over time.

The intuitive idea is that, while it may be difficult or impossible to predict individual assets,
it may be easier to predict their relative behavior. The typical example used to illustrate the
concept of cointegration is that of a drunken man wandering the streets (random walk) with a
dog (illustrated in Figure 15.3). Both paths of man and dog are nonstationary and difficult to
predict, but the distance between them is mean reverting and stationary.

Figure 15.3 Random walk by a drunken man with a dog.

Mathematically, a multivariate time series, 𝒚1, 𝒚2, 𝒚3, . . ., is cointegrated if some linear
combination becomes integrated of lower order, for example, if 𝒚𝑡 is not stationary but the
linear combination 𝒘T𝒚𝑡 is stationary for some weights 𝒘. In this sense, cointegration can be
thought of as a more refined version of a time series being integrated of order 1. To be more
specific, suppose the multivariate time series 𝒚𝑡 denotes the log-prices of some stocks. Such a
time series is nonstationary (random walk) but after differencing we obtain the log-returns,
which are stationary. Cointegration provides a more refined version that allows us to obtain a
stationary time series without having to difference it. Instead, by taking a linear combination
𝒘T𝒚𝑡 we might be able to obtain a stationary time series. As covered later, this property has
remarkable consequences in terms of trading and it forms the basics of pairs trading.

A simple and common way to model cointegration of two time series is as

𝑦1𝑡 = 𝛾 𝑥𝑡 + 𝑤1𝑡 ,

𝑦2𝑡 = 𝑥𝑡 + 𝑤2𝑡 ,
(15.1)
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where 𝑥𝑡 is a stochastic common trend defined as a random walk,

𝑥𝑡 = 𝑥𝑡−1 + 𝑤𝑡 ,

and the terms 𝑤1𝑡 , 𝑤2𝑡 , 𝑤𝑡 are i.i.d. residual terms, mutually independent, with variances 𝜎2
1 ,

𝜎2
2 , and 𝜎2, respectively. The coefficient 𝛾 is the key quantity that determines the cointegration

relationship. It is important to note that each of the time series, 𝑦1𝑡 and 𝑦2𝑡 , is a random walk
plus additional noise, therefore nonstationary. However, since they share a common stochastic
trend, a simple linear combination of the two can eliminate this trend. The so-called spread is
precisely this linear combination without the trend:

𝑧𝑡 = 𝑦1𝑡 − 𝛾 𝑦2𝑡 = 𝑤1𝑡 − 𝛾 𝑤2𝑡 ,

which is stationary and mean reverting.

Correlation
Correlation is a basic concept in probability that refers to how “related” two random variables
are. We can use this measure for stationary time series but definitely not with nonstationary
time series. In fact, when we refer to correlation between two financial assets, we are actually
employing this concept on the returns of the assets and not the price values.

Specifically, given two time series of log-prices, 𝑦1𝑡 and 𝑦2𝑡 , we can obtain the log-returns as
the differencesΔ𝑦1𝑡 andΔ𝑦2𝑡 . Then the correlation can be safely defined, assuming stationarity,
as

𝜌 =
IE [(Δ𝑦1𝑡 − 𝜇1) · (Δ𝑦2𝑡 − 𝜇2)]√︁

Var(Δ𝑦1𝑡 ) · Var(Δ𝑦2𝑡 )
,

where 𝜇1 and 𝜇2 denote the means of Δ𝑦1𝑡 and Δ𝑦2𝑡 , respectively, and the denominator
normalizes with respect to the variances of the two variables, Var(Δ𝑦1𝑡 ) and Var(Δ𝑦1𝑡 ), so
that the correlation is bounded as −1 ≤ 𝜌 ≤ 1.

The interpretation of correlation is quite simple: it is high when the two time series co-move
(they move simultaneously in the same direction) and it is zero when they move independently.

Correlation vs. Cointegration
At this point, the concepts of correlation and cointegration have been introduced, but their
similarity and difference may be unclear and confusing. After all, it seems that they both try
to capture the concept of similarity of movements of two time series, so superficially they may
seem to be similar concepts. However, they are totally different right from their definition.

As a matter of fact, the correlation of the differences of the two cointegrated time series in the
model (15.1) can be analytically derived as

𝜌 =
1√︃

1 + 2 𝜎
2
1
𝜎2

√︃
1 + 2 𝜎

2
2
𝜎2

,

which can be made as small as desired by properly choosing the variances of the residual terms
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𝜎2
1 , 𝜎2

2 , and 𝜎2. That is, we can have two perfectly cointegrated time series with an arbitrarily
small correlation, which may be surprising at first. This reveals that cointegration and
correlation are two totally different concepts, yet they both attempt to measure the similarity
of the movements of two time series. The following examples illustrate this difference.

Example 15.1 (Example of cointegrated time series with low correlation) Consider the
common trend model in (15.1) with 𝛾 = 1 and the standard deviations 𝜎 = 0.1 and
𝜎1 = 𝜎2 = 0.2. The theoretical correlation is 𝜌 = 0.111, whereas the empirical correlation
computed with 200 observations is 𝜌 = 0.034, and with 2 000 observations 𝜌 = 0.108.
Figure 15.4 shows the two nonstationary time series, 𝑦1𝑡 and 𝑦2𝑡 , the stationary spread, 𝑧𝑡 , as
well as the scatter plot of the differences Δ𝑦1𝑡 vs. Δ𝑦2𝑡 , which does not show any preferred
direction as expected for low correlation.
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Figure 15.4 Example of cointegrated time series with low correlation.

Example 15.2 (Example of non-cointegrated time series with high correlation) Consider
the common trend model in (15.1) with 𝛾 = 1 and the standard deviations 𝜎 = 0.3 and
𝜎1 = 𝜎2 = 0.05. In addition, add the linear trend 0.01× 𝑡 to the first time series 𝑦1𝑡 , which will
destroy the cointegration between the two time series while not affecting the correlation. In
this case, the theoretical correlation is 𝜌 = 0.947, whereas the empirical correlation computed
with 200 observations is 𝜌 = 0.952, and with 2 000 observations 𝜌 = 0.941. Figure 15.5
shows the two nonstationary time series, 𝑦1𝑡 and 𝑦2𝑡 , the nonstationary spread, 𝑧𝑡 , as well as
the scatter plot of the differences Δ𝑦1𝑡 vs. Δ𝑦2𝑡 , which clearly shows a preferred direction as
expected for high correlation.

Thus, both correlation and cointegration attempt to measure the same concept of co-movement
of time series, but they do it in very different ways, namely:

• Correlation is high when the two time series co-move (they move simultaneously in the
same direction) and zero when they move independently.

• Cointegration is high when the two time series move together and remain close to each
other, and nonexistent when they do not stay together.

One way to understand the fundamental difference is in terms of short term vs. long term.
Correlation is concerned with the short-term movements, that is, the directional movement
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Figure 15.5 Example of non-cointegrated time series with high correlation.

from one period to the next, while ignoring the long-term trends. Cointegration, on the other
hand, focuses on the long term, that is, whether the two time series have diverged or not after
many periods, while being oblivious to short-term variations.

This short term vs. long term interpretation can be made more precise as follows. Define the
difference of a time series 𝑦𝑡 over 𝑘 periods as 𝑟𝑡 (𝑘) = 𝑦𝑡 − 𝑦𝑡−𝑘 . Our goal is to measure the
similarity of two time series 𝑦1𝑡 and 𝑦2𝑡 over 𝑡 = 0, . . . , 𝑇 :

• Correlation does it via the one-period differences 𝑟1𝑡 (1) = Δ𝑦1𝑡 and 𝑟2𝑡 (1) = Δ𝑦2𝑡 over
𝑡 = 1, . . . , 𝑇 .

• Cointegration measures the difference between the two time series 𝑦1𝑡 − 𝑦2𝑡 (assuming
𝛾 = 1 for simplicity). Equivalently, each time series can be shifted with its initial value
and then they can be compared for divergence. Interestingly, these shifted time series are
precisely the 𝑡-period differences 𝑟1𝑡 (𝑡) = 𝑦1𝑡 − 𝑦10 and 𝑟2𝑡 (𝑡) = 𝑦2𝑡 − 𝑦20 over 𝑡 = 1, . . . , 𝑇 .

For pairs trading, it is the cointegration that matters, and not the correlation, because the
focus is precisely on the long-term mean reversion property.

15.3 Pairs Trading
Trading an asset with mean reversion is quite simple: buy when it is below its mean value and
unwind the position when it recovers to make a profit; similarly, short-sell it when it is above
its mean value and unwind the position when it reverts back. Unfortunately, it is virtually
impossible to find such a mean-reverting asset directly in a financial market. In fact, if there
were such an asset, then many traders would notice and trade it, which would immediately
eliminate its profitability.

In practice, one can attempt to discover a cointegrated pair of assets and then create a virtual
mean-reverting asset (a spread). By virtue of the mean reversion property of the constructed
spread, the common market trend present in the two original assets is nonexistent in the
spread, which means that the spread does not follow the market trend and it is market neutral.

Pairs trading is a market-neutral strategy that trades a mean-reverting spread. That is, it
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identifies two historically cointegrated financial instruments, such as stocks, and takes long
and short positions in the two instruments when their prices deviate from their historical mean
relationship, with the expectation that the prices will eventually revert back to the historical
equilibrium, allowing the trader to profit from the convergence. Some monographic books on
pairs trading include Vidyamurthy (2004), Ehrman (2006), and Chan (2013); see also Feng
and Palomar (2016).

Pairs trading was developed in the mid-1980s by a quantitative trading team led by Nunzio
Tartaglia at Morgan Stanley, achieving significant success. The team was disbanded in 1989
and the members joined various other trading firms. As a consequence, the initial secrecy of
pairs trading was lost and the technique spread over the quant community.

Trading strategies can be broadly classified according to the underlying philosophy as follows:

• Momentum-based strategies (or directional trading): These attempt to capture the market
trend while treating the fluctuations as undesired noise (risk).

• Pairs trading (or statistical arbitrage): These strategies are market neutral and try to trade
the mean-reverting fluctuations of the relative mispricings between the two securities.

Figure 15.6 displays the breakdown of an asset’s prices into the trend component (captured by
momentum-based strategies) and the mean-reverting component (captured by pairs trading).
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Figure 15.6 Decomposition of asset price into trend component and mean-reverting
component.
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Spread
The simplest implementation of pairs trading is based on comparing the spread of the two
time series 𝑦1𝑡 and 𝑦2𝑡 to a threshold 𝑠0. Suppose that the spread

𝑧𝑡 = 𝑦1𝑡 − 𝛾 𝑦2𝑡

is mean reverting with mean 𝜇. Then, the idea is to either buy if the spread is low, 𝑧𝑡 < 𝜇 − 𝑠0,
or short-sell if it is high, 𝑧𝑡 > 𝜇 + 𝑠0, and then unwind the position, for example, when it
reverts back to the mean after 𝑘 periods, leading to a difference of at least |𝑧𝑡+𝑘 − 𝑧𝑡 | ≥ 𝑠0.
Figure 15.7 illustrates this process of pairs trading by buying and short-selling the spread
according based on the threshold 𝑠0 = 1.5.
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Figure 15.7 Illustration of pairs trading via thresholds on the spread.

Prices vs. Log-Prices
Pairs trading can be implemented in terms of prices or log-prices. This is determined by
whether cointegration is exhibited by time series or prices or log-prices. The interpretation is
slighly different as explained next.

Suppose first that 𝑦1𝑡 and 𝑦2𝑡 represent the prices of the two assets that define the mean-
reverting spread 𝑧𝑡 = 𝑦1𝑡 − 𝛾 𝑦2𝑡 . In this case, the coefficients used in the spread (1 and 𝛾)
represent number of shares (to be bought and sold) and the spread has a meaning of price value.
Thus, the spread difference corresponds to the profit made during the 𝑘 periods (ignoring
transaction costs):

𝑧𝑡+𝑘 − 𝑧𝑡 = 𝑠0.

Suppose now that 𝑦1𝑡 and 𝑦2𝑡 represent the log-prices of two assets. In this case, it is convenient
to use the portfolio notation (see Chapter 6). Basically, we can define the two-asset portfolio

𝒘 =

[
1
−𝛾

]
,
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where now the coefficients 1 and 𝛾 represent normalized dollar values instead of shares, and
the spread can be compactly written as

𝑧𝑡 = 𝒘T𝒚𝑡 ,

where 𝒚𝑡 =
[
𝑦1𝑡
𝑦2𝑡

]
. With this notation, it becomes evident that the spread difference corresponds

(approximately) to the return made during the 𝑘 periods (ignoring transaction costs):

𝒘T (𝒚𝑡+𝑘 − 𝒚𝑡 ) = 𝑧𝑡+𝑘 − 𝑧𝑡 = 𝑠0.

Note that this is an approximation because the return of the portfolio should be calculated
using the linear returns, 𝒘T (exp(𝒚𝑡+𝑘 − 𝒚𝑡 ) − 1), instead of the log-returns; nevertheless,
these two quantities are approximately equal because exp(𝑥) −1 ≈ 𝑥 for small 𝑥 (see Chapter 6
for details). Also, note that this portfolio has leverage 1 + 𝛾, so in practice we may want to
normalize it to unit leverage.

Summarizing, depending on whether the original cointegrated time series correspond to
prices or log-prices, the threshold 𝑠0 will determine the absolute profit or the return of the
trade over these 𝑘 periods. The choice is dictated by the nature of the cointegration of the
time series. It is important to remark that in the case of cointegrated log-prices, the portfolio
𝒘 has a meaning of normalized dollars, which may require a rebalancing over time (increased
transaction costs); for cointegrated prices, the number of shares naturally stays constant over
time and does not require rebalancing. This makes cointegrated price series more attractive;
unfortunately, in practice, it is more difficult to find cointegrated price series since the noise in
prices is less symmetric than that in log-prices, making the potential spreads less stationary.

Is Pairs Trading Profitable?
It is important to note that pairs trading relies on the assumption that the historical relationship
between the two instruments will persist in the future. However, this is not always the case and
cointegration between financial instruments can change over time due to various factors, such
as market conditions, industry trends, or company-specific events. Therefore, pairs trading
carries risks, and traders should carefully monitor the relationship between the instruments
and use risk management techniques to protect their positions. Some publications show that
pairs trading can provide profits (Avellaneda & Lee, 2010; Elliott et al., 2005; Gatev et al.,
2006), while others indicate that cointegration relationships may not be preserved over time
(Chan, 2013; Clegg, 2014).

The positive results should always be taken with a grain of salt for a number of reasons:
backtests may ignore transaction costs, which can exceed the profit made trading the spread
(Chan, 2008); strategies may have yielded profits in the past while their effectiveness may
have diminished in more recent times (Chan, 2013); and the practical implementation entails
certain technical difficulties, such as the potential lack of liquidity for short-selling, the danger
of margin calls (being forced to liquidate positions during inopportune times), the need for
higher-frequency trading due to the competition of other traders, and the decimalization of
U.S. stock prices, which caused bid–ask spreads to dramatically narrow, affecting the spreads
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(Chan, 2013). Nevertheless, the proper use of Kalman filtering (covered in Section 15.6) and
VECM modeling (overviewed in Section 15.7) can help remedy many of the shortcomings.

Design of Pairs Trading
We have covered the basic idea of pairs trading, which relies on cointegrated pairs. The rest
of this chapter revolves around the design of pairs trading in detail. In a nutshell, the objective
is to trade profitably a mean-reverting spread, which requires: (i) discovering cointegrated
pairs (Section 15.4), from simple prescreening to more sophisticated statistical tests, and
(ii) designing the trading strategy (Section 15.5), which basically boils down to the choice of
the threshold 𝑠0 or other more sophisticated methods.

More advanced topics include the use of Kalman filtering for estimating a time-varying
cointegration relationship (Section 15.6) and the extension of pairs trading to more than two
assets (Section 15.7).

15.4 Discovering Cointegrated Pairs
The key in pairs trading lies in being able to discover cointegrated pairs. The available methods
range from simple heuristics to sophisticated multivariate modeling (Krauss, 2017).

15.4.1 Prescreening
Prescreening is a simple and cheap process by which many pairs can be easily discarded
while some potential pairs are selected for further analysis. A common heuristic proxy for
cointegration is the normalized price distance (NPD) defined as (Gatev et al., 2006)

NPD ≜
𝑇∑︁
𝑡=1

(𝑝1𝑡 − 𝑝2𝑡 )2 ,

where 𝑝1𝑡 and 𝑝2𝑡 are the normalized prices,

𝑝1𝑡 = 𝑝1𝑡/𝑝10,

𝑝2𝑡 = 𝑝2𝑡/𝑝20,

with 𝑝1𝑡 and 𝑝2𝑡 being the original prices.

A similar distance measure can be defined in terms of log-prices, 𝑦1𝑡 and 𝑦2𝑡 , by subtracting
the initial value:

�̃�1𝑡 = 𝑦1𝑡 − 𝑦10,

�̃�2𝑡 = 𝑦2𝑡 − 𝑦20.

Note that these shifted log-prices correspond to the long-term difference series, that is, the
log-returns over long periods described earlier in Section 15.2 and denoted by 𝑟1𝑡 (𝑡) and
𝑟2𝑡 (𝑡).
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15.4.2 Cointegration Tests
After the initial prescreening process of potential cointegrated pairs of assets, a more thorough
analysis has to be performed. This is the job of the cointegration tests developed in the
statistics literature for decades (Harris, 1995; Tsay, 2010, 2013). In a nutshell, these tests check
whether or not a linear combination of the two time series follows a stationary autoregressive
model and will be mean reverting. A time series with a unit root is nonstationary and behaves
like a random walk. On the other hand, in the absence of unit roots, a time series tends to
revert to its long-term mean. Thus, cointegration tests are typically implemented via unit-root
stationarity tests.

Mathematically, we want to determine whether there exists a value of 𝛾 such that the spread

𝑧𝑡 = 𝑦1𝑡 − 𝛾 𝑦2𝑡

is stationary. Note that, in practice, the mean of the spread 𝜇 (equilibrium value) is not
necessarily zero and 𝛾 does not have to be one. In fact, many studies artificially set 𝛾 = 1 to
obtain dollar-neutral strategies (Elliott et al., 2005; Gatev et al., 2006; Triantafyllopoulos &
Montana, 2011); however, that reduces the number of cointegrated pairs.

One of the simplest and most direct methods to test for cointegration is the Engle–Granger2

test (Engle & Granger, 1987). It is based on two steps: first, the value of 𝛾 is obtained via
least squares regression, and then the residual is tested for stationarity.3 More exactly, the
two sequences 𝑦1𝑡 and 𝑦2𝑡 are regressed against each other (see Chapter 3 for details on least
squares regression),

𝑦1𝑡 − 𝛾 𝑦2𝑡 = 𝜇 + 𝑟𝑡 ,

and the residual 𝑟𝑡 is checked for unit-root stationarity or some form of mean reversion.

There are many heuristic ways to measure the strength of the mean reversion of the residual.
For example, one can use the mean-crossing rate, that is, the number of times the residual
crosses its mean value over a period of time (Vidyamurthy, 2004): the higher the mean
crossing rate, the stronger the mean reversion. Another measure is the half-life of the mean
reversion (Chan, 2013), which quantifies the time it takes for a time series to return to within
half of the distance from the mean after deviating a certain amount from the mean.

More formally, we can use mathematically well-defined statistical tests. A variety of such
tests have been proposed over time, with some of the most popular ones being (Banerjee et al.,
1993; Harris, 1995; Pfaff, 2008; Tsay, 2010, 2013):

• Dickey–Fuller (DF)
• augmented Dickey–Fuller (ADF)
• Phillips–Perron (PP)
• Pantula, Gonzales-Farias, and Fuller (PGFF)
2 The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2003 was divided equally

between Robert F. Engle III “for methods of analyzing economic time series with time-varying volatility
(ARCH)” and Clive W. J. Granger “for methods of analyzing economic time series with common trends
(cointegration).”

3 The R packages urca and egcm implement a long list of stationarity and cointegration tests (Clegg, 2023; Pfaff
et al., 2022).

https://cran.r-project.org/package=urca
https://cran.r-project.org/package=egcm
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• Elliott, Rothenberg, and Stock DF-GLS (ERSD)
• Johansen’s trace test (JOT)
• Schmidt and Phillips rho (SPR)

For example, the simplest model for the residual is

𝑟𝑡 = 𝜌 𝑟𝑡−1 + 𝜖𝑡 ,

where 𝜖𝑡 is the innovation term, and stationarity requires no unit root in the autoregressive
term, that is, |𝜌 | < 1. The DF test (Dickey & Fuller, 1979) precisely formulates a hypothesis
testing problem by defining the null hypothesis as a unit root being present (𝜌 = 1) and the
alternative hypothesis as the series being stationary (|𝜌 | < 1). Under these two hypotheses, a
small 𝑝-value4 indicates strong stationarity (rejection of the null hypothesis). The model for
the residual can be extended to incorporate a constant and a linear trend:

𝑟𝑡 = 𝜙0 + 𝑐 𝑡 + 𝜌 𝑟𝑡−1 + 𝜖𝑡 .

The popular ADF test includes further higher-order autoregressive terms in the model.

15.4.3 Cointegration of More Than Two Time Series
The Engle–Granger cointegration test has some drawbacks: it is designed for two time series
(assets) and, even then, the first step in performing the regression of one time series vs. the
other is sensitive to the ordering of the variables. The method can be naturally extended
to more than two assets (described in Section 15.7), but then the ordering of the variables
becomes more critical. An alternative method is Johansen’s test (Johansen, 1991, 1995),
which is based on a multivariate time series modeling, explored in Section 15.7 (see Chapter 4
for details on time series models).

Specifically, Johansen’s test first fits a multivariate VECM time series model for 𝑁 assets (see
(15.6) in Section 15.7), which contains a key 𝑁 ×𝑁 matrix 𝚷 characterizing the cointegration.
Then, it proceeds to analyze the rank of this matrix 𝚷, which precisely reveals the number of
different cointegration relationships present.

15.4.4 Are Cointegrated Pairs Persistent?
It may seem that once a cointegrated pair has been discovered and has passed the necessary
tests, the job is done and pairs trading will be profitable. Unfortunately, an additional issue to
consider is whether this cointegration will be persistent over time or not.

In practice, it is not difficult to find cointegrated pairs during some chosen period of time of
historical data, but they can just as easily lose cointegration in the subsequent out-of-sample
period (Chan, 2013). The reason for this difficulty is that the fortunes of one company can

4 The 𝑝-value is the probability of obtaining the observed results under the assumption that the null hypothesis is
correct. A small 𝑝-value means that there is strong evidence to reject the null hypothesis and accept the
alternative hypothesis. Typical thresholds for determining whether a 𝑝-value is small enough are in the range
0.01–0.05.
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change very quickly depending on management decisions, the competition, or simply bad
news affecting one company and not the other.

In fact, empirical studies have shown evidence that does not support the hypothesis that
cointegration is a persistent property (Clegg, 2014). The spread series of pairs are typically
affected by a steady stream of permanent shocks that affect the cointegration. To bypass such
practical problems, time-varying versions of cointegration can be considered (see Section 15.6
for the use of Kalman filtering) and even relaxed forms of cointegration can also be entertained,
such as the concept of partial cointegration that allows the spread to contain a random walk
component (Clegg & Krauss, 2018).

15.4.5 Numerical Experiments
We start with synthetic data and then consider some real examples based on stocks, commodi-
ties, and exchange-traded funds (ETFs).

Synthetic Data in Example 15.1
Recall Example 15.1, and the corresponding Figure 15.4, where a synthetic cointegrated time
series was generated with low correlation. The estimated cointegration relationship via least
squares based on 𝑇 = 200 observations is

𝑦2𝑡 = 0.80 𝑦1𝑡 + 0.20 + 𝑟𝑡 ,
𝑟𝑡 = 0.12 𝑟𝑡−1 + 𝜖𝑡 ,

where the residual 𝑟𝑡 has a small autoregressive coefficient of 0.12, indicating no unit root. This
can be observed from the plot of the residual in Figure 15.8, with an estimated half-life of 0.33
(strong mean reversion). More quantitatively, Table 15.1 gives the 𝑝-values corresponding
to several cointegration and residual unit-root tests. All the 𝑝-values are below a reasonable
threshold of, say, 0.01 and therefore the null hypothesis (existence of a unit root) can be
rejected, which means cointegration of the two time series is accepted.

Table 15.1 Cointegration and residual unit-root tests for Example 15.1.

Test 𝑝-value

ADF 0.0081
PP 0.0001
PGFF 0.0001
ERSD 0.0008
JOT 0.0001
SPR 0.0001

Synthetic Data in Example 15.2
Consider now Example 15.2, and the corresponding Figure 15.5, where a synthetic non-
cointegrated time series was generated with high correlation. The estimated cointegration
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Figure 15.8 Cointegration residual for Example 15.1 with cointegration and low
correlation.

relationship via least squares based on 𝑇 = 200 observations is

𝑦2𝑡 = 0.68𝑦1𝑡 + 0.16 + 𝑟𝑡 ,
𝑟𝑡 = 0.91𝑟𝑡−1 + 𝜖𝑡 ,

where the residual 𝑟𝑡 has a dangerous autoregressive coefficient of 0.91, which is close to
1, suggesting that the existence of a unit root cannot be excluded. This can be corroborated
from the residual shown in Figure 15.9, with an estimated half-life of 7.29 (weak mean
reversion). Additionally, Table 15.2 gives the 𝑝-values corresponding to several cointegration
and residual unit-root tests. In this case, all the 𝑝-values are much higher than any reasonable
threshold of, say, 0.01 and therefore the null hypothesis (existence of a unit root) cannot be
rejected, which means we cannot conclude that the two time series are cointegrated.

-0.4

0.0

0.4

0 50 100 150 200

t

Residual time series

Figure 15.9 Cointegration residual for Example 15.2 with no cointegration and high
correlation.
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Table 15.2 Cointegration and residual unit-root tests for Example 15.2.

Test 𝑝-value

ADF 0.4529
PP 0.0608
PGFF 0.0700
ERSD 0.0767
JOT 0.0996
SPR 0.2671

Market Data: EWA and EWC
EWA is an ETF that tracks the performance of the MSCI5 Australia Index, which includes
Australian companies from various sectors such as financials, materials, healthcare, consumer
staples, and energy. Similarly, EWC is an ETF that tracks the performance of the MSCI
Canada Index. Thus, the EWA and EWC provide exposure to the Australian and Canadian
equity markets, respectively, and can be used by investors to gain broad exposure to these
countries’ economies.

EWA and EWC constitute a popular example in the quant community of cointegrated ETFs
(Chan, 2013). The logic is that both the Canadian and Australian economies are commodity
based, therefore their stock market performance is likely to be related through natural resources’
prices.

The cointegration relationship during 2016–2019 is estimated via least squares. When EWA
is regressed against EWC, the resulting hedge ratio is 𝛾 = 0.74; but when EWC is regressed
against EWC, we obtain 1.27, which is not exactly the inverse, 1/0.74 ≈ 1.35. If instead we
employ Johansen’s test, we obtain the more accurate weights of 1 for EWA and −0.80 for
EWC.

Figure 15.10 shows the residual of the cointegration relationship (spread), with an estimated
half-life of 19 days (not very strong mean reversion). Table 15.3 shows the results for the
cointegration tests, with the majority of the tests indicating cointegration at the 1% level (i.e.,
𝑝-value less than 0.01), albeit two of the tests reject cointegration, so caution should be taken.

Table 15.3 Cointegration and residual unit-root tests for EWA–EWC.

Test 𝑝-value

ADF 0.0049
PP 0.0058
PGFF 0.0062
ERSD 0.5310
JOT 0.0069
SPR 0.3840

5 Morgan Stanley Capital International (MSCI) is a leading provider of investment decision support tools and
services. The company is best known for its global equity indices, which are widely used by investors to
benchmark and analyze the performance of equity markets around the world.
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Figure 15.10 Cointegration residual for EWA–EWC.

Market Data: Coca-Cola and Pepsi
The stocks Coca-Cola (with ticker KO) and Pepsi (with ticker PEP) are often mentioned as an
example of a pair of securities in the same industry group for which pairs trading might be
fruitful. However, as already pointed out in Chan (2008), they do not seem to be cointegrated.

We assess the cointegration relationship during 2017–2019 via least squares. Their returns
show a correlation of 0.66, which is statistically significant, but different from cointegration.
Figure 15.11 shows the residual of the cointegration relationship (spread), with an estimated
half-life of 70 days (not indicative of any cointegration). Table 15.4 shows the results for the
cointegration tests, all of which reject the hypothesis of cointegration (all 𝑝-values are much
larger than 0.01).
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Figure 15.11 Cointegration residual for KO–PEP.
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Table 15.4 Cointegration and residual unit-root tests for KO–PEP.

Test 𝑝-value

ADF 0.2675
PP 0.1845
PGFF 0.1395
ERSD 0.0484
JOT 0.5627
SPR 0.1982

Market Data: SPY, IVV, and VOO
Standard & Poor’s 500 (S&P 500) is one of the world’s best-known indices and one of the
most commonly used benchmarks for the U.S. stock market. There are a multitude of ETFs
that track this index, such as Standard & Poor’s Depository Receipts SPY, iShares IVV, and
Vanguard’s VOO. Given that they all track the same underlying asset, it is likely that these
three ETFs will have a strong cointegrating relationship.

In this case, since we want to assess cointegration among more than two time series, namely,
SPY, IVV, and VOO, we cannot use the Enger–Granger test. Instead, we have to resort to
Johansen’s test, which first fits a VECM multivariate model and then proceeds to check
sequentially the rank of matrix 𝚷 ∈ R3×3, which satisfies 0 ≤ 𝑟 ≤ 3.

Based on the period 2017–2019, Johansen’s test produces the following results:

• First, the null hypothesis is 𝑟 = 0 vs. the alternative hypothesis 𝑟 > 0: there is clear evidence
to reject the null hypothesis.
• Then, the null hypothesis is 𝑟 ≤ 1 vs. the alternative hypothesis 𝑟 > 1: again we have

sufficient evidence to reject the null hypothesis.
• Finally, the null hypothesis is 𝑟 ≤ 2 vs. the alternative hypothesis 𝑟 > 2: in this case we

cannot reject the null hypothesis.

Thus, the conclusion is that the rank is 𝑟 = 2, that is, we can find two different cointegrating
relationships, whose residuals are shown in Figure 15.12.

15.5 Trading the Spread
Suppose we have discovered a cointegrated pair of log-price time series, 𝑦1𝑡 and 𝑦2𝑡 , and have
formed the spread 𝑦1𝑡 − 𝛾 𝑦2𝑡 , which is effectively using the two-asset portfolio 𝒘 = [1,−𝛾]T
with a leverage of ∥𝒘∥1 = 1+𝛾. In order to make fair comparisons, it is necessary to normalize
the leverage to 1. Thus, the portfolio with normalized leverage is

𝒘 =
1

1 + 𝛾

[
1
−𝛾

]
, (15.2)

with corresponding normalized spread 𝑧𝑡 = 𝒘T𝒚𝑡 . The return of this portfolio at time 𝑡
(ignoring transaction costs) is given by 𝒘T (𝒚𝑡 − 𝒚𝑡−1) = 𝑧𝑡 − 𝑧𝑡−1 (see Chapter 6 for details
on portfolio notation). Suppose we enter a position at time 𝑡 and after 𝑘 periods the spread
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Figure 15.12 Cointegration residuals for SPY–IVV–VOO.

reverts to the mean and the position is closed. This would lead to a difference of at least
|𝑧𝑡+𝑘 − 𝑧𝑡 | ≥ 𝑠0, which is the portfolio return during these 𝑘 periods.

Trading the spread boils down to deciding when to buy or short-sell the spread, and how
much to invest (termed sizing). This is conveniently done by defining a “signal” time series
𝑠1, 𝑠2, 𝑠3, . . ., where 𝑠𝑡 denotes the sizing (positive for buying, zero for no position, and
negative for short-selling) usually bounded as −1 ≤ 𝑠𝑡 ≤ 1 to control the leverage. We will
assume that the value of the signal at time 𝑡, 𝑠𝑡 , has been decided based on information up to
(and including) time 𝑡, that is, . . . , 𝒚𝑡−2, 𝒚𝑡−1, 𝒚𝑡 . Thus, the combination of the spread portfolio
(15.2) and the signal 𝑠𝑡 produces the time-varying portfolio 𝑠𝑡 × 𝒘, with corresponding return

𝑅
portf
𝑡 = 𝑠𝑡−1 × 𝒘T (𝒚𝑡 − 𝒚𝑡−1) = 𝑠𝑡−1 × (𝑧𝑡 − 𝑧𝑡−1).

15.5.1 Trading Strategies
To define a strategy to trade the spread, it suffices to determine a rule for the sizing signal
𝑠𝑡 . For this purpose, it is convenient to use a normalized version of the spread, called the
standard score or 𝑧-score:

𝑧score
𝑡 =

𝑧𝑡 − IE[𝑧𝑡 ]√︁
Var(𝑧𝑡 )

,

which has zero mean and unit variance. This 𝑧-score cannot be used in a real implementation
since it is not causal and suffers from look-ahead bias (when estimating the mean and variance).
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A naive approach would be to use some training data to determine the mean and standard
deviation, and then apply that to the future out-of-sample data. A more sophisticated way is
to make the calculation adaptive by implementing it in a rolling fashion, for example via the
so-called Bollinger Bands.

Bollinger Bands are a technical trading tool created by John Bollinger in the early 1980s.
They arose from the need for adaptive trading bands and the observation that volatility was
dynamic. They are computed on a rolling-window basis over some lookback window. In
particular, the rolling mean and rolling standard deviation are first computed, from which the
upper and lower bands are easily obtained (typically the mean plus/minus one or two standard
deviations). In the context of the 𝑧-score, the spread can be adaptively normalized with the
rolling mean and rolling standard deviation.

We now describe two of the simplest possible strategies for trading a spread, namely, the
linear strategy and the thresholded strategy.

• The linear strategy is very simple to describe based on the contrarian idea of buying low
and selling high (Chan, 2013). As a first attempt, we could define the sizing signal simply
as the negative 𝑧-score, 𝑠𝑡 = −𝑧score

𝑡 , to gradually scale-in and scale-out or, even better,
including a scaling factor as 𝑠𝑡 = −𝑧score

𝑡 /𝑠0, where 𝑠0 denotes the threshold at which the
signal is fully leveraged. In practice, to limit the leverage to 1, we can project this value to
lie in the interval [−1, 1]:

𝑠𝑡 = −
[
𝑧score
𝑡

𝑠0

]+1
−1
,

where [·]𝑏𝑎 clips the argument to 𝑎 if below that value and to 𝑏 if above that value.

• The thresholded strategy follows similarly the contrarian nature of buying low and
selling high, but rather than linear it takes an all-in or all-out sizing based on thresholds
(Vidyamurthy, 2004). The simplest implementation is based on comparing the 𝑧-score to a
threshold 𝑠0: buy when the 𝑧-score is below −𝑠0 and short-sell when it is above 𝑠0, while
unwinding the position after reverting to the equilibrium value of zero. In terms of the
sizing signal:

𝑠𝑡 =


+1 if 𝑧score

𝑡 < −𝑠0,

0 after 𝑧score
𝑡 reverts to 0,

−1 if 𝑧score
𝑡 > +𝑠0.

Figures 15.13 and 15.14 illustrate the linear and thresholded strategies, respectively, based on
a synthetic spread generated as an AR(1) with an autoregressive coefficient of 0.7. Observe
the different nature of the sizing signal: continuous vs. on–off. The thresholds have been
chosen arbitrarily as 𝑠0 = 1 and should be properly optimized for maximizing the profit (as
described in detail in the next section). In practice, the rolling version of the 𝑧-score should
be used to make it implementable without look-ahead bias, such as based on the Bollinger
Bands (Chan, 2013).
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Figure 15.13 Illustration of pairs trading via the linear strategy on the spread.

15.5.2 Optimizing the Threshold
Consider now the simple thresholded strategy that buys when the 𝑧-score is below the
threshold −𝑠0 and short-sells when it is above 𝑠0, unwinding the position after reverting to the
equilibrium value of zero. Note that in terms of the spread, the threshold is 𝑠0 × 𝜎, where 𝜎
is the standard deviation of the spread.

The choice of this threshold is critical as it determines how often the position is closed
(cashing a profit) as well as how large that minimum profit is. The total profit equals the
number of trades times the profit of each trade. Recall that, when a position is closed after
𝑘 periods, the meaning of the spread difference 𝑧𝑡+𝑘 − 𝑧𝑡 depends on whether the spread
represents log-prices or prices:

• for log-prices, the spread difference denotes the log-return of the profit;
• for prices, the spread difference denotes the absolute profit (to be scaled with the initial

budget).

Thus, after 𝑁 trades successful trades have been executed, the total (uncompounded) profit can
be accounted as 𝑁 trades × 𝜎 𝑠0 (the compounded profit could also be used).
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Figure 15.14 Illustration of pairs trading via the thresholded strategy on the spread.

We will now obtain the optimum choice of the threshold to maximize the total profit in both
parametric and nonparametric approaches.

Parametric Approach
Suppose the 𝑧-score follows a standard normal distribution, 𝑧score

𝑡 ∼ N(0, 1). Then, the
probability that it deviates from zero by 𝑠0 or more is 1−Φ(𝑠0), where Φ(·) is the cumulative
distribution function (cdf) of the standard normal distribution. For a time series path of 𝑇
periods, the number of tradable events (in one direction) can be approximated by𝑇×(1−Φ(𝑠0))
with a total profit of 𝑇 (1 −Φ(𝑠0)) × 𝜎 𝑠0.

Thus, under this simple parametric model, the optimal threshold can be obtained simply as

𝑠★0 = arg max
𝑠0

(1 −Φ(𝑠0)) × 𝑠0.

Figure 15.15 illustrates the parametric evaluation of the profit vs. the threshold for a synthetic
Gaussian spread.

Nonparametric Data-Driven Approach
An alternative to the parametric approach (based on a probably inaccurate model) is a
data-driven approach that does not rely on any model assumption. The idea is to simply use the
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Figure 15.15 Calculation of optimum threshold in pairs trading via a parametric
approach.

available data to empirically count the number of tradable events for each possible threshold.
Given 𝑇 observations of the 𝑧-score, 𝑧score

𝑡 for 𝑡 = 1, . . . , 𝑇 , and 𝐽 discretized threshold values,
𝑠01, . . . , 𝑠0𝐽 , we can compute the empirical trading frequency for each threshold 𝑠0 𝑗 (in one
direction) as

𝑓 𝑗 =
1
𝑇

𝑇∑︁
𝑡=1

1{𝑧score
𝑡 > 𝑠0 𝑗},

where 1{·} is the indicator function that equals 1 if the argument is true and zero otherwise.

Unfortunately, the empirical values 𝑓 𝑗 can be very noisy, which can affect the assessment
of the total profit. One way to reduce the noise in the values 𝒇 = ( 𝑓1, . . . , 𝑓𝐽 ) is by taking
advantage of the fact that the trading frequency should be a smooth function of the threshold.
We can obtain a smoothed version by solving the least squares problem

minimize
𝒇

𝐽∑︁
𝑗=1

( 𝑓 𝑗 − 𝑓 𝑗)2 + 𝜆
𝐽−1∑︁
𝑗=1

( 𝑓 𝑗 − 𝑓 𝑗+1)2,

where the first term measures the difference between the noisy and smoothed values, and the
second term enforces smoothness controlled by the hyper-parameter 𝜆. This problem can be
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rewritten with a compact notation as

minimize
𝒇

∥ 𝒇 − 𝒇 ∥22 + 𝜆∥𝑫 𝒇 ∥22,

where 𝑫 is a difference matrix defined as

𝑫 =


1 −1

1 −1
. . .

. . .

1 −1


∈ R(𝐽−1)×𝐽 .

Since this problem is a least squares, we can write down the solution in closed form as

𝒇★ =
(
𝑰 + 𝜆𝑫T𝑫

)−1
𝒇 .

Finally, the optimal threshold can be obtained by maximizing the smoothed total profit:

𝑠★0 = arg max
𝑠0 𝑗 ∈{𝑠01 ,𝑠02 ,...,𝑠0𝐽 }

𝑠0 𝑗 × 𝑓 𝑗 .

Figure 15.16 illustrates the nonparametric evaluation of the profit vs. the threshold for a
synthetic Gaussian spread (both the original noisy version and the improved smoothed
version).
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Figure 15.16 Calculation of optimum threshold in pairs trading via a nonparametric
approach.
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15.5.3 Numerical Experiments
We now execute pairs trading with market data examples during 2013–2022. The first two
years are used to estimate the hedge factor 𝛾, which is critical to form the spread. Then the
spread is traded over the remaining out-of-sample period. The 𝑧-score is computed on a
rolling-window basis (as in Bollinger Bands) to make sure it adapts to the market changes
over time and stays mean reverting. To trade the spread, the thresholded strategy is employed
(the linear strategy can also be used with very similar results). For simplicity, the threshold is
simply chosen as 𝑠0 = 1; of course it could be optimized but care has to be taken to avoid
look-ahead bias and overfitting (see Chapter 8 for the dangers of backtesting and overfitting of
hyper-parameters).

Market Data: EWA and EWC
We start with the two ETFs EWA and EWC, which track the performance of the Australian
and Canadian economies, respectively. As previously checked in Section 15.4, the majority of
the tests indicate that cointegration is present during most of the period, although in occasions
it may be lost. The 𝑧-score is computed on a rolling-window basis with a lookback period of
six months.

Figure 15.17 shows the spread (with hedge ratio 𝛾 estimated via least squares during the
first two years), the 𝑧-score, the trading signal, and the cumulative return. We can observe
that the spread does not show a strong persistent cointegration relationship over the whole
period; in practice, the hedge ratio should be adapted over time. The 𝑧-score is able to produce
a more constant mean-reverting version due to the rolling window adaptation. In any case,
any practical implementation of pairs trading would recompute the hedge ratio over time, as
assumed in the rest of the experiments via a rolling least squares.

Figure 15.18 shows the results when the hedge ratio 𝛾 is computed on a rolling-window basis
with a lookback period of two years. We can appreciate that the spread has been improved
compared to the previous fixed least squares and looks more mean-reverting. Still, the 𝑧-score
is able to further improve it and produce a much better mean reverting version. The cumulative
return shows the improvement thanks to the rolling least squares approach; nevertheless, it is
much better to use the Kalman filter as explored in Section 15.6.

Market Data: KO and PEP
We continue with an attempt to execute pairs trading on the stocks Coca-Cola (KO) and
Pepsi (PEP), which do not seem to be cointegrated according to the previous experiments in
Section 15.4. To be realistic, the hedge ratio 𝛾 is estimated via a rolling least squares with
a lookback period of two years (this may help in adapting to the changing cointegration
relationship). The 𝑧-score is computed on a rolling-window basis with a lookback period of
six months (as well as one month for a faster adaptation).

Figure 15.19 shows the spread, the 𝑧-score, the trading signal, and the cumulative return. We
can observe that the spread loses the mean reversion property despite the rolling nature of
the hedge ratio calculation. The 𝑧-score is able to produce a more constant mean-reverting
version, but still one can observe jumps indicating loss of cointegration. The cumulative
return indicates that trading is not very successful.



15.6 Kalman Filtering for Pairs Trading 423

training    out-of-sample

-0.10

-0.05

0.00

0.05

0.10

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Spread

-6

-4

-2

0

2

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Z-score

-1.0

-0.5

0.0

0.5

1.0

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Signal

0.0

0.1

0.2

0.3

0.4

0.5

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Cumulative return

Figure 15.17 Pairs trading on EWA–EWC with six-month rolling 𝑧-score and
two-year fixed least squares.

Figure 15.20 shows the results when the 𝑧-score is calculated with a faster adaptability using
a lookback period of one month (as opposed to the previous six months). The 𝑧-score looks
much better, with a strong mean reversion. This translates into higher-frequency trading
(compare the frequency in the signals), but still the cumulative return does not seem to indicate
good profitability.

15.6 Kalman Filtering for Pairs Trading
A key component in pairs trading is the construction of a mean-reverting spread

𝑧𝑡 = 𝑦1𝑡 − 𝛾 𝑦2𝑡 = 𝜇 + 𝑟𝑡 ,
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Figure 15.18 Pairs trading on EWA–EWC with six-month rolling 𝑧-score and
two-year rolling least squares.

where 𝛾 is the hedge ratio, 𝜇 is the mean, and 𝑟𝑡 is the zero-mean residual. Then the trading
strategy will properly size the trade depending on the distance of the spread 𝑧𝑡 from the
equilibrium value 𝜇.

Construction of the spread requires careful estimation of the hedge ratio 𝛾, as well as the
mean of the spread 𝜇. The traditional way is to employ least squares regression. In practice,
the hedge ratio and the mean will slowly change over time and then the least squares solution
should be recomputed on a rolling-window basis. However, it is better to employ a more
sophisticated time-varying modeling and estimation technique based on state-space modeling
and the Kalman filter (Chan, 2013; Feng & Palomar, 2016).
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Figure 15.19 Pairs trading on KO–PEP with six-month rolling 𝑧-score and two-year
rolling least squares.

15.6.1 Spread Modeling via Least Squares
The method of least squares (LS) dates back to 1795 when Gauss used it to study planetary
motions. It deals with the linear model 𝒚 = 𝑨𝒙 + 𝝐 by solving the problem (Kay, 1993; Scharf,
1991)

minimize
𝒙

∥𝒚 − 𝑨𝒙∥22 ,

whose solution gives the least squares estimate �̂� =
(
𝑨T𝑨

)−1
𝑨T𝒚. In addition, the covariance

matrix of the estimate �̂� is given by 𝜎2
𝜖

(
𝑨T𝑨

)−1, where 𝜎2
𝜖 is the variance of the residual 𝝐

(in practice, the variance of the estimated residual 𝝐 = 𝒚 − 𝑨�̂� can be used instead).

In our context of spread modeling, we want to fit 𝑦1𝑡 ≈ 𝜇 + 𝛾 𝑦2𝑡 based on 𝑇 observations, so
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Figure 15.20 Pairs trading on KO–PEP with one-month rolling 𝑧-score and two-year
rolling least squares.

the LS formulation becomes

minimize
𝜇,𝛾

∥𝒚1 − (𝜇1 + 𝛾 𝒚2)∥22 ,

where the vectors 𝒚1 and 𝒚2 contain the 𝑇 observations of the two time series, and 1 is the
all-ones vector. The solution gives the estimates[

�̂�

�̂�

]
=

[
1T1 1T𝒚2
𝒚T

2 1 𝒚T
2 𝒚2

]−1 [
1T𝒚1
𝒚T

2 𝒚1

]
.

In practice, it is more convenient to first remove the mean of 𝒚1 and 𝒚2 to produce the centered
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versions �̄�1 and �̄�2, then estimate the hedge ratio as

�̂� =
�̄�T

2 �̄�1

�̄�T
2 �̄�2

,

and finally compute the sample mean of 𝒚1 − �̂� 𝒚2:

�̂� =
1T(𝒚1 − �̂� 𝒚2)

𝑇
.

The variance of these estimates is given by

Var[�̂�] = 1
𝑇
𝜎2
𝜖 /𝜎2

2 ,

Var[�̂�] = 1
𝑇
𝜎2
𝜖 ,

where 𝜎2
2 is the variance of 𝒚2 and 𝜎2

𝜖 is the variance of the residual 𝝐 .

It is important to reiterate that in practice the hedge ratio and the mean will slowly change
over time, as denoted by 𝛾𝑡 and 𝜇𝑡 , and the least squares solution must be recomputed on
a rolling-window basis (based on a lookback window of past samples). Nevertheless, this
time-varying case is better handled with Kalman filtering, as described next.

15.6.2 Primer on the Kalman Filter
State-space modeling provides a unified framework for treating a wide range of problems in
time series analysis. It can be thought of as a universal and flexible modeling approach with a
very efficient algorithm, the Kalman filter. The basic idea is to assume that the evolution of
the system over time is driven by a series of unobserved or hidden values, which can only be
measured indirectly through observations of the system output. This model can be used for
filtering, smoothing, and forecasting. Here we provide a concise summary; more details on
state-space modeling and Kalman filtering can be found in Section 4.2 of Chapter 4.

The Kalman filter, which was employed by NASA during the 1960s in the Apollo program,
now boasts a vast array of technological applications. It is commonly utilized in the guidance,
navigation, and control of vehicles, including aircraft, spacecraft, and maritime vessels. It has
also found applications in time series analysis, signal processing, and econometrics. More
recently, it has become a key component in robotic motion planning and control, as well as
trajectory optimization.

State-space models and Kalman filtering are mature topics with excellent textbooks available
such as the classical references Anderson and Moore (1979) and Durbin and Koopman (2012),
which was originally published in 2001. Other textbook references on time series and the
Kalman filter include Brockwell and Davis (2002), Shumway and Stoffer (2017), Harvey
(1989) and, in particular, for financial time series, Zivot et al. (2004), Tsay (2010), Lütkepohl
(2007), and Harvey and Koopman (2009).

Mathematically, the Kalman filter is based on the following linear Gaussian state-space model
with discrete time 𝑡 = 1, . . . , 𝑇 (Durbin & Koopman, 2012):

𝒚𝑡 = 𝒁𝑡𝜶𝑡 + 𝝐𝑡
𝜶𝑡+1 = 𝑻𝑡𝜶𝑡 + 𝜼𝑡

(observation equation),
(state equation),
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where 𝒚𝑡 denotes the observations over time with observation matrix 𝒁𝑡 , 𝜶𝑡 represents the
unobserved or hidden internal state with state transition matrix 𝑻𝑡 , and the two noise terms 𝝐𝑡
and 𝜼𝑡 are Gaussian distributed with zero mean and covariance matrices 𝑯 and 𝑸, respectively,
that is, 𝝐𝑡 ∼ N(0,𝑯) and 𝜼𝑡 ∼ N(0,𝑸). The initial state can be modeled as 𝜶1 ∼ N(𝒂1, 𝑷1).
Mature and efficient software implementations are readily available (Helske, 2017; Holmes
et al., 2012; Petris & Petrone, 2011; Tusell, 2011).6

The parameters of the state-space model (i.e., 𝒁𝑡 , 𝑻𝑡 , 𝑯, 𝑸, 𝒂1, and 𝑷1) can be either provided
by the user (if known) or inferred from the data with algorithms based on the maximum
likelihood method. Again, mature and efficient software implementations are available for
this parameter fitting (Holmes et al., 2012).7

To be more precise, the Kalman filter is a very efficient algorithm to optimally characterize the
distribution of the hidden state at time 𝑡, 𝜶𝑡 , in a causal manner. In particular, 𝜶𝑡 |𝑡−1 and 𝜶𝑡 |𝑡
denote the expected value given the observations up to time 𝑡 − 1 and 𝑡, respectively. These
quantities can be efficiently computed using a “forward pass” algorithm that goes from 𝑡 = 1
to 𝑡 = 𝑇 in a recursive way, so that it can operate in real time (Durbin & Koopman, 2012).

15.6.3 Spread Modeling via Kalman
In our context of spread modeling, we want to model 𝑦1𝑡 ≈ 𝜇𝑡 + 𝛾𝑡 𝑦2𝑡 , where now 𝜇𝑡 and
𝛾𝑡 change slowly over time. This can be done conveniently via a state-space modeling by
identifying the hidden state as 𝜶𝑡 = (𝜇𝑡 , 𝛾𝑡 ), leading to

𝑦1𝑡 =
[
1 𝑦2𝑡

] [
𝜇𝑡
𝛾𝑡

]
+ 𝜖𝑡 ,[

𝜇𝑡+1
𝛾𝑡+1

]
=

[
1 0
0 1

] [
𝜇𝑡
𝛾𝑡

]
+

[
𝜂1𝑡
𝜂2𝑡

]
,

(15.3)

where all the noise components are independent and distributed as 𝜖𝑡 ∼ N(0, 𝜎2
𝜖 ), 𝜂1𝑡 ∼

N(0, 𝜎2
𝜇), and 𝜂2𝑡 ∼ N(0, 𝜎2

𝛾), the state transition matrix is the identity𝑻 = 𝑰, the observation
matrix is 𝒁𝑡 =

[
1 𝑦2𝑡

]
, and the initial states are 𝜇1 ∼ N

(
�̄�, 𝜎2

𝜇,1

)
and 𝛾1 ∼ N

(
�̄�, 𝜎2

𝛾,1

)
.

The normalized spread, with leverage one (see (15.2)), can then be obtained as

𝑧𝑡 =
1

1 + 𝛾𝑡 |𝑡−1

(
𝑦1𝑡 − 𝛾𝑡 |𝑡−1 𝑦2𝑡 − 𝜇𝑡 |𝑡−1

)
,

where 𝜇𝑡 |𝑡−1 and 𝛾𝑡 |𝑡−1 are the hidden states estimated by the Kalman algorithm.

The model parameters 𝜎2
𝜖 , 𝜎2

𝜇, and 𝜎2
𝛾 (and the initial states) can be determined by simple

heuristics or optimally estimated from the data (more computationally demanding). For
example, one can use initial training data of 𝑇LS samples to estimate 𝜇 and 𝛾 via least squares,
𝜇LS and 𝛾LS, obtaining the estimated residual 𝜖LS

𝑡 . Then the following provide an effective

6 The Kalman filter is implemented in the R package KFAS (Helske, 2017) and the Python package filterpy.
7 The R package MARSS implements algorithms for fitting state-space models to time series data (Holmes et al.,

2012).

https://cran.r-project.org/package=KFAS
https://github.com/rlabbe/filterpy
https://cran.r-project.org/package=MARSS
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heuristic for the state-space model parameters:

𝜎2
𝜖 = Var

[
𝜖LS
𝑡

]
,

𝜇1 ∼ N
(
𝜇LS,

1
𝑇LS Var

[
𝜖LS
𝑡

] )
,

𝛾1 ∼ N
(
𝛾LS,

1
𝑇LS

Var
[
𝜖LS
𝑡

]
Var [𝑦2𝑡 ]

)
,

𝜎2
𝜇 = 𝛼 × Var

[
𝜖LS
𝑡

]
,

𝜎2
𝛾 = 𝛼 ×

Var
[
𝜖LS
𝑡

]
Var [𝑦2𝑡 ]

,

where the hyper-parameter 𝛼 determines the ratio of the variability of the slowly time-varying
hidden states to the variability of the spread.

The state-space model of the spread in (15.3) can be extended in different ways to potentially
improve the performance. One simple extension involves modeling not only the hedge ratio
but also its momentum or velocity. This can be done by expanding the hidden state to
𝜶𝑡 = (𝜇𝑡 , 𝛾𝑡 , ¤𝛾𝑡 ), which leads to the state-space model

𝑦1𝑡 =
[
1 𝑦2𝑡 0

] 
𝜇𝑡
𝛾𝑡
¤𝛾𝑡

 + 𝜖𝑡 ,
𝜇𝑡+1
𝛾𝑡+1
¤𝛾𝑡+1

 =


1 0 0
0 1 1
0 0 1



𝜇𝑡
𝛾𝑡
¤𝛾𝑡

 + 𝜼𝑡 .
(15.4)

This model makes 𝛾𝑡 less noisy and provides a better spread, as shown later in the numerical
experiments.

Another extension of the state-space modeling in (15.3) under the concept of partial cointe-
gration is to model the spread with an autoregressive component (Clegg & Krauss, 2018).
This can be done by defining the hidden state as 𝜶𝑡 = (𝜇𝑡 , 𝛾𝑡 , 𝜖𝑡 ), leading to

𝑦1𝑡 =
[
1 𝑦2𝑡 1

] 
𝜇𝑡
𝛾𝑡
𝜖𝑡

 ,
𝜇𝑡+1
𝛾𝑡+1
𝜖𝑡+1

 =


1 0 0
0 1 0
0 0 𝜌



𝜇𝑡
𝛾𝑡
𝜖𝑡

 + 𝜼𝑡 ,
(15.5)

where 𝜌 is a parameter to be estimated satisfying |𝜌 | < 1 (or fixed to some reasonable value
like 𝜌 = 0.9).

15.6.4 Numerical Experiments
We now repeat the pairs trading experiments with market data during 2013–2022 as in
Section 15.5. As before, the 𝑧-score is computed on a rolling-window basis with a lookback
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period of six months and pairs trading is implemented via the thresholded strategy with a
threshold of 𝑠0 = 1. The difference is that we now employ three different methods to track the
hedge ratio over time: (i) rolling least squares with lookback period of two years, (ii) basic
Kalman based on (15.3) with 𝛼 = 10−5, and (iii) Kalman with momentum based on (15.4)
with 𝛼 = 10−6. All these parameters have been fixed and could be further optimized; in
particular, all the parameters in the state-space model can be learned to better fit the data via
maximum likelihood estimation methods.

Market Data: EWA and EWC
We first consider the two ETFs EWA and EWC, which track the performance of the Australian
and Canadian economies, respectively. As concluded in Section 15.5, EWA and EWC are
cointegrated, and pairs trading was evaluated in Section 15.5 based on least squares. We now
experiment with the Kalman-based methods to see what improvement can be obtained.

Figure 15.21 shows the estimated hedge ratios over time, which should be quite constant
since the assets are cointegrated. We can observe that the rolling least squares is very noisy
with the value wildly varying between 0.6 and 1.2 (of course a longer lookback period could
be used, but then it would not adapt fast enough if the true hedge ratio changed). The two
Kalman-based methods, on the other hand, are much more stable with the value between 0.55
and 0.65 (both methods look similar but the difference will become clear later).

Figure 15.22 presents the spreads resulting from the three methods. It is quite apparent that
the spreads from the Kalman-based methods are much more stationary and mean reverting
than the one from the rolling least squares. One important point to notice is that the variance
of the spread obtained from the Kalman methods depends on the choice of 𝛼: if the spread
variance becomes too small, then the profit may totally disappear after taking into account
transaction costs, so care has to be taken with this choice.

Finally, Figure 15.23 provides the cumulative returns obtained by the three methods (ignoring
transaction costs). The difference among the methods is quite obvious: not only is the final
value very different (0.6, 2.0, and 3.2), but the curves obtained with the Kalman-based methods
are less noisy and exhibit a much better drawdown. Again, it is important to reiterate that
special care has to be taken in practice with the choice of 𝛼 so that the spread variance is
large enough to provide a profit after transaction costs.

Market Data: KO and PEP
Next, we revisit pairs trading with the stocks Coca-Cola (KO) and Pepsi (PEP). As concluded
from the cointegration tests in Section 15.4, they do not seem to be cointegrated. In addition,
from the trading experiments in Section 15.5, profitability was dubious as indicated in
Figures 15.19 and 15.18. We now look to see if the situation can be resolved with the
Kalman-based methods.

Figure 15.24 shows the estimated hedge ratios over time. Again, we can observe that rolling
least squares is noisy and not very consistent, whereas Kalman-based methods are stable
while still being able to adapt to the big change that happens in early 2020 (perhaps due to the
COVID-19 pandemic).
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Figure 15.21 Tracking of hedge ratio for pairs trading on EWA–EWC.

Figure 15.25 gives the spreads, and one can clearly appreciate a significant difference
among the three methods. Observe early 2020: rolling least squares loses the tracking and
cointegration is clearly lost, the basic Kalman is able to track after a momentary loss reflected
in the shock on the spread, and the Kalman with momentum is able to track much better.

Finally, Figure 15.26 provides the cumulative returns, which gives a very clear picture.
The difference among the three methods is quite astonishing. However, once more, one
cannot forget that transaction costs have not been considered. In any case, the drawdown
with Kalman-based methods is totally under control (unlike with rolling least squares). The
conclusion is very clear: Kalman filtering is a must in pairs trading.

15.7 Statistical Arbitrage
Pairs trading focuses on discovering cointegration and tracking the cointegration relationship
between pairs of assets. However, the idea can be naturally extended to more than two assets
for more flexibility. This is more generally referred to as statistical arbitrage or, for short,
StatArb.

Cointegration for more than two assets follows essentially the same idea: construct a linear
combination of multiple time series such that the combination is mean reverting. The difference
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Figure 15.22 Spread for pairs trading on EWA–EWC.

is that the mathematical modeling to capture the multiple cointegration relationships becomes
more involved.

15.7.1 Least Squares
Least squares can still be used to determine the cointegration relationship. In the case of
𝐾 > 2 time series, we still need to choose the one to be regressed by the others. Suppose we
want to fit 𝑦1𝑡 ≈ 𝜇 +

∑𝐾
𝑘=2 𝛾𝑘 𝑦𝑘𝑡 based on 𝑇 observations. Then, the least squares formulation

is
minimize

𝜇,𝜸
∥𝒚1 − (𝜇1 + 𝒀2𝜸)∥22 ,

where the vector 𝒚1 contains the 𝑇 observations of the first time series, the matrix 𝒀2 contains
the 𝑇 observations of the remaining 𝐾 − 1 time series columnwise, and vector 𝜸 ∈ R𝐾−1

contains the 𝐾 − 1 hedge ratios. The solution gives the estimates[
�̂�

�̂�

]
=

[
1T1 1T𝒀2
𝒀T

2 1 𝒀T
2 𝒀2

]−1 [
1T𝒚1
𝒀T

2 𝒚1

]
.

In practice, this estimation process has to be performed on a rolling-window basis to adapt to
the slow changes over time.
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Figure 15.23 Cumulative return for pairs trading on EWA–EWC.

The normalized portfolio (with leverage 1) is

𝒘 =
1

1 + ∥𝜸∥1

[
1
−𝜸

]
,

with corresponding normalized spread 𝑧𝑡 = 𝒘T𝒚𝑡 .

It is important to point out that this approach produces a single cointegration relationship, but
there may be others that have gone unnoticed. One approach could be to iteratively try to
capture more cointegration relationships orthogonal to the previously discovered ones. In
addition, this method requires choosing one time series (out of the 𝐾 possible ones) to be
regressed. In practice, the discovery of multiple cointegration relationships is better achieved
by the more sophisticated VECM modeling described next.

15.7.2 VECM
A very common model in econometrics for a multivariate time series (typically denoting
the log-prices of 𝑁 assets), 𝒚1, 𝒚2, 𝒚3, . . ., is based on taking the first-order difference,
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Figure 15.24 Tracking of hedge ratio for pairs trading on KO–PEP.

Δ𝒚𝑡 = 𝒚𝑡 − 𝒚𝑡−1, and then using a vector autoregressive (VAR) model of order 𝑝:

Δ𝒚𝑡 = 𝝓0 +
𝑝∑︁
𝑖=1

𝚽𝑖Δ𝒚𝑡−𝑖 + 𝝐𝑡 ,

where the parameters of the model are 𝝓0 ∈ R𝑁 , 𝚽1, . . . ,𝚽𝑝 ∈ R𝑁×𝑁 , and 𝝐𝑡 is the innovation
term (see Section 4.3 in Chapter 4 for details). This approach has the feature that due to the
differencing it is a stationary model. Unfortunately, this differencing may also destroy some
interesting structure in the original data.

The vector error correction model (VECM) (Engle & Granger, 1987) was proposed as a
way to apply the VAR model directly on the original sequence without differencing, with the
potential danger of lack of stationarity. Employing the VAR model on the original series 𝒚𝑡
and rewriting it in terms of Δ𝒚𝑡 leads to the more refined model

Δ𝒚𝑡 = 𝝓0 +𝚷𝒚𝑡−1 +
𝑝−1∑︁
𝑖=1

�̃�𝑖Δ𝒚𝑡−𝑖 + 𝝐𝑡 , (15.6)

where the matrix coefficients 𝚷 ∈ R𝑁×𝑁 and �̃�1, . . . , �̃�𝑝−1 ∈ R𝑁×𝑁 can be related to the 𝚽𝑖

used in the previous VAR model. This model includes the term 𝚷𝒚𝑡−1 that could potentially
make the model nonstationary because the time series 𝒚𝑡 is nonstationary. However, after a
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Figure 15.25 Spread for pairs trading on KO–PEP.

careful inspection of (15.6), it is clear that since the left-hand side, Δ𝒚𝑡 , is stationary, so must
be the right-hand side, which implies that 𝚷𝒚𝑡−1 must be stationary.

As it turns out, the matrix 𝚷 is of utmost importance in guaranteeing stationarity of the term
𝚷𝒚𝑡 . In general, this matrix will be of low rank, which means that it can be decomposed as
the product of two matrices,

𝚷 = 𝜶𝜷T,

with 𝜶, 𝜷 ∈ R𝑁×𝐾 having 𝐾 columns, where 𝐾 is the rank of 𝚷. This reveals that the
nonstationary series 𝒚𝑡 (log-prices) becomes stationary after multiplication with 𝜷T. In other
words, the multivariate time series 𝒚𝑡 is cointegrated and each column of matrix 𝜷 produces a
different cointegration relationship.

To be more precise, three cases can be identified in terms of the rank of 𝚷:

• 𝐾 = 𝑁: this means that 𝒚𝑡 is already stationary (rarely the case in practice);
• 𝐾 = 0: this means that 𝒚𝑡 is not cointegrated (VECM reduces to a VAR model); and
• 1 < 𝐾 < 𝑁: this is the interesting case that provides 𝐾 different cointegration relationships.

Recall that Johansen’s test (Johansen, 1991, 1995) described in Section 15.4 precisely tests
the value of the rank of the matrix 𝚷 arising in the VECM time series modeling.
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Figure 15.26 Cumulative return for pairs trading on KO–PEP.

15.7.3 Optimum Mean-Reverting Portfolio
Least squares and VECM modeling can be conveniently employed to obtain cointegration
relationships that produce mean-reverting spreads for pairs trading or statistical arbitrage
strategies. In fact, VECM provides us with 𝐾 different cointegration relationships contained
in the columns of the matrix 𝜷 ∈ R𝑁×𝐾 . This means that 𝐾 different pairs trading strategies
could be run in parallel, fully exploiting all these 𝐾 directions in the 𝑁-dimensional space.

Alternatively, an optimization-based approach can be taken to design the portfolio that
produces the spread. Since the profit in pairs trading is determined by the product of the
number of trades and the threshold, the goal is to maximize the zero-crossing rate (which
determines the number of trades) as well as the variance of the spread (which determines the
threshold). In practice, several proxies can be used to quantify the zero-crossing rate, producing
a variety of problem formulations (Cuturi & d’Aspremont, 2013, 2016; d’Aspremont, 2011).

A combined approach of VECM modeling and the optimization-based approach can also
be taken. The 𝐾-dimensional subspace defined by the matrix 𝜷 in VECM modeling can be
interpreted as defining a cointegration subspace. From this perspective, any portfolio lying
within this subspace will provide a mean-reverting spread. Then, rather than using all the 𝐾
dimensions to run 𝐾 pairs trading strategies in parallel, one could try to further optimize one
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or more portfolios within that subspace to obtain the best possible spreads (Zhao & Palomar,
2018; Zhao et al., 2019). Overall, this would imply running fewer strategies in parallel but
perhaps with stronger mean reversion.

Mathematically, it is convenient to formulate this problem in terms of a portfolio on the 𝐾
spreads rather than on the 𝑁 original assets as follows.

1. From the 𝐾 columns of matrix 𝜷, we get 𝐾 cointegration relationships:

𝜷𝑘 ∈ R𝑁 , 𝑘 = 1, . . . , 𝐾.

2. We can then construct 𝐾 portfolios (normalized with leverage 1):

𝒘𝑘 =
1
∥𝜷𝑘 ∥1

𝜷𝑘 , 𝑘 = 1, . . . , 𝐾.

3. From these portfolios, we can compute the 𝐾 spreads from the original time series 𝒚𝑡 ∈ R𝑁 :

𝑧𝑘𝑡 = 𝒘T
𝑘 𝒚𝑡 , 𝑘 = 1, . . . , 𝐾,

or, more compactly,

𝒛𝑡 = [𝒘1 . . . 𝒘𝐾 ]T 𝒚𝑡 ∈ R𝐾 .

4. At this point, we can conveniently optimize a 𝐾-dimensional portfolio 𝒘𝑧 ∈ R𝐾 on the
spreads 𝒛𝑡 , from which the overall portfolio to be executed on the underlying assets 𝒚𝑡 can
be recovered as

𝒘overall = [𝒘1 . . . 𝒘𝐾 ] × 𝒘𝑧 .

We can now focus on the optimization of the spread portfolio 𝒘𝑧 defined on the spreads 𝒛𝑡
(Zhao & Palomar, 2018; Zhao et al., 2019). To design the spread portfolio, the goal is to
optimize some proxy of the zero-crossing rate while controlling the spread variance. Defining
for convenience the lagged covariance matrices of the spreads as

𝑴𝑖 = IE
[
(𝒛𝑡 − IE[𝒛𝑡 ]) (𝒛𝑡+𝑖 − IE[𝒛𝑡+𝑖])T

]
, 𝑖 = 0, 1, 2, . . .

we can express the variance of the resulting spread as 𝒘T
𝑧𝑴0𝒘𝑧 . As for the zero-crossing rate,

it is not that straightforward to obtain a convenient expression and several proxies have been
proposed in the literature (Cuturi & d’Aspremont, 2013, 2016; Zhao & Palomar, 2018; Zhao
et al., 2019):

• Predictability statistic: This tries to measure the similarity of a random signal to white
noise (small predictability means closer to white noise and vice versa). Mathematically, it
is defined as the proportion of the signal variance that is predicted by the autoregressive
coefficient in an AR(1) model (Box & Tiao, 1977). Assuming that the spreads follow a
vector AR(1) model, 𝒛𝑡 = 𝑨𝒛𝑡−1 + 𝜖𝑡 with the autoregressive matrix coefficient given by
𝑨 = 𝑴T

1 𝑴
−1
0 , it follows that the predictability statistic for the final spread 𝒘T

𝑧 𝒛𝑡 can be
written as

pre(𝒘𝑧) =
𝒘T
𝑧 𝑨𝑴0𝑨

T𝒘𝑧

𝒘T
𝑧𝑴0𝒘𝑧

=
𝒘T
𝑧𝑴

T
1 𝑴

−1
0 𝑴1𝒘𝑧

𝒘T
𝑧𝑴0𝒘𝑧

.
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• Portmanteau statistic: This also tries to measure the similarity of a random process to white
noise. The portmanteau statistic of order 𝑝 is defined as

∑𝑝

𝑖=1 𝜌
2
𝑖 , where 𝜌𝑖 is the signal

autocorrelation at the 𝑖th lag (Box & Pierce, 1970). Applied to our case, the portmanteau
statistic for the final spread 𝒘T

𝑧 𝒛𝑡 is

por(𝒘𝑧) =
𝑝∑︁
𝑖=1

(
𝒘T
𝑧𝑴𝑖𝒘𝑧

𝒘T
𝑧𝑴0𝒘𝑧

)2

.

• Crossing statistic: This is defined as the number of zero crossings of a centered stationary
process and is given by arccos(𝜌1)/𝜋 (Kedem, 1994; Ylvisaker, 1965). Maximizing the
number of zero crossings is then equivalent to minimizing 𝜌1. For the final spread 𝒘T

𝑧 𝒛𝑡 ,
the crossing statistic is given by

cro(𝒘𝑧) =
𝒘T
𝑧𝑴1𝒘𝑧

𝒘T
𝑧𝑴0𝒘𝑧

.

The penalized crossing statistic combines cro(𝒘𝑧) with por(𝒘𝑧) to minimize the high-order
autocorrelations (Cuturi & d’Aspremont, 2013, 2016):

pcro(𝒘𝑧) =
𝒘T
𝑧𝑴1𝒘𝑧

𝒘T
𝑧𝑴0𝒘𝑧

+ 𝜂
𝑝∑︁
𝑖=2

(
𝒘T
𝑧𝑴𝑖𝒘𝑧

𝒘T
𝑧𝑴0𝒘𝑧

)2

,

where 𝜂 is a hyper-parameter that controls the high-order penalization term.

To summarize, we can formulate a mean-reverting portfolio to optimize some zero-crossing
proxy, such as pcro(𝒘𝑧), while fixing the spread variance:

minimize
𝒘𝑧

𝒘T
𝑧𝑴1𝒘𝑧 + 𝜂

∑𝑝

𝑖=2
(
𝒘T
𝑧𝑴𝑖𝒘𝑧

)2

subject to 𝒘T
𝑧𝑴0𝒘𝑧 ≥ 𝜈,

𝒘𝑧 ∈ W,

(15.7)

where 𝜈, 𝜂 are hyper-parameters, andW denotes some portfolio constraints, such as ∥𝒘𝑧 ∥2 = 1
to avoid numerical issues (Cuturi & d’Aspremont, 2013), a sparsity constraint ∥𝒘𝑧 ∥0 = 𝑘

(Cuturi & d’Aspremont, 2016), a budget / market exposure constraint 1T𝒘𝑧 = 1/0 (Zhao &
Palomar, 2018), a leverage constraint ∥𝒘𝑧 ∥1 = 1 (Zhao et al., 2019) or, even better in practice,
a leverage constraint on the overall portfolio (Zhao et al., 2019):

∥ [𝒘1 . . . 𝒘𝐾 ] × 𝒘𝑧 ∥1 = 1.

15.7.4 Numerical Experiments
Market Data: SPY, IVV, and VOO

To illustrate multiple cointegration relationships via VECM modeling, we consider again
three ETFs that track the S&P 500 index, namely, Standard & Poor’s Depository Receipts
SPY, iShares IVV, and Vanguard’s VOO. As previously verified in Section 15.4, Johansen’s
test indicates two cointegration relationships present, which can be exploited via statistical
arbitrage.

Figure 15.27 shows the cumulative returns obtained by executing pairs trading on (i) the first
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(strongest) spread, (ii) the second (weaker) spread, (iii) the optimized spread according to
(15.7), and (iv) both spreads in parallel (allocating half of the budget to each spread). It can
be observed that the strongest spread is better than the second spread. The optimized spread
does not seem to offer an improvement in this particular case (for a larger dimensionality
of the cointegrated subspace it may still offer some benefits). Last, but not least, using both
spreads in parallel offers a steadier cumulative return (i.e., better Sharpe ratio) as expected
from the diversity gain. Table 15.5 provides the Sharpe ratios of the different approaches for a
more quantitative comparison.

0.00

0.01

0.02

2017 2018 2019

spread #1

spread #2

optimized spread

both spreads

Cumulative return

Figure 15.27 Cumulative return for pairs trading on SPY–IVV–VOO: single
spreads, both in parallel, and optimized spread.

Table 15.5 Sharpe ratios for pairs trading on SPY–IVV–VOO: single spreads, both
in parallel, and optimized spread.

Spread Sharpe ratio

Spread #1 6.78
Spread #2 5.39
Optimized spread 6.75
Both spreads 8.37

15.8 Summary
Pairs trading or, more generally, statistical arbitrage refer to market-neutral strategies that
arbitrage on the relative value of assets. Some key concepts include:

• Mean reversion of a time series means that there is a long-term average value around
which the series may fluctuate over time but eventually will revert back to. This allows
the contrarian strategy of buying low and selling high (as opposed to a momentum-based
strategy, which would buy as the price increases and sell while the price decreases).
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• Cointegration refers to assets that are not mean reverting themselves, but combined together
in the right way become mean reverting.

• Pairs trading is a strategy invented in the 1980s that combines two cointegrated assets to
generate a synthetic mean-reverting asset. This mean reversion implies that the strategy
is not affected by the market trend, that is, it is market neutral. This is in contrast to
momentum-based strategies that precisely follow the market trend and exhibit a high market
exposure.

• Implementation of pairs trading requires:

– discovering cointegrated assets, for example, via cointegration statistical tests;
– tracking the cointegration relationship over time, either via rolling least squares or the

Kalman filtering; and
– executing the actual trading, typically with a simple thresholded strategy.

• Kalman filtering, originally developed in the 1960s for vehicle guidance and navigation, is
key to tracking cointegration over time. A variety of different state-space models can be
formulated to track cointegration and then solved via the Kalman algorithm.

• Statistical arbitrage is the generalization of pairs trading to more than two assets. This
requires more sophisticated multivariate modeling of the assets (VECM modeling) to
discover the cointegration relationships.

Exercises
15.1 (Mean reversion)

a. Generate a random walk and plot it. Is it stationary? Does it revert to the mean?
b. Generate an AR(1) sequence with autoregressive coefficient less than 1 and plot it. Is it

stationary? Does it revert to the mean?
c. Change the autoregressive coefficient of the AR(1) model and observe how the strength of

the mean reversion changes.

15.2 (Cointegration vs. correlation) Consider the cointegration model of two time series
with a common trend:

𝑦1𝑡 = 𝑥𝑡 + 𝑤1𝑡 ,

𝑦2𝑡 = 𝑥𝑡 + 𝑤2𝑡 ,

where 𝑥𝑡 is a stochastic common trend defined as a random walk,

𝑥𝑡 = 𝑥𝑡−1 + 𝑤𝑡 ,

and the terms 𝑤1𝑡 , 𝑤2𝑡 , 𝑤𝑡 are i.i.d. residual terms, mutually independent, with variances 𝜎2
1 ,

𝜎2
2 , and 𝜎2, respectively.

Generate realizations of such time series with different values for the residual variances and
plot the sequences as well as the scatter plot of the series differences (Δ𝑦1𝑡 vs. Δ𝑦2𝑡 ). Choose
the appropriate values of the variances to obtain cointegrated time series with low correlation
as well as non-cointegrated time series with high correlation.
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15.3 (Simple pairs trading on AR(1) spread) Generate a synthetic mean-reverting spread
with an AR(1) model for the log-prices, implement a simple pairs trading strategy based on
thresholds, and plot the cumulative return (ignoring transaction costs).

Note: with a buy position, the portfolio return is the same as that of the spread; with a short
position, it is the opposite; and with no position, it is just zero.

15.4 (Discovering cointegrated pairs)

a. Download market data corresponding to several assets (e.g., stocks, commodities, ETFs,
or cryptocurrencies).

b. Implement a prescreening approach on different pairs based on normalized prices.
c. Then consider running cointegration tests on the successful pairs from the prescreening

phase. In particular, try some of the following tests:
• DF
• ADF
• PP
• PGFF
• ERSD
• JOT
• SPR

d. Plot the spreads of the successful cointegrated pairs as well as some of the unsuccessful
ones for comparison.

15.5 (Pairs trading with least squares)

a. Download market data corresponding to a pair of cointegrated assets (e.g., stocks,
commodities, ETFs, or cryptocurrencies).

b. Using an initial window as training data, estimate the hedge ratio 𝛾 via least squares.
c. Using that hedge ratio, compute the normalized spread (with leverage 1) in the remaining

window as test data, that is, a spread obtained using the normalized portfolio

𝒘 =
1

1 + 𝛾

[
1
−𝛾

]
.

d. Trade the normalized spread via the thresholded strategy.
e. Plot the cumulative return ignoring transaction costs.
f. Plot the cumulative return including transaction costs (e.g., as 30–90 bps of the portfolio

turnover).

15.6 (Pairs trading with rolling least squares) Repeat Exercise 15.5 but using rolling least
squares to track the hedge ratio over time 𝛾𝑡 .

15.7 (Pairs trading with Kalman filtering) Repeat Exercise 15.5 but using the Kalman filter
to better track the hedge ratio over time 𝛾𝑡 .

15.8 (Statistical arbitrage with more than two assets)

a. Download market data corresponding to 𝑁 > 2 cointegrated assets (e.g., stocks, commodi-
ties, ETFs, or cryptocurrencies).



442 Pairs Trading Portfolios

b. Choose a pair of assets and implement pairs trading via least squares.
c. With all the 𝑁 assets, use VECM to obtain 𝐾 > 2 cointegration relationships and then:
• implement pairs trading with the strongest direction;
• implement 𝐾 parallel pairs trading and combine the result into a final cumulative return

plot.
d. Compare and discuss the three implementations: pairs trading on just two assets, pairs

trading on the strongest of the 𝐾 directions, and 𝐾 parallel pairs trading.
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16

Deep Learning Portfolios

“Robots took the jobs of factory workers. Artificial intelligence will take the jobs of PMs.”

— Anonymous

Artificial intelligence (AI) is a very broad term that, roughly speaking, refers to the general
ability of computers to emulate human thought and perform tasks in real-world environments.
Machine learning (ML) is a subset of AI that refers to the technologies and algorithms
that enable systems to identify patterns, make decisions, and improve themselves through
experience and data. In particular, neural networks (NN) are flexible architectures that attempt
to emulate the structure of the neurons in the human brain and provide very powerful tools for
systems to learn automatically from examples. This is in opposition to the traditional approach
in computer science where the machine is already programmed beforehand to perform one
specific task, such as the portfolio formulations considered in this book.

More specifically, deep neural networks, also broadly referred to as deep learning (DL), have
ignited a revolution in many domain-specific areas with outstanding performance, putting
previous traditional methods to shame in terms of performance. Some areas revolutionized by
deep neural networks (in the sense of achieving close-to-human or superhuman performance)
include:

• image recognition: superhuman performance (this goes from simple recognition of cats to
sophisticated cancer detection from X-rays);
• natural language processing (NLP): human-level performance;
• board and video games: superhuman performance (e.g., chess, Go, and Atari video games);
• video processing: close-to-human performance (e.g., real-time video navigation in drones);
• protein folding: superhuman performance;
• self-driving cars: not yet superhuman or even human-level, but soon to arrive;
• professional and academic benchmarks: human-level performance (e.g., passing a simulated

bar exam with a score around the top 10% of test takers).

The million-dollar question is whether this revolution will extend to financial systems. To start
with, there are many ways in which DL can be used in financial systems. In fact, it has already

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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been successfully employed in some specific problems, such as sentiment analysis of news,
credit default detection, or satellite image analysis to detect stock levels or crop production
related to companies.

Following the theme of this book, we will investigate how DL can be applied in portfolio
design. That is, whether one can design a black box that takes as input some financial data
and outputs the portfolio to be used. At the time this book was written, the subject was still
developing, and the answer to this question remained unclear. In fact, numerous papers were
being published, and various open-source software libraries were becoming available.

16.1 Machine Learning
The approach taken in this book has been based on first modeling the data and then designing
a portfolio based on such a model, as illustrated in the big-picture diagram of Figure 1.3 in
Chapter 1. In machine learning, the approach is more direct and algorithm based, attempting
to learn a “black-box” model of reality (Breiman, 2001). A thorough explanation of statistical
learning (which can be loosely considered equivalent to machine learning) can be found in
the textbooks Hastie et al. (2009), James et al. (2013), and Shalev-Shwartz and Ben-David
(2014).

Machine learning encompasses a variety of tools for understanding data. The fundamental
paradigms of machine learning include:

• Supervised learning: The task is to learn a function that maps an input to an output based
on example input–output pairs (i.e., providing output labels).

• Reinforcement learning: The task is again to learn a mapping function but without
explicit input–output examples. Instead, it is based on a reward function that evaluates the
performance of the current state and action.

• Unsupervised learning: In this case, there are inputs but no supervised output (labels) or
reward function. Nevertheless, one can still learn relationships and structure from such data
(examples are clustering and the more sophisticated graph learning explored in Chapter 5
with applications for portfolio design in Chapter 12).

16.1.1 Black-Box Modeling
Historically, statistical learning goes back to the introduction of least squares at the beginning
of the nineteenth century, what is now called linear regression. By the end of the 1970s, many
more techniques for learning from data were available, but still they were almost exclusively
linear methods, because fitting nonlinear relationships was computationally infeasible at the
time. In the mid-1980s, classification and regression trees were introduced as one of the
first practical implementations of nonlinear methods. Since that time, machine learning has
emerged as a new subfield in statistics, focused on supervised and unsupervised modeling and
prediction. In recent years, progress in statistical learning has been marked by the increasing
availability of powerful and relatively user-friendly software.

The basic idea of ML is to model and learn the input–output relationship or mapping of
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some system. Denoting the input or 𝑝 features as 𝒙 = (𝑥1, . . . , 𝑥𝑝) and the output as 𝑦, we
conjecture that reality can be modeled as the noisy relationship

𝑦 = 𝑓 (𝒙) + 𝜖,

where 𝑓 is some unknown function, to be learned, that maps 𝒙 into 𝑦, and 𝜖 denotes the
random noise. This modeling via the function 𝑓 is what is usually referred to as “black box,”
in the sense that no attempt is made at understanding the mapping 𝑓 , it is simply learned.

One of the main reasons to estimate or learn the function 𝑓 is for prediction, also termed
forecasting if the prediction is for a future time: assuming a given input 𝒙 is available, the
output 𝑦 can be predicted as

�̂� = 𝑓 (𝒙).

Depending on the nature of the output 𝑦, ML systems are classified into

• regression: the output is a real-valued number; and
• classification: the output can only take discrete values, such as {0, 1} or {cat, dog}.

16.1.2 Measuring Performance
In order to learn the function 𝑓 , we need to be able to evaluate how good a candidate model
is. This is conveniently done by defining an error function, also known as a loss (or cost)
function. Any appropriate error function for the problem at hand can be used; the two typical
choices for error functions are

• mean squared error (MSE) for regression:

MSE ≜ IE
[
(𝑦 − �̂�)2

]
= IE

[
(𝑦 − 𝑓 (𝒙))2

]
;

• accuracy (ACC) for classification:1

ACC ≜ IE [𝐼 (𝑦 = �̂�)] = IE [𝐼 (𝑦 = 𝑓 (𝒙))] ,

where 𝐼 (𝑦 = �̂�) is the indicator function that equals 1 if 𝑦 = �̂� (i.e., correct classification)
and zero otherwise (i.e., classification error).

The expectation operator IE [·] is over the distribution of random input–output pairs (𝒙, 𝑦). In
practice, however, this expectation has to be approximated via the sample mean over some
observations. To be specific, in supervised learning, the estimation or learning of the function
𝑓 is performed based on 𝑛 observations or data points called training data:

{(𝒙1, 𝑦1), (𝒙2, 𝑦2), . . . , (𝒙𝑛, 𝑦𝑛)}.

The performance or error measure can then be computed using the training data. The hope is
that this training error will be close to the true error, but in practice this is not the case since

1 For classification systems, a large number of performance measures are commonly used, such as accuracy,
precision, recall, sensitivity, specificity, miss rate, false discovery rate, among others. All these quantities are
easily defined based on the number of true positives, true negatives, false positives, and false negatives. For
instance, the accuracy is computed as the sum of true positives and true negatives normalized with the total
number of samples.
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the learning process can lead to a small training error that is not representative of the actual
error, a phenomenon termed overfitting. To properly evaluate the performance of a system,
new data that has not been used during the learning process has to be employed for testing,
termed test data, producing the test performance, such as the test MSE or test ACC, which
is representative of the true performance. Figure 16.1 illustrates the difference between the
training MSE and the test MSE of a system as the complexity of the model 𝑓 increases (i.e.,
the number of parameters or degrees of freedom). The divergence between the training MSE
and test MSE after some point of complexity implies overfitting: the system is fitting the noise
in the training data that is not representative of the test data.
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Figure 16.1 Overfitting: training error and test error.

16.1.3 Learning the Model
The black-box model 𝑓 is learned based on the training data by minimizing the training error
or optimizing a performance measure. The specific mechanism by which 𝑓 is learned depends
on the particular black-box model. For example, in artificial neural networks, the training
algorithms are variations of stochastic gradient descent (described in Section 16.2).

Supervised learning is used to learn the function 𝑓 based on input–output pairs (i.e., with
labels) in order to minimize the error (e.g., MSE or ACC), as illustrated by the block diagram
in Figure 16.2. When explicit labels are not available but the performance of the model can be
measured, reinforcement learning can be effectively used, as illustrated by the block diagram
in Figure 16.3.
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Figure 16.2 Supervised learning in ML via error minimization.
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ŷ

f (  )x

Figure 16.3 Reinforcement learning in ML via performance optimization.

As mentioned before, extreme care has to be taken to avoid overfitting, that is, to avoid fitting
the noise in the training data that is not representative of the rest of the data. In practice, this
happens when there is too little training data or when the number of parameters (i.e., degrees
of freedom) that characterize 𝑓 is too large, as illustrated in Figure 16.1. To avoid overfitting,
two main philosophies have been developed in order to choose an adequate complexity for
the model (i.e., the number of degrees of freedom or parameters), termed model assessment
(Hastie et al., 2009, Chapter 7):

• Empirical cross-validation methods: These simply rely on assessing the performance of a
learned model 𝑓 (estimated from training data) on new data termed cross-validation data
(note that, once the final model for 𝑓 has been made, the final performance will be assessed
on yet new data termed test data).

• Statistical penalty methods: To avoid reserving precious data for cross-validation, these
methods rely on mathematically derived penalty terms on the degrees of freedom; for
example, the Bayesian information criterion (BIC), the minimum description length (MDL),
and the Akaike information criterion (AIC).

16.1.4 Types of ML Models
In practice, we cannot handle a totally arbitrary function 𝑓 in the whole space of possible
functions. Instead, we constrain the search to some class of functions 𝑓 and employ some
finite-dimensional parameters, denoted by 𝜽, to conveniently characterize 𝑓 . For example,
linear models correspond to the form 𝑓 (𝒙) = 𝛼 + 𝜷T𝒙, with parameters 𝜽 = (𝛼, 𝜷). Other
classes of nonlinear models can adopt more complicated structures, but always with a finite
number of parameters.

Over the decades, since the advent of linear regression methods in the 1970s, a plethora of
classes of functions have been proposed. The reason it was necessary to introduce so many
different statistical learning approaches, rather than just a single best method, is because of
the “no free lunch theorem” in statistics: no one method dominates all others over all possible
data sets. On a particular data set, one specific method may work best, but some other method
may work better on a different data set. Hence it is an important task to decide which method
produces the best results for any given set of data. Selecting the best approach can be one of
the most challenging parts of performing statistical learning in practice.

Some machine learning methods that have enjoyed success in ML include (Bishop, 2006;
Hastie et al., 2009; Shalev-Shwartz & Ben-David, 2014; Vapnik, 1999):
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• linear models
• sparse linear models
• decision trees
• 𝑘-nearest neighbors
• bagging
• boosting
• random forests (boosting applied to decision trees)
• support vector machines (SVM)
• neural networks, which are the foundation of deep learning.

Interestingly, some of the more complex models, such as random forests and neural networks,
are so-called universal function approximators, meaning that they are capable of approximating
any nonlinear smooth function to any desired accuracy, provided that enough parameters are
incorporated.

16.1.5 Applications of ML in Finance
ML can be used in finance in a multitude of ways. In the context of this book, perhaps the
two most obvious applications are time series forecasting and portfolio design. However,
there are many other aspects where ML can be used, for example, credit risk (Atiya, 2001),
sentiment analysis, outlier detection, asset pricing, bet sizing, feature importance, order
market execution, big data analysis (López de Prado, 2019), and so on.

López de Prado (2018b) gives a comprehensive treatment of recent machine learning advances
in finance, with extensive treatment of the preprocessing and parsing of data from its
unstructured form to the appropriate form for standard ML methods to be applied. On a more
practical aspect, reasons why most machine learning funds fail are presented in López de
Prado (2018a).

In the realm of time series analysis, there exists a large number of publications addressing
different aspects. An overview of machine learning techniques for time series forecasting is
provided in Ahmed et al. (2010) and Bontempi et al. (2012), while a comparison between
support vector machines and neural networks in financial time series is performed in Cao and
Tay (2003). Pattern recognition in time series is covered in Esling and Agon (2012) and a
comparison of various classifiers for predicting stock market price direction is provided in
Ballings et al. (2015).

16.2 Deep Learning
Conventional machine learning methods are limited in their ability to process raw data in the
black-box model 𝑓 (·). For decades, constructing machine-learning systems required careful
engineering and considerable domain expertise to transform the raw data into a suitable
feature vector 𝒙 from which the learning subsystem could detect or classify patterns. These
are known as handcrafted features, in contrast to the learned features that a deep architecture
can automatically obtain, a process referred to as representation learning.

Deep learning, broadly speaking, refers to methods and architectures that can automatically
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learn features by means of concatenation of multiple simple – but nonlinear – modules or
layers, each of which transforms the representation at one level (starting with the raw input)
into a representation at a higher, slightly more abstract, level. For example, an image comes in
the form of an array of pixel values, and the learned features in the first layer of representation
typically represent the presence or absence of edges at particular orientations and locations in
the image. The second layer typically detects motifs by spotting particular arrangements of
edges. The third layer may assemble motifs into larger combinations that correspond to parts
of familiar objects, and subsequent layers would detect objects as combinations of these parts.
The key aspect of deep learning is that these layers of features are not designed by human
engineers: they are learned from data using a general-purpose learning procedure.

Quoting LeCun et al. (2015):2

Deep learning allows computational models that are composed of multiple processing layers to learn
representations of data with multiple levels of abstraction. These methods have dramatically improved the
state-of-the-art in speech recognition, visual object recognition, object detection and many other domains
such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using
the backpropagation algorithm to indicate how a machine should change its internal parameters that are used
to compute the representation in each layer from the representation in the previous layer.

Deep learning is significantly advancing the solutions to problems that have long challenged
the artificial intelligence community. In fact, deep learning has been so successful that it has
been referred to with expressions such as “the unreasonable effectiveness of deep learning”
and with questions like “Why does deep and cheap learning work so well?” (Lin et al., 2017).

A concise account of deep learning can be found in LeCun et al. (2015), whereas an excellent
comprehensive textbook is Goodfellow et al. (2016), and a superb short online introductory
book is Nielsen (2015).

16.2.1 Historical Snapshot
Some of the fundamental ingredients of neural networks take us back centuries to 1676 (the
chain rule of differential calculus), 1847 (gradient descent), 1951 (stochastic gradient descent),
or 1970 (the backpropagation algorithm), to name a few. A detailed historical account of
deep learning can be found in Schmidhuber (2015) and Schmidhuber (2022). At the risk of
oversimplifying and for illustration purposes, some pivotal historical moments in DL include:

• 1962: Rosenblatt introduces the multilayer perceptron;
• 1967: Amari suggests training multilayer perceptrons with many layers via stochastic

gradient descent;
• 1970: Linnainmaa publishes what is now known as backpropagation, the famous algorithm

also known as “reverse mode of automatic differentiation” (it would take four decades until
it became widely accepted);
• 1974–1980: first major “AI winter” (i.e., period of reduced funding and interest in AI);
• 1987–1993: second major “AI winter”;
2 Yoshua Bengio, Geoffrey Hinton, and Yann LeCun (LeCun et al., 2015) were recipients of the 2018 ACM A. M.

Turing Award for conceptual and engineering breakthroughs that have made deep neural networks a critical
component of computing.
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• 1997: LSTM networks introduced (Hochreiter & Schmidhuber, 1997);
• 1998: CNN networks established (LeCun et al., 1998);
• 2010: “AI spring” starts;
• 2012: AlexNet network achieves an error of 15.3% in the ImageNet 2012 Challenge, more

than 10.8 percentage points lower than that of the runner up (Krizhevsky et al., 2012);
• 2014: GAN networks established and gained popularity for generating data;
• 2015: AlphaGo by DeepMind beats a professional Go player;
• 2016: Google Translate (originally deployed in 2006) switches to a neural machine

translation engine;
• 2017: AlphaZero by DeepMind achieves superhuman level of play in the games of chess,

Shogi, and Go;
• 2017: Transformer architecture is proposed based on the self-attention mechanism, which

would then become the de facto architecture for most of the subsequent DL systems
(Vaswani et al., 2017);
• 2018: GPT-1 (Generative Pre-Trained Transformer) for natural language processing with

117 million parameters, starting a series of advances in the so-called large language models
(LLMs);
• 2019: GPT-2 with 1.5 billion parameters;
• 2020: GPT-3 with 175 billion parameters;
• 2022: ChatGPT: a popular chatbot built on GPT-3, astonished the general public, sparking

numerous discussions and initiatives centered on AI safety;
• 2023: GPT-4 with ca. 1 trillion parameters (OpenAI, 2023), which allegedly already shows

some sparks of artificial general intelligence (AGI) (Bubeck et al., 2023).

As of 2023, the momentum of AI systems based on deep learning is difficult to grasp and it is
challenging to keep up with the state of the art. Dozens of startup companies and open-source
initiatives are produced by the day, not to mention the astounding number of publications.
The pace has become unimaginable and the progress impossible to forecast.

16.2.2 Perceptron and Sigmoid Neuron
The perceptron3 is a function that maps its input vector 𝒙 to a binary output value according to

𝑓 (𝒙) =
{

1 if 𝒘T𝒙 + 𝑏 ≥ 0,
0 otherwise,

where 𝒘 is a vector of weights and 𝑏 is the bias. In other words, this function is the composition
of the affine function 𝒘T𝒙+𝑏 with the nonlinear binary step function (also called the Heaviside
function)𝐻 (𝑧) defined as 1 for 𝑧 ≥ 0 and 0 otherwise, that is, 𝑓 (𝒙) = 𝐻 (𝒘T𝒙+𝑏) (alternatively,
with the indicator function 𝐼 (·), we can write 𝑓 (𝒙) = 𝐼 (𝒘T𝒙 + 𝑏 ≥ 0)). The weights give
different importance to the inputs and the bias is equivalent to having a nonzero activation
threshold. This is a minimal approximation of how a biological neuron works.

Sigmoid neurons are similar to perceptrons, but modified so that small changes in their weights
3 Perceptrons were developed in the 1950s and 1960s by the scientist Frank Rosenblatt, inspired by earlier work

by Warren McCulloch and Walter Pitts.
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and bias cause only a small change in their output. That is the crucial fact that will allow a
network of sigmoid neurons to learn. A sigmoid neuron is defined, similarly to a perceptron,
as

𝑓 (𝒙) = 𝜎(𝒘T𝒙 + 𝑏),

where 𝜎 is the sigmoid function defined as 𝜎(𝑧) = 1/(1+ 𝑒−𝑧). Interestingly, when 𝑧 is a large
positive number, then 𝑒−𝑧 ≈ 0 and 𝜎(𝑧) ≈ 1, and when 𝑧 is very negative, then 𝑒−𝑧 →∞ and
𝜎(𝑧) ≈ 0; this resembles the behavior of the perceptron.

Both the Heaviside function 𝐻 (𝑧) (also known as a step function) and the sigmoid function
𝜎(𝑧) are types of nonlinear activation functions. These nonlinearities are key components in
neural networks. Otherwise, the input–output relationship would simply be linear. Figure 16.4
compares the nonlinear activation functions for the perceptron (i.e., the step function 𝐻 (𝑧))
and the sigmoid neuron (i.e., the sigmoid function 𝜎(𝑧)), as well as the popular ReLU function
ReLU(𝑧) = max(0, 𝑧) to be discussed later.
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Figure 16.4 Activation functions: step function (for the perceptron), sigmoid
function (for the sigmoid neuron), and ReLU (popular in neural networks).

16.2.3 Neural Networks
Perceptrons can be combined in multiple layers, leading to what is referred to as multilayer
perceptron (MLP). In this way, perceptrons in subsequent layers can make decisions at a more
complex and more abstract level than perceptrons in the first layer. In fact, MLPs are universal
function approximators (they can approximate arbitrary functions as well as desired).

A neural network is simply several layers of neurons of any type (in fact, with some abuse of
terminology they are also referred to as MLPs). The leftmost layer is called the input layer
and it simply contains the input vector 𝒙 (it is not an operational layer per se). After that
come the hidden layers. Finally, the rightmost layer is called the output layer and contains the
output neurons. Figure 16.5 shows a four-layer network with two hidden layers.

The goal of a neural network is to approximate some (possibly vector-valued) function 𝒇 .
Neural networks are often referred to as feedforward neural networks to emphasize the fact
that information flows from the input 𝒙, through the intermediate layers, to the output 𝒚,
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input	layer output	layerhidden	layers

Figure 16.5 Example of a multilayer perceptron with two hidden layers.

without feedback connections in which outputs of the model are fed back into itself. When
feedback connections are included, they are called recurrent neural networks, as presented
later.

When the number of layers, called the depth of the model, is large enough, the network is
referred to as deep, leading to the so-called deep neural network, as well as the mouthful of a
name “deep feedforward neural network.”

Mathematically, each layer 𝑖 can be thought of as implementing a vector function 𝒇 (𝑖) , leading
to a connected chain of functions (i.e., composition of functions), conveniently written as

𝒇 = 𝒇 (𝑛) ◦ · · · ◦ 𝒇 (2) ◦ 𝒇 (1) ,

where ◦ denotes function composition. Each hidden layer of the network is typically vector
valued, with their dimensionality determining the width of the model. In particular, each layer
𝑖 produces an intermediate vector 𝒉 (𝑖) from the previous vector 𝒉 (𝑖−1) (with 𝒉 (0) ≜ 𝒙) as

𝒉 (𝑖) = 𝒇 (𝑖)
(
𝒉 (𝑖−1)

)
= 𝒈 (𝑖)

(
𝑾 (𝑖)𝒉 (𝑖−1) + 𝒃 (𝑖)

)
,

where 𝒇 (𝑖) is the composition of an affine function with the elementwise nonlinear activation
function 𝒈 (𝑖) . That is, each layer implements a function that is simply an affine function
composed with a nonlinear activation function, although other operators are also used such
as the max-pooling described later. Common elementwise nonlinear activation functions
include:

• the sigmoid function:

𝜎(𝑧) = 1
1 + 𝑒−𝑧 ;

• the hyperbolic tangent:

tanh(𝑧) = 𝑒𝑧 − 𝑒−𝑧
𝑒𝑧 + 𝑒−𝑧 ;
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• the popular rectified linear unit (ReLU) function:

ReLU(𝑧) = max(0, 𝑧),

which typically learns much faster in networks with many layers.

The output layer in classification problems typically employs the so-called softmax function,

softmax(𝒛) = 𝑒𝒛

1T𝑒𝒛
, (16.1)

where the exponentiation ensures the outputs are nonnegative and the normalization ensures
they sum to one, that is, the output is effectively a probability mass function (in classification
problems, each output value denotes the probability of each class). In regression problems,
the output layer is typically a simple affine mapping without an activation function, that is,
𝒈(𝒛) = 𝒛.

16.2.4 Learning via Backpropagation
As mentioned earlier in Section 16.1, supervised learning involves developing a black-box
model by training the system with data and minimizing an error function. This is achieved
by adjusting specific parameters, commonly referred to as weights, which act as “knobs”
determining the input–output function, as demonstrated in Figure 16.2. In a typical deep
learning system, there may be hundreds of millions (or even billions) of these adjustable
weights, and hundreds of millions of labeled examples with which to train the machine.

A conceptually simple way to learn the system is based on the gradient method. To adjust the
weight vector 𝒘, the learning algorithm computes the gradient vector of the error function
𝜉 (𝒘), that is, 𝜕𝜉/𝜕𝒘, which indicates by what amount the error would increase or decrease
if the weights were increased by a tiny amount. The weight vector is then adjusted in the
opposite direction to the gradient vector to minimize the error or cost function:

𝒘𝑘+1 = 𝒘𝑘 − 𝜅 𝜕𝜉
𝜕𝒘

,

where 𝜅 is the so-called learning rate.

The error or cost function is typically defined via a mathematical expectation over the
distribution of the possible input–output pairs. In practice, it is not possible to evaluate such
an expectation operator and one has to resort to a procedure called stochastic gradient descent
(SGD). This process involves presenting the input vector for several examples, computing the
outputs and errors, determining the average gradient for those examples, and adjusting the
weights accordingly. The procedure is repeated for numerous small sets of examples from the
training set until the average of the objective function ceases to decrease. It is referred to as
stochastic because each small set of examples provides a noisy estimate of the average gradient
across all examples. This straightforward process typically identifies a good set of weights
faster in comparison to more complex optimization methods. In multilayer architectures, one
can compute gradients using the backpropagation procedure, which is nothing more than
a practical implementation of the chain rule for derivatives (this method was discovered
independently by several different groups during the 1970s and 1980s).
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In the late 1990s, neural nets and backpropagation were largely forsaken by the machine
learning community and ignored by the computer vision and speech recognition communities.
In particular, it was commonly thought that simple gradient descent would get trapped in poor
local minima (weight configurations for which no small change would reduce the average
error). In practice, however, this is rarely a problem with large networks. Regardless of the
initial conditions, the system nearly always reaches solutions of very similar quality. Recent
theoretical and empirical results strongly suggest that local minima are not a serious issue in
general.

16.2.5 Deep Learning Architectures
Research in DL is extremely vibrant and new architectures are constantly being explored
by practitioners and academics. In the following we describe some of the most relevant
paradigms.

Fully-Connected Neural Networks
The neural networks previously introduced are actually fully connected neural networks in the
sense that each neuron takes as inputs all the outputs from the previous layer and combines
them with weights. This rapidly results in a significant increase in the number of weights to
be trained as illustrated in Figure 16.6, which shows a very simple MLP with just five hidden
layers.

input	layer output	layerhidden	layers

Figure 16.6 Large number of weights in a simple multilayer perceptron with five
hidden layers.

To decrease the number of weights, it is necessary to incorporate a meaningful structure into
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the network, tailored to the specific application being addressed. By reducing the number of
weights per layer, we can have many layers to express computationally large models, producing
high levels of abstraction, while keeping the number of actual parameters manageable.

Convolutional Neural Networks (CNNs)
One popular example in the history of deep learning is that of convolutional neural networks
(CNNs), based on the concept of convolution commonly used in signal processing. This
network achieved many practical successes during the period when neural networks were
out of favor and it has been widely adopted by the computer-vision community. The origins
of CNNs go back to the 1970s, but the seminal paper establishing the modern subject of
convolutional networks was LeCun et al. (1998), where the architecture “LeNet-5” was
proposed consisting of seven layers. Another important achievement was in 2012, with the
“AlexNet” architecture (Krizhevsky et al., 2012) that blew existing image classification results
out of the water.

The concept of CNNs originated from image processing, where the input is a two-dimensional
image, and it makes sense for pixels to be processed only with their nearby pixels, rather
than distant ones, as demonstrated in Figure 16.7. Furthermore, the weights are shifted
across the image, allowing them to be shared and reused by all neurons in the hidden layer.
This introduces structure in the matrix 𝑾 (𝑖) found in the affine mapping 𝑾 (𝑖)𝒉 (𝑖−1) + 𝒃 (𝑖) .
Specifically, the matrix 𝑾 (𝑖) will be highly sparse (containing numerous zeros), and the
nonzero elements will be repeated multiple times.

input output

Figure 16.7 CNN filtering layer.

For instance, imagine having a 100 × 100 image, which corresponds to a 10 000-dimensional
input vector. If the first hidden layer has the same size (i.e., the same number of neurons), a
fully connected approach would require 108 weights. In contrast, a CNN architecture would
only need the coefficients of a 5 × 5, that is, 25 weights plus one for the bias. Of course, we
cannot really do a direct comparison between the number of parameters, since the two models
are different in essential ways. But, intuitively, it seems likely that the use of translation
invariance by the convolutional layer will significantly reduce the number of parameters



458 Deep Learning Portfolios

needed to achieve performance similar to the fully-connected model. That, in turn, will result
in faster training for the convolutional model and, ultimately, will help us build deep networks
using convolutional layers.

To reduce network complexity, CNNs use different stride lengths (when shifting the filter)
and incorporate pooling layers, such as max-pooling, after convolutional layers to condense
feature maps and retain information about the presence of features without precise location
details.

An interesting extension of CNNs, which are based on processing neighboring pixels, is that
of graph CNNs (Scarselli et al., 2009), where the concept of neighborhood is generalized
and indicated with a connectivity graph on the input elements (see Chapter 5 for details on
graphs).

Recursive Neural Networks (RNNs)
Feedforward neural networks produce an output that solely depends on the current input;
they do not have internal memory. Recursive neural networks (RNNs), on the other hand, are
neural networks with loops in them, allowing information to persist, that is, to have memory.

Figure 16.8 depicts an RNN layer, with an internal loop that allows the implementation of a
function of all previous inputs 𝒇 (𝒙1, 𝒙2, . . . , 𝒙𝑡 ).

input

output

xt

ht

Figure 16.8 RNN layer with a loop.

RNNs are appealing because they have the potential to link past information to current
tasks. In instances where the gap between relevant information and its required location is
small, RNNs can effectively learn to utilize past data. Nevertheless, when this gap widens
significantly, standard RNNs struggle to learn how to connect the information. In theory,
RNNs are fully capable of managing long-term dependencies. Yet, in practice, they often
struggle to learn them due to the vanishing gradient problem during training. This issue has
been addressed by introducing a specific RNN structure called LSTM.

Long Short-Term Memory (LSTM) Networks
Long short-term memory (LSTM) networks, a unique type of RNN capable of learning
long-term dependencies, were introduced in Hochreiter and Schmidhuber (1997) and later



16.2 Deep Learning 459

refined and popularized in subsequent works. They have demonstrated remarkable success
in various memory-dependent tasks, including natural language processing and time series
analysis.

LSTMs are specifically engineered to tackle the long-term dependency issue. Rather than
employing a basic feedback mechanism like vanilla RNNs, they utilize a complex structure
composed of four interconnected sub-modules (Hochreiter & Schmidhuber, 1997), resulting
in a more effective learning process compared to other RNNs.

Transformers
The transformer architecture, introduced in Vaswani et al. (2017), is a groundbreaking neural
network design that revolutionized natural language processing tasks. Unlike CNNs and RNNs,
transformers rely on self-attention mechanisms to process input sequences simultaneously,
rather than sequentially like in RNNs. Transformers have arguably become the de facto
universal architecture able to outperform existing architectures in most applications.

CNNs are adept at handling spatial data like images, while RNNs process sequential data
but struggle with vanishing and exploding gradient issues. Transformers overcome these
limitations by employing self-attention to weigh the importance of input elements, enabling
parallel processing, faster training, and improved handling of long-range dependencies, along
with position encoding to incorporate positional information.

The relevance of transformers stems from their exceptional performance on a wide range of
tasks, such as machine translation, text summarization, and sentiment analysis. They form the
basis of state-of-the-art models like GPT (OpenAI, 2023), which have achieved top results on
benchmarks and enabled new applications, including conversational AI, automated content
generation, and advanced language understanding.

Without going into the details of the architecture, it is worth a brief look at this self-attention
mechanism that makes transformers unique. The idea is to present the network with all the
inputs at once and let the network decide which parts of the input should influence other parts
in an automatic way. Suppose that we have 𝑛 inputs, each of dimension 𝑑, arranged along the
columns of the 𝑛 × 𝑑 matrix 𝑽. The goal is to substitute each row of 𝑽 by a proper linear
weighted combination of all the rows, where the weights have to be calculated so that some
inputs can influence other inputs in a precise manner. The way the weights are computed in a
transformer is similar to the way “keys” in a database are “queried”; that is, by using a “query”
matrix 𝑸 and a “key” matrix 𝑲 (of the same dimension as 𝑽), we can compute the inner
product of the rows of 𝑸 and the rows of 𝑲 to get a similarity matrix 𝑸𝑲T. At this point, we
could use this similarity matrix as the weights; however, it is convenient to scale this matrix
with the dimension of the keys

√
𝑑𝑘 and then normalize the rows so that they are nonnegative

numbers with a normalized sum via the softmax operator in (16.1). Putting it all together
leads to the popular expression for the so-called scaled dot-product attention (Vaswani et al.,
2017),

Attention(𝑸, 𝑲,𝑽) = softmax
(
𝑸𝑲T
√
𝑑𝑘

)
𝑽,

which is represented in Figure 16.9. In practice, the three matrices 𝑸, 𝑲, and 𝑽 are obtained
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as linear transformations of the inputs. Typically, multiple self-attention mechanisms are used
in parallel.

MatMul
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Figure 16.9 Self-attention mechanism (scaled dot-product attention).

Autoencoder Networks
Autoencoder networks are commonly used in DL models to learn data representation via
feature extraction and dimensionality reduction (Kramer, 1991). In other words, autoencoder
networks perform an unsupervised feature learning process.

The architecture of an autoencoder consists, as usual, of an input layer, one or more hidden
layers, and an output layer. More specifically, autoencoder networks have a symmetrical
structure separated into the encoder and the decoder, with the same number of nodes in
the input and output layers, and a bottleneck at the core called code or latent features, as
illustrated in Figure 16.10. The network is trained so that the output is as close as possible to
the input, therefore forcing the central bottleneck to condense the information, performing
feature extraction in an unsupervised way.

Generative Adversarial Networks (GANs)
Generative adversarial networks (GANs), developed in Goodfellow et al. (2014), are a type
of deep learning architecture that consists of two adversarial neural networks: a generator and
a discriminator. The goal of the generator is to produce realistic data, such as images or text,
while the discriminator’s role is to distinguish between real and fake data.

The generator and discriminator are trained simultaneously. During training, the generator
creates synthetic data and presents it to the discriminator. The discriminator then evaluates
whether the data is real or fake and provides feedback to the generator. Based on this feedback,
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encoderinput decoder outputcode

Figure 16.10 Autoencoder structure.

the generator modifies its output to create more realistic data. This process continues until the
generator produces data that is indistinguishable from real data, making it difficult for the
discriminator to identify which data is real or fake.

GANs have been successfully used in a variety of applications, such as image generation, text-
to-image synthesis, and even generating realistic music. In finance, GANs can be employed
to generate artificial time series with asset prices for backtesting and stress testing purposes
(Takahashi et al., 2019; Yoon et al., 2019).

Diffusion Models
Diffusion models are another type of generative model in deep learning that use a diffusion
process to generate samples from a target distribution. They were first introduced in Sohl-
Dickstein et al. (2015) but remained behind the curtains for a while and did not gain popularity
until the 2020s (Ho et al., 2020; Song & Ermon, 2019).

The idea is very different from the two adversarial networks (the generator and the discrimi-
nator) of GANs. Diffusion models iteratively transform an initial noise signal using a series
of learnable transformations, such as neural networks, to generate samples that resemble the
target distribution. At each iteration step, the model estimates the conditional distribution of
the data given the current level of noise.

Both diffusion models and GANs are generative models that can be used to generate high-
quality samples from complex distributions. However, diffusion models have some advantages
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over GANs, such as being more stable during training and not suffering from mode collapse,
which is a problem where the generator produces only a small subset of the possible samples.
On the other hand, GANs are more flexible and can generate a wider variety of samples,
including those that are not present in the training data.

16.2.6 Applications of Deep Learning in Finance
Essentially, all the financial applications discussed in Section 16.1.5 using machine learning
can also be addressed with neural networks (which are a type of ML). However, deep learning
involves deep neural networks, meaning networks with many layers. With a deep architecture,
there are many weights or parameters to learn, requiring a large training dataset. While
abundant data in areas involving images, text, or speech is not an issue, it can be problematic
in finance. Therefore, it is best to focus on financial applications with access to large datasets.

As previously described, DL has already been successfully employed in many other areas.
The financial area is starting to get traction; in fact, the field is wide open and many research
opportunities still exist. A comprehensive state-of-the-art snapshot (as of 2020) of the DL
models developed for financial applications is provided in Ozbayoglu et al. (2020), where 144
papers are categorized according to their intended subfield in finance and also analyzed based
on their DL models.

Some of the areas in finance where DL is currently being researched include financial time
series forecasting, algorithmic trading (a.k.a. algo trading), risk assessment (e.g., bankruptcy
prediction, credit scoring, bond rating, and mortgage risk), fraud detection (e.g., credit card
fraud, money laundering, and tax evasion), portfolio management, asset pricing and derivatives
markets (options, futures, forward contracts), cryptocurrency and blockchain studies, financial
sentiment analysis and behavioral finance, and financial text mining (Ozbayoglu et al., 2020).

Nevertheless, the most widely studied financial application area for DL is forecasting of
financial time series, particularly asset price forecasting. Even though some variations exist,
the main focus is on predicting the next movement of the underlying asset. More than half of
the existing implementations of DL are focused on this direction. Even though there are several
subtopics of this general problem, including stock price forecasting, index prediction, forex
price prediction, commodity price prediction, bond price forecasting, volatility forecasting,
and cryptocurrency price forecasting, the underlying dynamics are the same in all of these
applications. The majority of the DL applications for financial time series have appeared quite
recently, from 2015 on, as described in the comprehensive survey (as of 2020) Sezer et al.
(2020), where 140 papers are classified.

16.3 Deep Learning for Portfolio Design
In the context of portfolio design, deep learning can be used in a variety of ways. Recall that the
two main components in portfolio design are data modeling and portfolio optimization. This
is depicted in Figure 1.3 (Chapter 1) and reproduced herein for convenience in Figure 16.11.

In light of the block diagram in Figure 16.11, one could envision the usage of DL in at least
three ways:
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Figure 16.11 Block diagram of data modeling and portfolio optimization.

• using DL only in the modeling or time series forecasting component, while keeping the
traditional portfolio optimization part;
• using DL only in the portfolio component, while keeping the traditional data modeling

part; and
• using DL for both components, what is called end-to-end modeling.

We will not consider further the option of using DL only for the optimization part, since
that is a well-understood component that does not seem to require DL (in fact, this book has
explored a wide variety of different portfolio formulations with efficient algorithms). Thus,
we will focus on employing DL either in the forecast component or in the end-to-end system.

Regarding the input data to the DL system, one can use raw time series data, such as price
data (e.g., open, high, low, close) and volume, as well as other sources of data derived
from technical analysis, fundamental analysis, macroeconomic data, financial statements,
news, social media feeds, and investor sentiment analysis. Also, depending on the time
horizon, a wide range of options for the frequency of the data may be available, varying from
high-frequency data and intraday price movements to daily, weekly, or even monthly stock
prices.

16.3.1 Challenges
Before we explore the possibilities of DL for portfolio design, it is important to highlight the
main challenges faced in this particular area. As already explained, deep neural networks
have demonstrated outstanding performance in many domain-specific areas, such as image
recognition, natural language processing, board and video games, biomedical applications,
self-driving cars, and so on. The million-dollar question is whether this revolution will extend
to financial systems.

Since the 2010s, the financial industry and academia have been exploring the potential of
DL in various applications, such as financial time series forecasting, algorithmic trading,
risk assessment, fraud detection, portfolio management, asset pricing, derivatives markets,
cryptocurrency and blockchain studies, financial sentiment analysis, behavioral finance, and
financial text mining. The number of research works keeps on increasing every year in an
accelerated fashion, as well as open-source software libraries. However, we are just in the
initial years of this new era and it is too early to say whether the success of DL enjoyed
in non-financial applications will actually extend to financial systems and, particularly, to
portfolio design.

Apart from very specific financial applications that have already enjoyed some success, such
as sentiment analysis of news, credit default detection, or satellite image analysis for stock
level estimation or crop production, we now focus on the potential of deep neural networks
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specifically for financial time series modeling and portfolio design. Among the many possible
challenges that set these problems apart from other successful applications, the following are
definitely worth mentioning:

• Data scarcity: Compared to other areas, such as natural language processing (e.g., GPT-3
was trained on a massive dataset of over 570 GB of text data), financial time series are in
general extremely scarce (except for high-frequency data). For example, two years of daily
stock prices amount to just 504 observations.

• Low signal-to-noise ratio: The signal in financial data is extremely weak and totally
submerged in noise. For example, an exploratory data analysis on asset returns corrected for
the volatility envelope reveals a time series with little temporal structure (see Figures 2.23–
2.24 in Chapter 2). This is very different from other applications, for example, an image of
a cat typically has a high signal and very small noise (this is not to say that recognizing a
cat is easy, but at least the signal-to-noise ratio is large).

• Data nonstationarity: Financial time series are clearly nonstationary (see Chapter 2) with a
statistical distribution that changes over time (e.g., bull markets, bear markets, side markets).
This is in sharp contrast with most other applications where DL has succeeded, in which
the distribution remains constant: a cat stays the same, be it yesterday, today, or tomorrow.

• Data adaptive feedback loop: Data from financial markets is totally influenced by human
and machine decisions based on previous data. As a consequence, there exists a very unique
feedback loop mechanism that cannot be ignored. In particular, once a pattern is discovered
and a trading strategy is designed, this pattern tends to disappear in future data. Again, this
is extremely different from other applications; for example, a cat remains a cat regardless
of whether one can detect it in an image.

• Lack of prior human evidence: In most areas where DL has been successful, there was
obvious prior evidence of human performance that showed that the problem was solvable.
For example, humans can easily recognize a cat, translate a sentence from English to
Spanish, or drive a car. However, in finance there is no human who can effectively forecast
the future performance of companies or trade a portfolio. Simply recall (see Chapter 13) the
illustrative and clarifying statement (Malkiel, 1973): “a blindfolded chimpanzee throwing
darts at the stock listings can select a portfolio that performs as well as those managed by
the experts.”

At the risk of oversimplifying, we could make a simple analogy of the problem of financial
time series forecasting or portfolio design to that of identifying an octopus in an image, as
opposed to the iconic example of identifying a cat. This is exemplified in Figure 16.12. Indeed,
this analogy seems to fit the previous list of challenges, namely:

• Data scarcity: Arguably there are more images of cats than octopi in the human library of
photos.
• Low signal-to-noise ratio: Think of an octopus that has camouflaged to look exactly like

the background (the octopus creates this noise to blend in) as opposed to a domestic cat
that stands out.
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Cat Octopus

Figure 16.12 Can you spot the cat? And the octopus? Financial data is more like an
octopus.

• Data nonstationarity: Think again of an octopus that changes its camouflage over time to
match the background (a cat’s appearance is the same today as it was yesterday).4
• Data adaptive feedback loop: Think once more of an octopus that quickly adapts its

camouflage as it is being chased by a predator (a cat is a cat).5
• Lack of prior human evidence: Humans are good at spotting domestic cats, but the same

cannot be said about octopi.

We can finally summarize the previous analogy6 by saying that “financial data ain’t cats, but
octopi.”

16.3.2 Standard Time Series Forecasting
By far the most common approach to employ DL in portfolio design is by using it in the
time series modeling or forecasting component. This area has been intensively explored since
2015, as described in Sezer et al. (2020). LSTM, by its very nature, utilizes the temporal
characteristics of any time series signal due to its inherent memory. Thus, LSTM and its
variations initially dominated the financial time series forecasting domain (Fischer & Krauss,
2018). Nevertheless, more recently transformers have been shown to deal with long-term
memory more efficiently.

The block diagram in Figure 16.13 illustrates the general process of time series forecasting.
4 Cats, like all living creatures, do evolve, but they do so on an evolutionary time scale of, say, millions of years.

So, for practical purposes we can assume them fixed.
5 Cats, like most animals, have evolved camouflage to avoid predators, but cannot adapt it to the changing

environment in real time, unlike other species like octopus, squid, and chameleon.
6 The cat vs. octopus comparison is just an analogy for illustration purposes. This is not to say that DL cannot

literally be trained to spot an octopus.
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Following the supervised learning paradigm in Figure 16.2, the input consists of a lookback
of the past 𝑘 time series values (𝒙𝑡−𝑘 , . . . , 𝒙𝑡−1), the desired output or label is the next value
of the time series 𝒙𝑡 , and the output produced (i.e., the forecast) is denoted by 𝝁𝑡 . With this,
we can define some error measure between 𝝁𝑡 and 𝒙𝑡 to drive the learning process of the
deep learning network. Note that the forecast horizon could be chosen further into the future
instead of being just the next time index 𝑡.
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Figure 16.13 Block diagram of standard time series forecasting via DL.

The error measure that drives the learning process can be measured in a variety of ways. In a
regression setting, the forecast value is a number or vector of values. We can then define the
error vector 𝒆𝑡 = 𝝁𝑡 − 𝒙𝑡 and then compute quantities such as the mean square error (MSE),
mean absolute error (MAE), median absolute deviation (MAD), mean absolute percentage
error (MAPE), and so on. In a classification setting, the forecast is the trend, for example
up/down, and typical measures of error are the accuracy (i.e., correct prediction over total
predictions), error rate (i.e., wrong predictions over total predictions), cross-entropy, and so
on. See Goodfellow et al. (2016) for details.

Mathematically, the DL network implements the function 𝒇𝜽 (𝒙𝑡−𝑘 , . . . , 𝒙𝑡−1), with parameters
𝜽, to produce the estimate of 𝒙𝑡 as 𝝁𝑡 = 𝒇𝜽 (𝒙𝑡−𝑘 , . . . , 𝒙𝑡−1). The mathematical formulation
of a standard time series forecast can be written as the optimization problem

minimize
𝜽

IE [L ( 𝒇𝜽 (𝒙𝑡−𝑘 , . . . , 𝒙𝑡−1) , 𝒙𝑡 )] ,

where L(·, ·) denotes the loss function or prediction error function to be minimized (e.g., the
MSE or cross-entropy).

It is important to point out that this architecture focuses on the time series modeling only,
while totally ignoring the subsequent portfolio optimization component, which can also be
taken into account as described next.

16.3.3 Portfolio-Based Time Series Forecasting
The previous standard time series model totally ignores the subsequent portfolio optimization
component. As a consequence, the performance measure has to be defined in terms of an
error that depends on the forecast 𝝁𝑡 and the label 𝒙𝑡 . However, determining the most suitable
error definition for the following portfolio optimization step is unclear and the choice is more
heuristic.

Alternatively, a more holistic approach is to take into account the portfolio optimization
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component to measure the overall performance in a meaningful way, so that we do not need
to rely on a rather arbitrary error definition.

The block diagram in Figure 16.14 illustrates this process of time series forecasting taking
into account the subsequent portfolio optimization block in the training procedure (Bengio,
1997). Following the reinforcement learning paradigm in Figure 16.3, instead of measuring an
arbitrary error based on 𝝁𝑡 and 𝒙𝑡 to drive the learning process, the output 𝝁𝑡 is fed into the
subsequent portfolio optimization block to produce the portfolio 𝒘𝑡 , from which a meaningful
measure of performance can be evaluated, such as the Sharpe ratio.
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Figure 16.14 Block diagram of portfolio-based time series forecasting via DL.

Mathematically, the DL network implements the function 𝒇𝜽 (𝒙𝑡−𝑘 , . . . , 𝒙𝑡−1), with parameters
𝜽 , to produce the estimate of 𝒙𝑡 as 𝝁𝑡 = 𝒇𝜽 (𝒙𝑡−𝑘 , . . . , 𝒙𝑡−1) (possibly also the corresponding
covariance matrix 𝚺𝑡 ), from which the portfolio 𝒘𝑡 will be designed by minimizing some
objective function 𝑓0(·) (following any of the portfolio formulation designs covered in this
book). The mathematical formulation of a portfolio-based time series forecasting can be
written as the optimization problem

minimize
𝜽

IE [𝜉 (𝒘𝑡 , 𝒙𝑡 )]
subject to 𝒘𝑡 = arg min

𝒘
𝑓0 (𝒘; 𝝁𝑡 = 𝒇𝜽 (𝒙𝑡−𝑘 , . . . , 𝒙𝑡−1)) ,

where 𝜉 (·, ·) denotes the error function to be minimized that measures the overall system
performance (e.g., the negative of the Sharpe ratio). Note that in this approach, the parameters
of the DL network 𝜽 are optimized to directly minimize the overall system performance
instead of a simple forecasting error, such as the MSE or the cross-entropy. In principle, one
may use 𝑓0 = 𝜉, that is, use the same criterion to design the portfolio as used to measure the
overall performance; however, there may be reasons to actually use a different criterion.

The difficulty of this architecture is in the learning process. To be more specific, the
backpropagation learning algorithm requires the computation of the partial derivatives of the
output of each block with respect to its input (to be used in the chain rule for differentiation).
If the portfolio optimization block has a closed-form expression, for example 𝒘𝑡 = 𝚺−1

𝑡 𝝁𝑡 ,
then the partial derivatives are trivially computed. However, if this block is defined in terms
of the solution to an optimization problem, then it becomes trickier since one has to be able
to compute the partial derivatives of the solution via the Karush–Kuhn–Tucker optimality
conditions of the optimization problem (see Section A.6.4 in Appendix A). Fortunately, recent
developments have made this possible and are available in open-source libraries (Amos &
Kolter, 2017).

It is important to note that in this architecture, the time series forecast not only produces
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the forecast vector 𝝁𝑡 but also a measure of the uncertainty of the forecast in the form of
the covariance matrix 𝚺𝑡 . This is necessary since the subsequent portfolio optimization
component may need both 𝝁𝑡 and 𝚺𝑡 .

16.3.4 End-to-End Portfolio Design
The DL portfolio-based time series forecasting architecture in Figure 16.14 is an improvement
over the standard time series forecasting architecture in Figure16.13, because it takes into
account the subsequent portfolio optimization block and measures the overall performance
using a meaningful performance measure.

However, since DL has proven to be such a powerful universal function approximator in many
other areas, we can also consider a bolder architecture commonly termed end-to-end design,
where the whole process is modeled by a single DL component as illustrated in Figure 16.15.
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Figure 16.15 Block diagram of end-to-end portfolio design via DL.

Mathematically, the end-to-end DL network implements the function 𝒇𝜽 (𝒙𝑡−𝑘 , . . . , 𝒙𝑡−1),
with parameters 𝜽 , to directly produce the portfolio 𝒘𝑡 (without going through an intermediate
forecasting block). The formulation of this end-to-end DL portfolio can be written as

minimize
𝜽

IE [𝜉 (𝒘𝑡 , 𝒙𝑡 )]
subject to 𝒘𝑡 = 𝒇𝜽 (𝒙𝑡−𝑘 , . . . , 𝒙𝑡−1) ,

where 𝜉 (·, ·) denotes the error function to be minimized that measures the overall system
performance (e.g., the negative of the Sharpe ratio).

In principle, end-to-end architectures can offer superior performance by optimizing the overall
objective function directly. However, they require substantial amounts of training data due
to their deep structure and large number of learnable parameters. In financial applications,
where data availability is often limited, this data-hungry nature can make end-to-end designs
impractical.

High-frequency trading (HFT) presents a notable exception with its abundance of data.
However, HFT strategies must account for market impact – where trade execution significantly
affects market conditions. Reinforcement learning is particularly well-suited for this challenge,
as it naturally incorporates the feedback loop between trading actions and market responses. A
comprehensive overview of research efforts on reinforcement learning methods for quantitative
trading is given in Sun et al. (2023).
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16.4 Deep Learning Portfolio Case Studies
As previously stated, research and experimentation in using DL for portfolio design (and
more broadly in finance) have been flourishing since around 2005. The reality is that we are
still in the early stages of this exploration, and it remains uncertain whether the DL revolution
will fully merge with financial systems.

There is a continuous and increasing flow of published papers on the application of DL to
portfolio design. Generally, the results presented by the authors appear promising; however,
one must proceed with caution. As extensively discussed in Chapter 8, numerous dangers
and potential pitfalls exist in backtesting portfolios. These naturally extend to backtesting DL
architectures for portfolio design; to name a few:

• Overfitting: Even when results are obtained from test data not used in the training process,
authors may have actually used the test data multiple times while adjusting the deep
architectures (adding/removing layers, modifying layer parameters, etc.). Consequently,
the results may be overfitted. Authors often do not provide specific details on the final deep
networks selected, adding a sense of mystery to the system.

• Look-ahead bias: When using high-level DL libraries, there is a possibility of making
mistakes by leaking future data during the training process (this could potentially be
detected in the testing phase). Even worse, leaking future data in the input (which affects
both training and testing) or having incorrect time alignment in performance evaluation
could also occur.

• Ignoring transaction costs: DL systems typically work with high-frequency data because
large amounts of training data are necessary. Ignoring transaction costs in the assessment
with frequent rebalancing is entirely misleading and unacceptable. However, if the rebal-
ancing is slow enough, such as weekly, monthly, or quarterly, transaction costs can be
initially disregarded as a rough approximation.

An exhaustive overview of papers (as of 2020) of the developed DL models for financial
applications can be found in Ozbayoglu et al. (2020) and, in particular, of DL applied to
financial time series forecasting in Sezer et al. (2020). In the following, we will look into a
few illustrative examples, with the understanding that this is just a snapshot that will become
obsolete very quickly as other publications appear.

16.4.1 LSTM for Financial Time Series Forecasting
Fischer and Krauss (2018) constitutes an example of the standard time series forecasting
introduced in Section 16.3.2 and illustrated in Figure 16.13.

This is the most prevalent method for applying DL to portfolio design, specifically for time
series modeling or forecasting. The authors employ an LSTM network, due to its inherent
memory capabilities, and formulate the problem as binary classification by defining two
classes based on whether the return of each asset is larger or smaller than the cross-sectional
median return. The network is then trained to minimize the cross-entropy.

In particular, the network for each asset has the following structure:
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• input layer: one feature (daily returns) with a lookback of 𝑘 = 240 timesteps (corresponding
approximately to one trading year);
• hidden layer: LSTM with 25 hidden neurons (this configuration yields 2 752 parameters,

leading to a sensible number of approximately 93 training examples per parameter);
• output layer: fully connected with two neurons (corresponding to the two classes) and a

softmax activation function (to obtain the probabilities of the two classes).

Once the DL architecture has been trained, its forecasts can be used to design a portfolio.
Specifically, this DL architecture predicts the probability of each asset either outperforming
or underperforming the cross-sectional median in period 𝑡, using only information available
up until time 𝑡 − 1. The assets are then ranked based on the probability of outperforming the
median, and a long–short quintile portfolio is subsequently formed (refer to Section 6.4.4 in
Chapter 6 for details on quintile portfolios).

The empirical results in Fischer and Krauss (2018), based on daily data of S&P 500 stocks,
demonstrate that using LSTM networks for forecasting in conjunction with a quintile portfolio
outperforms the benchmarks (i.e., random forest, logistic regression, and a fully connected deep
network with three hidden layers). Before transaction costs, the Sharpe ratio is approximately
5.8 (followed by the random forest at 5.0 and the fully connected network at 2.4). After
accounting for transaction costs (using 5 bps or 0.05%), the Sharpe ratio decreases to 3.8
(followed by the random forest at 3.4 and the fully connected network at 0.9). For reference,
the market had a Sharpe ratio of 0.7. However, while the overall results are positive, they seem
to have been much better during the 1993–2009 period and deteriorated between 2010–2015,
with profitability fluctuating around zero.

16.4.2 Financial Time Series Forecasting Integrated with Portfolio Optimization
Butler and Kwon (2023) provides an example of the portfolio-based time series forecasting
presented in Section 16.3.3 and illustrated in Figure 16.14.

The overall architecture consists of the following two components:

• a simple linear network for forecasting returns; and
• a mean–variance portfolio (MVP) optimization component (refer to Chapter 7 for details

on MVP).

As discussed in Section 16.3.3, the partial derivatives of the portfolio solution are essential
for the backpropagation learning algorithm. These derivatives are derived in detail in Butler
and Kwon (2023).

Numerical experiments were conducted on a universe of 24 global futures markets, using
daily returns from 1986 to 2020. The proposed method was compared to the benchmark,
where the forecasting block is trained to minimize the MSE. The results showed a significant
improvement in terms of the Sharpe ratio, although transaction costs were not considered.
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16.4.3 End-to-End NN-Based Portfolio
Uysal et al. (2024) serves as an example of both the portfolio-based time series forecasting
presented in Section 16.3.3, as illustrated in Figure 16.14, and the end-to-end architecture
presented in Section 16.3.4, as depicted in Figure 16.15.

The authors propose two schemes: a model-based approach, where the neural network learns
intermediate features that are fed into a portfolio optimization block, and a model-free
approach, where the neural network directly outputs the portfolio allocation.

The model-free architecture has the following structure:

• input layer: raw features (past 𝑘 = 5 daily returns, past 10-, 20-, and 30-day average returns,
and volatilities of each asset);
• hidden layer: fully connected with 32 neurons; and
• output layer: seven neurons (same as the number of assets) with the softmax function to

obtain the normalized portfolio allocation.

The model-based architecture has the following structure:

• input layer: same raw features as in the model-free case;
• hidden layers:

– first a fully connected hidden layer similar to the one in the model-free case,
– then a second hidden layer with the softmax function to obtain the risk budgeting; and

• output layer: risk-parity portfolio (RPP) optimization block (refer to Chapter 11 for details
on RPP).

The empirical results based on daily market data of seven ETFs during 2011–2021 appear
promising (although transaction costs were not considered in this analysis). For the model-
based case, the Sharpe ratio was around 1.10 to around 1.15, while for the nominal risk-parity
portfolio it was around 0.62 to around 0.79, and for the 1/𝑁 portfolio around 0.41 to around
0.83. However, the performance for the model-free case was not impressive, with a Sharpe
ratio around 0.31 to around 0.56. A plausible explanation for this is that the model-free
portfolio lacks any structure to guide the allocation, resulting in overfitting. Therefore, the
model-based architecture is preferred.

16.4.4 End-to-End DL-Based Portfolio
C. Zhang et al. (2021), which builds on Z. Zhang et al. (2020a), is an example of the end-to-end
architecture presented in Section 16.3.4 and illustrated in Figure 16.15.

This end-to-end framework bypasses the traditional forecasting step and eliminates the need
for estimating the covariance matrix. It can optimize various objective functions, such as the
Sharpe ratio and mean–variance trade-off. A notable aspect of this work is how the authors
design neural layer structures to ensure that the output portfolio satisfies constraints about
short selling, cardinality control, maximum positions for individual assets, and leverage.

The architecture is divided into two blocks: the score block (which produces a kind of raw
portfolio) and the portfolio block (which enforces the desired constraints).
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• The score block takes the current market information as input, for example, a lookback of
the previous 𝑘 returns (𝒙𝑡−𝑘 , . . . , 𝒙𝑡−1), and outputs the fitness scores for all the assets 𝒔𝑡 .
This block could be interpreted as making a forecast of the assets’ performance, similar
to the traditional return forecast 𝝁𝑡 , although it is not quite the same. In fact, it is more
like a raw version of the portfolio weights 𝒘𝑡 . The following different architectures are
considered:

– linear model;
– fully connected network with 64 units;
– single LSTM layer with 64 units; and
– CNN with four layers: the first three layers are one-dimensional convolutional layers

with filters of size 32, 64, 128 (i.e., producing these numbers of feature maps), and each
filter has the same kernel size (3,1), the last layer being a single LSTM with 64 units.

• The portfolio block takes the previous assets’ fitness scores 𝒔𝑡 as input and enforces the
desired structure as follows:

– for the typical no-shorting normalized weights, this block is simply a softmax layer:

𝒘𝑡 =
𝑒𝒔𝑡

1T𝑒𝒔𝑡
;

– if shorting is allowed, then the softmax is modified to include the sign as:

𝒘𝑡 = sign(𝒔𝑡 ) ×
𝑒𝒔𝑡

1T𝑒𝒔𝑡
;

– to control the maximum position 𝑢, the authors propose using the generalized sigmoid
𝜎𝑎 (𝑧) = 𝑎 + 1/(1 + 𝑒−𝑧) (with 𝑎 = (1 − 𝑢)/(𝑁𝑢 − 1)) applied elementwise to the scores
𝒔𝑡 :

𝒘𝑡 = sign(𝒔𝑡 ) ×
𝝈𝑎 ( |𝒔𝑡 |)

1T𝝈𝑎 ( |𝒔𝑡 |)
;

– for the cardinality constraint (assuming shorting is allowed), the authors propose a layer
that implements a long–short quintile portfolio (refer to Section 6.4.4 for a description
of the quintile portfolio and C. Zhang et al. (2021) for details on how to implement this
layer in a way that it is differentiable, which is required for the learning process); and

– to enforce the leverage 𝐿, one simply scales up with the factor 𝐿.

The empirical results in C. Zhang et al. (2021), based on daily data, show that the end-to-end
architecture based on a single LSTM layer yields the best results, with a Sharpe ratio of
2.6, while the benchmarks achieved no better than 1.6. However, these results were obtained
without considering transaction costs. Unfortunately, when even small transaction costs
of 2 bps (i.e., 0.02%) are factored in, the superior performance disappears, resulting in a
performance not significantly different from that of a simple benchmark (e.g., the maximum
diversification portfolio). As the authors themselves suggest, further work is needed to account
for transaction costs in the learning process, such as by controlling the turnover.
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16.4.5 End-to-End Deep Reinforcement Learning Portfolio
Z. Zhang et al. (2020b) offers an example of the deep reinforcement learning. The system
is designed to maximize the expected cumulative return, which aims to maximize expected
cumulative rewards through an agent’s interaction with an uncertain environment. Within this
reinforcement learning framework, the system can efficiently map various market situations to
trading positions and seamlessly incorporate market frictions, such as commissions, into the
reward functions. This allows for the direct optimization of trading performance. To represent
the state-space, the authors take into account several features, including past prices, returns
over varying time frames, and technical indicators like the MACD7 and the RSI.8 The action
space is modeled as a simple discrete set ({−1, 0, 1} representing short, no holding, and long
positions, respectively), and a continuous set that encompasses the entire [−1, 1] interval.
The reward function consists of the volatility-adjusted return after accounting for transaction
costs. In all models, the authors utilize two-layer LSTM networks with 64 and 32 units.

The authors evaluate their algorithms using 50 highly liquid futures contracts spanning
from 2011 to 2019, examining performance variations across various asset classes such as
commodities, equity indexes, fixed income, and foreign exchange markets. They contrast
their algorithms with traditional time series momentum strategies, demonstrating that their
approach surpasses these baseline models by generating positive profits even in the face of
substantial transaction costs. The experimental results indicate that the proposed algorithms
can effectively track major market trends without altering positions, as well as scale down or
maintain positions during consolidation periods.

16.5 Summary
Deep neural networks have successfully demonstrated outstanding performance in many
domain-specific areas, such as image recognition, natural language processing, board games,
self-driving cars, and so on. The million-dollar question is whether this revolution will extend
to financial systems.

Some problems like sentiment analysis of news for trading purposes have clearly benefited
from the advances in natural language processing. However, other problems related to financial
time series forecasting and portfolio design remain unclear. Among the many challenges that
set these problems apart from other successful applications, we can list the following:

• Data scarcity: The amount of financial data is generally limited (e.g., two years of daily
stock prices amount to just 504 observations). Perhaps high-frequency data provides a
more promising direction.

• Low signal-to-noise ratio: The signal in financial data (capable of generating alpha) is
extremely weak and totally submerged in noise.

7 The moving average convergence divergence (MACD) is a momentum oscillator primarily used to trade trends.
8 The relative strength index (RSI) is a momentum indicator used in technical analysis that measures the

magnitude of recent price changes to evaluate overbought or oversold conditions in the price of a stock or other
asset.
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• Data nonstationarity: Financial time series are clearly nonstationary, which makes learning
the statistics complicated.

• Data adaptive feedback loop: Patterns discovered in financial data and exploited for trading
tend to disappear immediately due the feedback loop mechanism.

• Lack of prior human evidence: There seems to be no human capable of forecasting the
future performance of companies to design a portfolio with a significant alpha. Recall the
provocative statement (Malkiel, 1973): “a blindfolded chimpanzee throwing darts at the
stock listings can select a portfolio that performs as well as those managed by the experts.”

Despite these challenges, the jury is still out on whether the deep learning revolution will
fully extend to financial systems. It is still too early to adventure any future prediction.

Exercises
Machine Learning

16.1 (Classification of spam in emails) Build a black-box model that can accurately classify
whether an email is spam or not.

• Use a dataset of labeled emails to train and evaluate your model; for example, the UCI
Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/spambase) or the
Enron-Spam dataset (http://nlp.cs.aueb.gr/software_and_datasets/Enron-Spam).

• Experiment with different black-box models, such as logistic regression, decision trees,
random forests, and support vector machines, and compare their performance.

16.2 (Regression of housing prices) Build a black-box model that can predict the price of a
house based on its features such as square footage, number of bedrooms, and location.

• Use a dataset of labeled houses to train and evaluate your model; for example, the Boston
Housing Dataset at Kaggle (www.kaggle.com/code/prasadperera/the-boston-housing-
dataset) or the California Housing Prices at Kaggle (https://www.kaggle.com/datas
ets/camnugent/california-housing-prices).

• Experiment with different black-box models, such as linear regression, decision trees,
random forests, and support vector machines, and compare their performance.

Deep Learning
16.3 (Image classification with CNNs) Use a CNN to classify images from the CIFAR-
10 dataset (www.cs.toronto.edu/~kriz/cifar.html), which consists of 60 000 32 × 32 color
images in 10 classes. Experiment with different architectures, such as varying the number of
convolutional layers, pooling layers, and fully connected layers, to see which one performs
best.

16.4 (Object detection with Faster R-CNN) Use a Faster R-CNN model (a deep learning
model for object detection, developed by Microsoft Research in 2015) to detect objects in
images from the COCO dataset (https://cocodataset.org), which consists of over 200 000

https://archive.ics.uci.edu/ml/datasets/spambase
http://nlp.cs.aueb.gr/software_and_datasets/Enron-Spam
https://www.kaggle.com/code/prasadperera/the-boston-housing-dataset
https://www.kaggle.com/code/prasadperera/the-boston-housing-dataset
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://www.cs.toronto.edu/~kriz/cifar.html
https://cocodataset.org
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labeled images with 80 different object categories. Experiment with different backbone
architectures, such as ResNet and VGG, and adjust the hyper-parameters to improve the
detection accuracy.

16.5 (Language translation with sequence-to-sequence models) Use a sequence-to-sequence
model with attention to translate text from one language to another. Use a dataset such as
the Multi30k dataset (https://github.com/multi30k/dataset), which consists of about 30 000
parallel sentences in English, French, and German. Experiment with different encoder and
decoder architectures, such as LSTM and transformer, and adjust the hyper-parameters to
improve the translation accuracy.

16.6 (GANs for image synthesis) Use a GAN to generate realistic images that resemble a
given dataset.

• Use an image dataset, such as the CIFAR-10 dataset (www.cs.toronto.edu/~kriz/cifar.html),
which consists of 60 000 32 × 32 color images in 10 classes, or the MNIST dataset
(https://github.com/mbornet-hl/MNIST/tree/master/IMAGES/GROUPS), which consists
of a large database of handwritten digits with 60 000 training images and 10 000 testing
images.

• Experiment with different GAN architectures, such as DCGAN and WGAN, and adjust the
hyper-parameters to improve the image quality.

16.7 (Handwritten Digit Recognition with CNNs) Use a CNN to classify handwritten digits
from the MNIST dataset (https://github.com/mbornet-hl/MNIST/tree/master/IMAGES/GR
OUPS), which consists of 60,000 training images and 10,000 test images of handwritten
digits from 0 to 9. Experiment with different architectures, such as varying the number of
convolutional layers, pooling layers, and fully connected layers, to see which one performs
best.

Machine Learning for Finance
16.8 (Linear regression for stock prices) Implement a linear regression model to predict
the stock price of a company based on its historical data. You can use data from financial
databases such as Yahoo Finance. Evaluate the performance of the model using metrics such
as mean squared error.

16.9 (Decision trees for default prediction) Build a decision tree model to classify whether
a loan applicant is likely to default or not based on features such as income, credit score, and
loan amount.

• Use some publicly available dataset for classifying loan defaults; for example, the German
Credit Dataset or the UCI Credit Approval Dataset, both available at the UCI Machine
Learning Repository (https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
and https://archive.ics.uci.edu/ml/datasets/credit+approval, respectively).

• Evaluate the performance of the model using metrics such as accuracy, precision, and
recall.

https://github.com/multi30k/dataset
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/mbornet-hl/MNIST/tree/master/IMAGES/GROUPS
https://github.com/mbornet-hl/MNIST/tree/master/IMAGES/GROUPS
https://github.com/mbornet-hl/MNIST/tree/master/IMAGES/GROUPS
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/credit+approval
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16.10 (Random forests for default prediction) Extend the previous decision tree model to a
random forest model and compare the performance of both models. Use cross-validation to
tune the hyper-parameters of the random forest model and evaluate it using the same metrics
as the decision tree model.

16.11 (SVMs for stock direction forecast) Implement an SVM model to predict whether a
stock will go up or down based on technical indicators such as moving averages and relative
strength index (RSI). Use grid search to find the best hyper-parameters of the model and
evaluate it using metrics such as accuracy, precision, and recall.

Deep Learning for Finance
16.12 (Comparison of LSTMs vs. transformers with synthetic data) Generate synthetic data
to compare the long-term memory of LSTMs and transformers.

a. Create the inputs as 20-dimensional vectors (containing 20 samples over time) from two
possible predefined sequences and the outputs as two possible labels corresponding to the
two possible sequences.

b. Add random noise to the inputs for different values of noise variance, leading to different
values of signal-to-noise ratio.

c. Train an LSTM network and a transformer network for different signal-to-noise ratios and
compare them.

d. Then, repeat the experiment, but now using as inputs 100-dimensional vectors containing
the previous 20-dimensional predefined sequences at the end of the vectors (more recent
temporal observations) and zeros elsewhere. The networks should learn that only the more
recent 20 samples contain the useful pattern, whereas the first 80 samples contain just
noise.

e. Repeat the experiment with 100-dimensional input vectors, but now placing the 20-
dimensional predefined sequences at the beginning of the vectors (earlier temporal
observations). Again, the networks should learn the correct location of the useful 20
samples, but now they happen earlier in time. The transformer architecture should not be
affected, whereas the LSTM may tend to “forget” the useful patterns as they happened
earlier.

f. Finally, repeat the experiment with bigger dimensions until the difference between LSTMs
and transformers becomes clear.

16.13 (Predicting stock prices using deep learning) Develop a deep neural network to predict
the future prices of a stock based on historical time series data. In particular, consider the
following architectures and compare their performance: LSTM, CNN, and transformer.

16.14 (Portfolio optimization using deep learning) Use deep learning to optimize a portfolio
of investments. This could involve using historical time series data to develop a model that
maximizes returns while minimizing risk. You may want to experiment with different loss
functions, such as MSE or MAPE, and explore different optimization algorithms, such as SGD
or Adam, to train your model. Additionally, you may want to explore the use of techniques
such as attention mechanisms or reinforcement learning to further improve the performance
of your model.
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Appendix A

Convex Optimization Theory

“Mathematics, rightly viewed, possesses not only truth, but supreme beauty – a beauty cold and austere, like
that of sculpture, without appeal to any part of our weaker nature . . . ”

— Bertrand Russell

Over the past few decades, numerous fundamental and practical advancements have been made
in the field of convex optimization theory. These developments have not only found applications
in various fields such as engineering, finance, and machine learning, but they have also
stimulated the mathematical progression of both the theory and the development of efficient
algorithms. Some notable textbook references in this field include Boyd and Vandenberghe
(2004), Luenberger and Ye (2021), Bertsekas (1999), Bertsekas et al. (2003), Nemirovski
(2000), Ben-Tal and Nemirovski (2001), and Nesterov (2018). Two classic references are
Luenberger (1969) and Rockafellar (1970). A range of applications of optimization in
engineering can be found in Palomar and Eldar (2009).

Traditionally, there was a common belief that linear problems are easier to solve compared
to nonlinear problems. However, as Rockafellar pointed out in a 1993 survey (Rockafellar,
1993), “the great watershed in optimization isn’t between linearity and nonlinearity, but
between convexity and nonconvexity.” In essence, convex problems can be optimally solved
either in closed form – by applying the optimality conditions derived from Lagrange duality
– or numerically – using highly efficient algorithms that exhibit polynomial convergence
rates (Boyd & Vandenberghe, 2004). Consequently, it is often said that once a problem is
formulated as a convex problem, it is essentially solved.

Unfortunately, most practical problems do not exhibit convexity in their initial formulation.
However, many of these problems may possess a hidden convexity that practitioners need to
uncover to effectively utilize the tools provided by convex optimization theory.

Generally, certain manipulations are necessary to transform a problem into a convex one.
The advantage of formulating a problem in convex form is that, even in the absence of a
closed-form solution and despite the problem’s complexity (which may include hundreds
of variables and a nonlinear, nondifferentiable objective function), it can still be solved
numerically with high efficiency, both theoretically and practically (Boyd & Vandenberghe,

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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2004). Another appealing aspect of expressing the problem in a convex form is that additional
constraints can be easily incorporated, provided they are convex.

This appendix provides a concise introduction to convex optimization theory, drawing on
Boyd and Vandenberghe (2004). For more detailed information, the reader is encouraged to
consult this comprehensive source.

A.1 Optimization Problems
A mathematical optimization problem with arbitrary equality and inequality constraints can
always be written in the following standard form (Boyd & Vandenberghe, 2004, Chapter 1):

minimize
𝒙

𝑓0(𝒙)
subject to 𝑓𝑖 (𝒙) ≤ 0,

ℎ𝑖 (𝒙) = 0,
𝑖 = 1, . . . , 𝑚,
𝑖 = 1, . . . , 𝑝,

(A.1)

where 𝒙 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 is the optimization variable, 𝑓0 : R𝑛 −→ R is the objective
function or cost function, 𝑓𝑖 : R𝑛 −→ R, 𝑖 = 1, . . . , 𝑚, are the 𝑚 inequality constraint
functions, and ℎ𝑖 : R𝑛 −→ R, 𝑖 = 1, . . . , 𝑝, are the 𝑝 equality constraint functions. If there
are no constraints, we say that the problem is unconstrained.

The goal is to find an optimal solution 𝒙★ that minimizes 𝑓0 while satisfying all the constraints.

Convex optimization is currently used in many different areas, including the following:

• circuit design
• filter design
• communication systems (e.g., transceiver design, multi-antenna beamforming design,

maximum likelihood detection)
• radar systems
• communication networks (e.g., power control in wireless networks, congestion control on

the internet)
• financial engineering (e.g., portfolio design, index tracking)
• model fitting (e.g., in financial data or recommender systems)
• image processing (e.g., deblurring, compressive sensing, blind separation, inpainting)
• robust designs under uncertainty
• sparse regression
• low-rank matrix discovery
• machine learning
• graph learning from data
• biomedical applications (e.g., DNA sequencing, anti-viral vaccine design).

An optimization problem has three basic elements: variables (as opposed to other fixed
parameters), constraints, and an objective.

Example A.1 (Device sizing for electronic circuits) In the context of electronic circuit
design, the elements in a device sizing optimization problem may be chosen as:

• Variables: widths and lengths of devices.
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• Constraints: manufacturing limits, timing requirements, or maximum area.
• Objective: power consumption.

Example A.2 (Portfolio design) In a financial context, the elements in a portfolio optimization
problem may be identified as:

• Variables: amounts invested in different assets.
• Constraints: budget, maximum investments per asset, or minimum return.
• Objective: This could be the overall risk or return variance.

A.1.1 Definitions
Domain and Constraints

The domain of the optimization problem (A.1) is defined as the set of points for which the
objective and all constraint functions are defined, that is,

D =

𝑚⋂
𝑖=0

dom 𝑓𝑖 ∩
𝑝⋂
𝑖=1

dom ℎ𝑖,

and it can be interpreted as a set of implicit constraints 𝒙 ∈ D, as opposed to the explicit
constraints 𝑓𝑖 (𝒙) ≤ 0 and ℎ𝑖 (𝒙) = 0 in (A.1).

A problem is unconstrained if it has no explicit constraints. For example,

minimize
𝒙

log
(
𝑎 − 𝒃T𝒙

)
is an unconstrained problem with implicit constraint 𝑎 > 𝒃T𝒙.

Feasibility
A point 𝒙 ∈ D is feasible if it satisfies all the constraints, 𝑓𝑖 (𝒙) ≤ 0 and ℎ𝑖 (𝒙) = 0, and
infeasible otherwise. The problem (A.1) is said to be feasible if there exists at least one
feasible point and infeasible otherwise.

The optimal value (minimal value) is defined as

𝑝★ = inf { 𝑓0(𝒙) | 𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚, ℎ𝑖 (𝒙) = 0, 𝑖 = 1, . . . , 𝑝} .

If the problem is feasible, then the optimal value may be achieved at an optimal solution 𝒙★,
that is, 𝑓0(𝒙★) = 𝑝★, or the problem may be unbounded below, that is, 𝑝★ = −∞. Otherwise,
if the problem is infeasible, it is commonly denoted by 𝑝★ = +∞.

A feasible point 𝒙 is optimal if 𝑓0(𝒙) = 𝑝★. In general, there may be more than one optimal
point and the set of optimal points is denoted by Xopt. A feasible point 𝒙 is locally optimal if
it is optimal within a ball or a local neighborhood.

Example A.3 We illustrate the concepts of optimal value and optimal solution with a few
simple unconstrained optimization problems with scalar variable 𝑥 ∈ R:

• 𝑓0 (𝑥) = 1/𝑥, dom 𝑓0 = R++: In this case 𝑝★ = 0, but there is no optimal point since the
optimal value cannot be achieved.



486 Convex Optimization Theory

• 𝑓0(𝑥) = −log 𝑥, dom 𝑓0 = R++: This function is unbounded below 𝑝★ = −∞.
• 𝑓0 (𝑥) = 𝑥3 − 3𝑥: This is a nonconvex function with 𝑝★ = −∞ and a local optimum at 𝑥 = 1.

If 𝒙 is feasible and 𝑓𝑖 (𝒙) = 0, we say the 𝑖th inequality constraint 𝑓𝑖 (𝒙) ≤ 0 is active at 𝒙. If
𝑓𝑖 (𝒙) < 0, we say the constraint 𝑓𝑖 (𝒙) ≤ 0 is inactive. (The equality constraints are active at
all feasible points.) We say that a constraint is redundant if deleting it does not change the
feasible set.

Feasibility Problem
On many occasions, our goal is not necessarily to minimize or maximize any objective, but
simply to find a feasible point. This is referred to as a feasibility problem:

find
𝒙

𝒙

subject to 𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚,
ℎ𝑖 (𝒙) = 0, 𝑖 = 1, . . . , 𝑝.

In practice, a feasibility problem can be regarded as a special case of a general optimization
problem:

minimize
𝒙

0
subject to 𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚,

ℎ𝑖 (𝒙) = 0, 𝑖 = 1, . . . , 𝑝,

where 𝑝★ = 0 if the constraints are feasible and 𝑝★ = ∞ otherwise.

A.1.2 Solving Optimization Problems
General optimization problems are typically very difficult to solve, meaning that either
a long computation time is required to find an optimal solution or that a sub-optimal
solution is found in a reasonable computation time. Some exceptions include the family of
least squares problems, linear programming problems, and convex optimization problems.
Nevertheless, general nonconvex problems (also known as nonlinear problems with some
abuse of terminology) are difficult to solve.

Least Squares
Least squares (LS) problems go back to Gauss in 1795 and are formulated as

minimize
𝒙

∥𝑨𝒙 − 𝒃∥22 .

Solving LS problems is straightforward with the closed-form solution 𝒙★ =
(
𝑨T𝑨

)−1
𝑨T𝒃,

for which reliable and efficient algorithms exist. Utilizing LS is considered trivial because
these problems are easy to identify and solve.

Linear Programming
A linear problem (LP) can be written as

minimize
𝒙

𝒄T𝒙

subject to 𝒂T
𝑖 𝒙 ≤ 𝑏𝑖, 𝑖 = 1, . . . , 𝑚.
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LPs do not have closed-form solutions in general, but there are reliable and efficient algorithms
and software. An LP is not as easy to recognize as an LS, but one can easily learn a few
standard tricks to convert a variety of problems into LPs.

Convex Optimization Problems
An inequality-constrained convex problem is of the form

minimize
𝑥

𝑓0(𝒙)
subject to 𝑓𝑖 (𝒙) ≤ 𝑏𝑖, 𝑖 = 1, . . . , 𝑚,

where all the functions are convex. Convex problems do not have closed-form solutions in
general, but there are reliable and efficient algorithms and software. They are often difficult to
recognize and there are many tricks for transforming problems into convex form.

Nonconvex Optimization
Nonconvex optimization problems are generally very difficult to solve, although there are some
rare exceptions. In general, they require either a long computation time1 or the compromise
of not always finding the optimal solution. This results in two strategies:

• Local optimization: This involves fast algorithms, but there’s no guarantee of global
optimality. It only provides a local solution around the initial point.

• Global optimization: While the worst-case complexity increases exponentially with the
problem size, this strategy ensures the discovery of a global solution.

Historical Snapshop of Optimization
The theory of optimization, termed convex analysis, was extensively developed in the past
period 1900–1970. However, the computational aspect, that is, efficient algorithms, and
applications came later.

The first computationally efficient method was the seminal simplex method developed in
1947 for LPs by Dantzig. It represents the beginning of an era of algorithmic development.
However, despite the simplex method being very efficient in practice, it has a theoretical
exponential worst-case complexity. In the 1970s, the ellipsoid method was proposed with a
provable polynomial worst-case complexity, although it could be very slow in practice. Later,
in 1984, Karmakar proposed a polynomial-time interior-point method for LPs that was not
only good in theory but also in practice (Karmarkar, 1984). This development was followed
by numerous researchers extending the application of interior-point methods to quadratic
programming and linear complementarity problems. In 1994, Nesterov and Nemirovskii
further advanced the field by developing the theory of self-concordant functions. This theory
facilitated the expansion of algorithms based on the log-barrier function to a wider array
of convex problems, notably including semidefinite programming and second-order cone
programming (Nesterov & Nemirovski, 1994).

1 The computational complexity of an algorithm is measured in the number of operations required to obtain a
solution (computation time is measured in time units). This complexity is presented as a function of the number
of variables 𝑛 to optimize, so the important thing is how this complexity grows with 𝑛. Typically, polynomial
complexity is considered acceptable in practice (of course the order of the polynomial is also important),
whereas exponential complexity is considered not acceptable in practice as the complexity quickly explodes.
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In terms of practical applications, following the development of the simplex method, linear
programming has been widely used to model a variety of real-life problems, such as allocation
issues, since the 1950s. However, during that period there was little interest in modeling
real-life problems as convex problems. It was only after the mid-1990s, with the development
of interior-point methods for convex problems, that there was a surge in activity related to
modeling applications as convex problems.

A.1.3 Illustrative Example
The following lamp illumination problem is a well-known example that illustrates how an
engineering problem can be formulated in different ways, leading to more or less sophisticated
solutions.

Suppose we have 𝑚 lamps illuminating 𝑛 small flat patches, located in fixed locations. The
overall goal is to achieve a desired illumination 𝐼des on all patches by controlling the power of
the lamps. The intensity 𝐼𝑘 at patch 𝑘 depends linearly on the lamp powers 𝑝 𝑗 as

𝐼𝑘 =

𝑚∑︁
𝑗=1

𝑎𝑘 𝑗 𝑝 𝑗 ,

where the coefficients 𝑎𝑘 𝑗 are given by 𝑎𝑘 𝑗 = cos 𝜃𝑘 𝑗/𝑟2
𝑘 𝑗

, with 𝜃𝑘 𝑗 and 𝑟𝑘 𝑗 denoting the angle
and distance, respectively, between lamp 𝑗 and patch 𝑘 .

Ideally, we would like to achieve perfect illumination, 𝐼𝑘 = 𝐼des, for all the patches, but this is
not feasible in practice, and we need to relax the problem to 𝐼𝑘 ≈ 𝐼des.

There are many different ways to formulate this problem. The main idea is to somehow
measure the error in the approximation for each patch, 𝐼𝑘 − 𝐼des. One possible formulation is
based on minimizing the largest of the errors measured in a logarithmic scale (because the
eyes perceive intensity on a log-scale):

minimize
𝐼1 ,...,𝐼𝑛 , 𝑝1 ,..., 𝑝𝑚

max𝑘 |log𝐼𝑘 − log𝐼des |
subject to 0 ≤ 𝑝 𝑗 ≤ 𝑝max,

𝐼𝑘 =
∑𝑚
𝑗=1 𝑎𝑘 𝑗 𝑝 𝑗 ,

𝑗 = 1, . . . , 𝑚,
𝑘 = 1, . . . , 𝑛.

This problem appears complex, and we will explore various possible approaches to address it.

1. If one does not know anything about optimization, then a heuristic guess can be made,
such as using a uniform power 𝑝 𝑗 = 𝑝, perhaps trying different values of 𝑝.

2. If one knows about least squares, then the problem formulation could be changed to
resemble an LS:

minimize
𝐼1 ,...,𝐼𝑛 , 𝑝1 ,..., 𝑝𝑚

∑𝑛
𝑘=1 (𝐼𝑘 − 𝐼des)2

subject to 𝐼𝑘 =
∑𝑚
𝑗=1 𝑎𝑘 𝑗 𝑝 𝑗 , 𝑘 = 1, . . . , 𝑛,

and then clip 𝑝 𝑗 if 𝑝 𝑗 > 𝑝max or 𝑝 𝑗 < 0 to make it feasible.
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3. If one knows about linear programming, then the problem could be changed to resemble
an LP (basically by removing the logarithmic function):

minimize
𝐼1 ,...,𝐼𝑛 , 𝑝1 ,..., 𝑝𝑚

max𝑘 |𝐼𝑘 − 𝐼des |
subject to 0 ≤ 𝑝 𝑗 ≤ 𝑝max,

𝐼𝑘 =
∑𝑚
𝑗=1 𝑎𝑘 𝑗 𝑝 𝑗 ,

𝑗 = 1, . . . , 𝑚,
𝑘 = 1, . . . , 𝑛,

which may not look like an LP at first sight, but it is in disguise (as revealed after a few
simple manipulations).

4. If one knows about convex optimization, then it turns out that after some smart manipula-
tions, the problem can be equivalently reformulated in convex form as

minimize
𝐼1 ,...,𝐼𝑛 , 𝑝1 ,..., 𝑝𝑚

max𝑘 ℎ (𝐼𝑘/𝐼des)
subject to 0 ≤ 𝑝 𝑗 ≤ 𝑝max,

𝐼𝑘 =
∑𝑚
𝑗=1 𝑎𝑘 𝑗 𝑝 𝑗 ,

𝑗 = 1, . . . , 𝑚,
𝑘 = 1, . . . , 𝑛,

where ℎ (𝑢) = max {𝑢, 1/𝑢}.

At this point, one can go further and ask whether additional constraints can be added. For
example, the constraint “no more than half of total power is in any 10 lamps” looks complicated,
but it can actually be written in convex form, so computationally keeps the problem solvable.
On the other hand, the constraint “no more than half of the lamps are on” may look simple,
but instead is a deadly combinatorial constraint that makes the complexity of its resolution
exponential. The moral is that untrained intuition does not always work; one needs to obtain
the proper background and develop the right intuition to discern between difficult and easy
problems.

A.2 Convex Sets
We now provide a concise introduction to convex sets. For more detailed information, the
reader is referred to Chapter 2 in Boyd and Vandenberghe (2004).

A.2.1 Definitions
We start with some basic definitions. The equation describing a line passing through two
points 𝒙, 𝒚 ∈ R𝑛 is 𝜃𝒙 + (1 − 𝜃)𝒚, where 𝜃 ∈ R. If 𝜃 is constrained to be between 0 and 1,
then 𝜃𝒙 + (1 − 𝜃)𝒚 describes the line segment between 𝒙 and 𝒚.

Definition A.1 (Convex set) A set C ∈ R𝑛 is convex if the line segment between any two
points in C lies in C, that is, if for any 𝒙, 𝒚 ∈ C and 𝜃 with 0 ≤ 𝜃 ≤ 1, we have

𝜃𝒙 + (1 − 𝜃) 𝒚 ∈ C. (A.2)

A convex combination of the points 𝒙1, . . . , 𝒙𝑘 is of the form 𝜃1𝒙1 + 𝜃2𝒙2 + · · · + 𝜃𝑘𝒙𝑘 , where
𝜃1 + · · · + 𝜃𝑘 = 1 and 𝜃𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑘 . It can be shown that a set is convex if and only if it
contains every convex combination of its points.

The convex hull of a set C is the set of all convex combinations of points in C. As the name
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suggests, the convex hull of C is always convex. In fact, it is the smallest convex set that
contains C.

A set C is called a cone if for every 𝒙 ∈ C and 𝜃 ≥ 0 we have 𝜃𝒙 ∈ C. A set C is a convex
cone if it is convex and a cone, that is, for any 𝒙1, 𝒙2 ∈ C and 𝜃1, 𝜃2 ≥ 0, we have

𝜃1𝒙1 + 𝜃2𝒙2 ∈ C.

A.2.2 Elementary Convex Sets
We describe next some important simple examples of convex sets.

Hyperplanes and Halfspaces
A hyperplane is a set of the form {

𝒙 | 𝒂T𝒙 = 𝑏
}
,

where 𝒂 ∈ R𝑛, 𝑏 ∈ R. Geometrically, it can be interpreted as the set of points orthogonal to
the vector 𝒂 with an offset by rewriting it as

{
𝒙 | 𝒂T(𝒙 − 𝒙0) = 0

}
.

A hyperplane divides the space R𝑛 into two halfspaces. A (closed) halfspace is a set of the
form {

𝒙 | 𝒂T𝒙 ≤ 𝑏
}
.

Polyhedra
A polyhedron is defined as the solution set of a finite number of linear equalities and
inequalities:

P = {𝒙 | 𝑨𝒙 ≤ 𝒃, 𝑪𝒙 = 𝒅} ,

where 𝐴 ∈ R𝑚×𝑛, 𝐶 ∈ R𝑝×𝑛, 𝑏 ∈ R𝑚, 𝑑 ∈ R𝑝.

Two important examples of polyhedra are the unit simplex, defined as{
𝒙 | 𝒙 ≥ 0, 1T𝒙 ≤ 1

}
,

and the probability simplex, defined as{
𝒙 | 𝒙 ≥ 0, 1T𝒙 = 1

}
.

Balls and Ellipsoids
A Euclidean ball (or just a ball) with center 𝒙c and radius 𝑟 has the form

B(𝒙c, 𝑟) = {𝒙 | ∥𝒙 − 𝒙c∥2 ≤ 𝑟} =
{
𝒙 | (𝒙 − 𝒙c)T(𝒙 − 𝒙c) ≤ 𝑟2} ,

where ∥·∥2 denotes the Euclidean norm or ℓ2-norm. Another common representation for the
Euclidean ball is

B(𝒙c, 𝑟) = {𝒙c + 𝑟𝒖 | ∥𝒖∥2 ≤ 1} .
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A set related to a ball is an ellipsoid, defined as

E(𝒙c, 𝑷) =
{
𝒙 | (𝒙 − 𝒙c)T𝑷−1(𝒙 − 𝒙c) ≤ 1

}
= {𝒙c + 𝑨𝒖 | ∥𝒖∥2 ≤ 1} ,

with 𝑷 = 𝑷T ∈ R𝑛×𝑛 ≻ 0, that is, 𝑷 is symmetric and positive definite, and 𝑨 is the square-root
matrix 𝑷1/2 satisfying 𝑨T𝑨 = 𝑷. The matrix 𝑷 (or 𝑨) determines how far the ellipsoid extends
in every direction from the center 𝒙c. A ball is an ellipsoid with the particular choice 𝑷 = 𝑟2𝐼.

Norm Balls and Norm Cones
Suppose ∥·∥ is any norm on R𝑛 (not necessarily the Euclidean norm). A norm ball with center
𝒙c and radius 𝑟 is defined as

B(𝒙c, 𝑟) = {𝒙 | ∥𝒙 − 𝒙c∥ ≤ 𝑟} .

A norm cone C ⊆ R𝑛+1 is defined as the convex set

C =
{
(𝒙, 𝑡) ∈ R𝑛+1 | ∥𝒙∥ ≤ 𝑡

}
.

One particular case of interest is the second-order cone (a.k.a. ice-cream cone):

C =
{
(𝒙, 𝑡) ∈ R𝑛+1 | ∥𝒙∥2 ≤ 𝑡

}
,

where the norm is the Euclidean norm ∥·∥2.

Positive Semidefinite Cone
The set of symmetric positive semidefinite matrices

S𝑛+ =
{
𝑿 ∈ R𝑛×𝑛 | 𝑿 = 𝑿T ⪰ 0

}
is a convex cone.

A.2.3 Operations that Preserve Convexity
To establish that a set is convex, one can directly use the definition of convexity in (A.2).
However, it can be cumbersome to prove that for any two points in the set the line segment
is also contained in the set. A more interesting way to establish convexity in most practical
cases is by showing that the set can be obtained from simple convex sets (e.g., hyperplanes,
hyperspaces, balls, ellipsoids, cones) by operations that preserve convexity of sets, that is, a
calculus of convex sets.

Some simple operations that preserve convexity of sets include: intersection of sets, composi-
tion with affine functions, and the perspective function.

Intersection
Convexity is preserved under intersection: if S1 and S2 are convex, then S1 ∩ S1 is convex.
This property extends to the case of intersection of multiple sets (even an infinite number of
sets).
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One trivial example is a polyhedron, which is the intersection of halfspaces and hyperplanes
and therefore convex.

A more sophisticated example is the set

S = {𝒙 ∈ R𝑛 | |𝑝𝒙 (𝑡) | ≤ 1 for |𝑡 | ≤ 𝜋/3} ,

where 𝑝𝒙 (𝑡) = 𝑥1cos(𝑡) + 𝑥2cos(2𝑡) + · · · + 𝑥𝑛cos(𝑛𝑡). Note that this set is an intersection of
an infinite number of sets indexed by 𝑡.

Affine Composition
A function is affine if it has the form 𝑓 (𝒙) = 𝑨𝒙 + 𝒃, where 𝑨 ∈ R𝑚×𝑛 and 𝒃 ∈ R𝑚, that is,
the sum of a linear function and a constant.

Suppose S ⊆ R𝑛 is a convex set and 𝑓 : R𝑛 −→ R is an affine function. Then the image of S
under 𝑓 ,

𝑓 (S) = { 𝑓 (𝒙) | 𝒙 ∈ S} ,

is convex.

Two trivial examples are scaling and translation. Another simple example is the projection of
a convex set onto some of its coordinates: if S ⊆ R𝑚 × R𝑛 is convex, then

{𝒙1 ∈ R𝑚 | (𝒙1, 𝒙2) ∈ S for some 𝒙2 ∈ R𝑛}

is convex.

A useful example is the affine composition of the norm cone
{
(𝒙, 𝑡) ∈ R𝑛+1 | ∥𝒙∥ ≤ 𝑡

}
:{

𝒙 ∈ R𝑛 | ∥𝑨𝒙 + 𝒃∥ ≤ 𝒄T𝒙 + 𝑑
}
.

Perspective Function
The perspective function scales or normalizes vectors so the last component is one, and then
drops the last component.

Mathematically, we define the perspective function 𝑃 : R𝑛+1 −→ R𝑛, with domain dom 𝑃 =

R𝑛 × R++, as 𝑃(𝒙, 𝑡) = 𝒙/𝑡.

Images and inverse images of convex sets under perspective functions are convex.

A.3 Convex Functions
We now provide a concise overview of convex functions. For more detailed information, the
reader is referred to Chapter 3 in Boyd and Vandenberghe (2004).

Definition A.2 (Convex function) A function 𝑓 : R𝑛 → R is convex if the domain, dom 𝑓 ,
is a convex set and if for all 𝒙, 𝒚 ∈ dom 𝑓 and 0 ≤ 𝜃 ≤ 1, we have

𝑓 (𝜃𝒙 + (1 − 𝜃)𝒚) ≤ 𝜃 𝑓 (𝒙) + (1 − 𝜃) 𝑓 (𝒚). (A.3)
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Geometrically, this inequality means that the line segment between (𝒙, 𝑓 (𝒙)) and (𝒚, 𝑓 (𝒚)),
which is the chord from 𝒙 to 𝒚, lies above the graph of 𝑓 .

A function 𝑓 is strictly convex if strict inequality holds in (A.3) whenever 𝒙 ≠ 𝒚 and 0 < 𝜃 < 1.
We say 𝑓 is concave if − 𝑓 is convex, and strictly concave if − 𝑓 is strictly convex.

For an affine function we always have equality in (A.3), so all affine (and therefore also linear)
functions are both convex and concave. Conversely, any function that is convex and concave
is affine.

A.3.1 Elementary Convex and Concave Functions
Apart from linear and affine functions, which are both convex and concave, it is good to
become familiar with some elementary examples.

Let us start with some basic examples on R:

• exponential: 𝑒𝑎𝑥 is convex on R for any 𝑎 ∈ R;
• powers: 𝑥𝑎 is convex on R++ when 𝑎 ≥ 1 or 𝑎 ≤ 0 (e.g., 𝑥2), and concave for 0 ≤ 𝑎 ≤ 1;
• powers of absolute value: |𝑥 |𝑝 is convex on R for 𝑝 ≥ 1 (e.g., |𝑥 |);
• logarithm: log 𝑥 is concave on R++;
• negative entropy: 𝑥 log 𝑥 is convex on R++.

Now, some interesting examples on R𝑛:

• quadratic function: 𝑓 (𝒙) = 𝒙T𝑷𝒙 + 2𝒒T𝒙 + 𝑟 is convex on R𝑛 if and only if 𝑷 ⪰ 0;
• norms: every norm ∥𝒙∥ is convex on R𝑛 (e.g., ∥𝒙∥∞, ∥𝒙∥1, and ∥𝒙∥2);
• max function: 𝑓 (𝑥) = max{𝑥1, . . . , 𝑥𝑛} is convex on R𝑛;
• quadratic over linear function: 𝑓 (𝑥, 𝑦) = 𝑥2/𝑦 is convex on R × R++;
• geometric mean: 𝑓 (𝒙) =

(∏𝑛
𝑖=1 𝑥𝑖

)1/𝑛 is concave on R𝑛++;
• log-sum-exp function: 𝑓 (𝒙) = log (𝑒𝑥1 + · · · + 𝑒𝑥𝑛 ) is convex on R𝑛 (it can be used to

approximate the function 𝑓 (𝒙) = max{𝑥1, . . . , 𝑥𝑛}).

Finally, some examples on R𝑛×𝑛:

• log-determinant: the function 𝑓 (𝑿) = log det(𝑿) is concave onS𝑛++ = {𝑿 ∈ R𝑛×𝑛 | 𝑿 ≻ 0};
• maximum eigenvalue: the function

𝑓 (𝑿) = 𝜆max(𝑿) ≜ sup
𝒚≠0

𝒚T𝑿𝒚

𝒚T𝒚

is convex on S𝑛.

A.3.2 Epigraph
So far, we have used the adjective “convex” to describe both sets and functions, even though it
refers to two distinct properties. Interestingly, these two can be linked, as we will demonstrate
next.
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The graph of a function 𝑓 : R𝑛 → R is defined as the set{
(𝒙, 𝑓 (𝒙)) ∈ R𝑛+1 | 𝒙 ∈ dom 𝑓

}
,

which is a subset of R𝑛+1.

The epigraph of a function 𝑓 : R𝑛 → R is defined as the set

epi 𝑓 =
{
(𝒙, 𝑡) ∈ R𝑛+1 | 𝒙 ∈ dom 𝑓 , 𝑓 (𝒙) ≤ 𝑡

}
. (A.4)

One way to conceptualize the epigraph is to envision pouring a bucket of water over the
function and filling it up indefinitely.

The link between convex sets and convex functions is precisely via the epigraph: A function
is convex if and only if its epigraph is a convex set,

𝑓 is convex ⇐⇒ epi 𝑓 is convex.

A.3.3 Characterization of Convex Functions
Apart from the definition of convexity, there are several ways to characterize convex functions
such as restriction to a line, first-order condition, and second-order conditions.

Restriction of a Convex Function to a Line
A function is convex if and only if it is convex when restricted to any line that intersects its
domain. In other words, 𝑓 : R𝑛 → R is convex if and only if the function 𝑔 : R→ R defined
as

𝑔(𝑡) = 𝑓 (𝒙 + 𝑡𝒗)

is convex on its domain dom 𝑔 = {𝑡 | 𝒙 + 𝑡𝒗 ∈ dom 𝑓 }, for any 𝒙 ∈ dom 𝑓 and 𝒗 ∈ R𝑛.

This property is very useful, since it allows us to check whether a function is convex by
restricting it to a line, which is much easier (and can even be plotted in an exploratory
analysis).

For example, the proof of the concavity of the log-determinant function 𝑓 (𝑿) = log det(𝑿)
can be reduced to the concavity of the log function:

𝑔(𝑡) = log det(𝑿 + 𝑡𝑿) = log det(𝑿) + log det
(
𝑰 + 𝑡𝑿−1/2𝑽𝑿−1/2

)
= log det(𝑿) +

𝑛∑︁
𝑖=1

log(1 + 𝑡𝜆𝑖),

where the 𝜆𝑖 are the eigenvalues of 𝑿−1/2𝑽𝑿−1/2.

First-Order Condition
For a differentiable function 𝑓 , the gradient

∇ 𝑓 (𝒙) =
[
𝜕 𝑓 (𝒙)
𝜕𝑥1

· · · 𝜕 𝑓 (𝒙)
𝜕𝑥𝑛

]T
∈ R𝑛
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exists at each point in dom 𝑓 , which is open. We can use it to write the first-order Taylor
approximation of 𝑓 near 𝒙:

𝑓 (𝒚) ≈ 𝑓 (𝒙) + ∇ 𝑓 (𝒙)T(𝒚 − 𝒙).

Suppose 𝑓 is differentiable. Then 𝑓 is convex if and only if dom 𝑓 is convex and

𝑓 (𝒚) ≥ 𝑓 (𝒙) + ∇ 𝑓 (𝒙)T(𝒚 − 𝒙) (A.5)

holds for all 𝒙, 𝒚 ∈ dom 𝑓 .

Geometrically, the inequality (A.5) states that for a convex function, the first-order Taylor
approximation is in fact a global underestimator of the function. Conversely, if the first-order
Taylor approximation of a function is always a global underestimator of the function, then the
function is convex.

The inequality (A.5) shows that from local information about a convex function (i.e., its value
and derivative at a point) we can derive global information (i.e., a global underestimator of
it). This is a remarkable property of convex functions and it justifies the connection between
local optimality and global optimality in convex optimization problems.

Second-Order Condition
For a twice-differentiable function 𝑓 , the Hessian

∇2 𝑓 (𝒙) =
(
𝜕2 𝑓 (𝒙)
𝜕𝑥𝑖𝜕𝑥 𝑗

)
𝑖 𝑗

∈ R𝑛×𝑛

exists at each point in dom 𝑓 , which is open. The Hessian can be used to write the second-order
Taylor approximation of 𝑓 near 𝒙:

𝑓 (𝒚) ≈ 𝑓 (𝒙) + ∇ 𝑓 (𝒙)T(𝒚 − 𝒙) + 1
2
(𝒚 − 𝒙)T∇2 𝑓 (𝒙) (𝒚 − 𝒙).

Suppose 𝑓 is twice differentiable. Then 𝑓 is convex if and only if dom 𝑓 is convex and its
Hessian is positive semidefinite:

∇2 𝑓 (𝒙) ⪰ 0

for all 𝒙 ∈ dom 𝑓 .

For a function on R, this reduces to the simple condition 𝑓 ′′ (𝑥) ≥ 0 (and dom 𝑓 convex, i.e.,
an interval), which means that the derivative is nondecreasing. The condition ∇2 𝑓 (𝒙) ⪰ 0
can be interpreted geometrically as the requirement that the graph of the function has positive
(upward) curvature at 𝒙.

Similarly, 𝑓 is concave if and only if dom 𝑓 is convex and ∇2 𝑓 (𝒙) ⪯ 0 for all 𝒙 ∈ dom 𝑓 .

A.3.4 Operations that Preserve Convexity
Thus far, we have explored four different methods to characterize the convexity of a function:
applying the definition directly, restricting the function to a line, using the first-order condition,
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and employing the second-order condition. However, in most practical scenarios, a more
intriguing approach to establish convexity is to demonstrate that the function can be derived
from basic convex or concave functions (such as exponentials, powers, and norms) through
operations that preserve the convexity of functions. This approach is essentially a calculus of
convex functions.

Some simple operations that preserve convexity of functions include: nonnegative weighted
sum, composition with affine functions, pointwise maximum, pointwise supremum, certain
compositions with nonaffine functions, partial minimization, and perspective.

Nonnegative Weighted Sum
If 𝑓1 and 𝑓2 are both convex functions, then so is their sum 𝑓1 + 𝑓2. Also, scaling a function
𝑓 with a nonnegative number 𝛼 ≥ 0 preserves convexity. Combining nonnegative scaling
and addition, we get that a nonnegative weighted sum of convex functions, with weights
𝑤1, . . . , 𝑤𝑚 ≥ 0,

𝑓 = 𝑤1 𝑓1 + · · · + 𝑤𝑚 𝑓𝑚,

is convex.

Composition with an Affine Mapping
Suppose ℎ : R𝑚 → R, 𝑨 ∈ R𝑚×𝑛, and 𝒃 ∈ R𝑚. Define 𝑓 : R𝑛 → R as the composition of 𝑓
with the affine mapping 𝑨𝒙 + 𝒃:

𝑓 (𝒙) = ℎ(𝑨𝒙 + 𝒃),

with dom 𝑓 = {𝒙 | 𝑨𝒙 + 𝒃 ∈ dom ℎ}. Then, if 𝑓 is convex, so is 𝑔; if 𝑓 is concave, so is 𝑔.

For example, 𝑓 (𝒙) = ∥𝒚 − 𝑨𝒙∥ is convex and 𝑓 (𝑿) = log det
(
𝑰 + 𝑯𝑿𝑯T)

is concave.

Pointwise Maximum and Supremum
If 𝑓1 and 𝑓2 are convex functions, then their pointwise maximum 𝑓 , defined as

𝑓 (𝒙) = max { 𝑓1(𝒙), 𝑓2(𝒙)} ,

with dom 𝑓 = dom 𝑓1 ∩ dom 𝑓2, is also convex. This property extends to more than two
functions. If 𝑓1, . . . , 𝑓𝑚 are convex, then their pointwise maximum

𝑓 (𝒙) = max { 𝑓1(𝒙), . . . , 𝑓𝑚(𝒙)}

is also convex.

For example, the sum of the 𝑟 largest components of 𝒙 ∈ R𝑛, 𝑓 (𝒙) = 𝑥 [1] + 𝑥 [2] + · · · + 𝑥 [𝑟 ] ,
where 𝑥 [𝑖 ] is the 𝑖th largest component of 𝒙, is convex because it can be written as the
pointwise maximum

𝑓 (𝒙) = max
{
𝑥𝑖1 + 𝑥𝑖2 + · · · + 𝑥𝑖𝑟 | 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑟 ≤ 𝑛

}
.

The pointwise maximum property extends to the pointwise supremum over an infinite set of
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convex functions. If for each 𝒚 ∈ Y, 𝑓 (𝒙, 𝒚) is convex in 𝒙, then the pointwise supremum 𝑔,
defined as

𝑔(𝒙) = sup𝒚∈Y 𝑓 (𝒙, 𝒚),

is convex in 𝒙.

One simple example is distance to farthest point in a set C:

𝑓 (𝒙) = sup𝒚∈𝐶 ∥𝒙 − 𝒚∥ .

Another example is the maximum eigenvalue function of a symmetric matrix,

𝜆max(𝑿) = sup
𝒚≠0

𝒚T𝑿𝒚

𝒚T𝒚
.

Composition with Arbitrary Functions
We have observed that the composition of a function with an affine mapping preserves
convexity. We will now examine the conditions under which this can be generalized to
non-affine mappings.

Suppose ℎ : R𝑚 → R and 𝑔 : R𝑛 → R𝑚. Their composition 𝑓 = ℎ ◦ 𝑔 : R𝑛 → R is defined as

𝑓 (𝒙) = ℎ(𝑔(𝒙))

with dom 𝑓 = {𝒙 ∈ dom 𝑔 | 𝑔(𝒙) ∈ dom ℎ}.

Let us start with the composition with a scalar mapping 𝑚 = 1 for simplicity, so ℎ : R→ R
and 𝑔 : R𝑛 → R. The function 𝑓 (𝒙) = ℎ(𝑔(𝒙)) satisfies

𝑓 is convex if
{
ℎ is convex nondecreasing and 𝑔 is convex
ℎ is convex nonincreasing and 𝑔 is concave

and

𝑓 is concave if
{
ℎ is concave nondecreasing and 𝑔 is concave
ℎ is concave nonincreasing and 𝑔 is convex.

For the case 𝑛 = 1, one can easily derive the previous results from the second derivative of
the composition function 𝑓 = ℎ ◦ 𝑔 given by

𝑓 ′′ (𝑥) = ℎ′′ (𝑔(𝑥))𝑔′ (𝑥)2 + ℎ′ (𝑔(𝑥))𝑔′′ (𝑥).

So, for example, if ℎ is convex and nondecreasing, we have ℎ′′ (𝑔(𝑥)) ≥ 0 and ℎ′ (𝑔(𝑥)) ≥ 0,
and if 𝑔 is convex then 𝑔′′ (𝑥) ≥ 0, which guarantees that 𝑓 ′′ (𝑥) ≥ 0 so 𝑓 is convex.

Here are some examples:

• if 𝑔 is convex, then exp 𝑔(𝑥) is convex;
• if 𝑔 is concave and positive, then log(𝑔(𝑥)) is concave;
• if 𝑔 is concave and positive, then 1/𝑔(𝑥) is convex;
• if 𝑔 is convex and nonnegative, then 𝑔(𝑥) 𝑝 is convex for 𝑝 ≥ 1;
• if 𝑔 is convex, then −log(−𝑔(𝑥)) is convex on {𝑥 | 𝑔(𝑥) < 0}.
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Now let consider the general case of vector composition:

𝑓 (𝒙) = ℎ(𝑔(𝒙)) = ℎ(𝑔1(𝒙), . . . , 𝑔𝑚(𝒙))

with ℎ : R𝑚 → R and 𝑔 : R𝑛 → R𝑚. The rules in this case are generalized to:

𝑓 is convex if
{
ℎ is convex, nondecreasing in each argument, and 𝑔𝑖 are convex
ℎ is convex, nonincreasing in each argument, and 𝑔𝑖 are concave

and

𝑓 is concave if
{
ℎ is concave, nondecreasing in each argument, and 𝑔𝑖 are concave
ℎ is concave, nonincreasing in each argument, and 𝑔𝑖 are convex.

Partial Minimization
We have seen that the maximum or supremum of an arbitrary family of convex functions is
convex. It turns out that some special forms of minimization also yield convex functions.

If 𝑓 (𝒙, 𝒚) is convex in (𝒙, 𝒚) and C is a convex set, then the function

𝑔(𝒙) = inf
𝒚∈C

𝑓 (𝒙, 𝒚)

is convex in 𝒙. Note that the requirement here is for joint convexity in (𝒙, 𝒚), unlike the case
of supremum where the requirement is for convexity in 𝒙 for any given 𝒚.

One simple example is the distance to a set C:

𝑓 (𝒙) = inf𝒚∈𝐶 ∥𝒙 − 𝒚∥ ,

which is convex if C is convex.

Perspective
Suppose 𝑓 : R𝑛 → R, then the perspective of 𝑓 is the function 𝑔 : R𝑛+1 → R defined as

𝑔(𝒙, 𝑡) = 𝑡 𝑓 (𝒙/𝑡),

with domain dom 𝑔 =
{
(𝒙, 𝑡) ∈ R𝑛+1 | 𝒙/𝑡 ∈ dom 𝑓 , 𝑡 > 0

}
.

The perspective operation preserves convexity: If 𝑓 is a convex function, then so is its
perspective function 𝑔.

For example, since 𝑓 (𝒙) = 𝒙T𝒙 is convex, then its perspective 𝑔(𝒙, 𝑡) = 𝒙T𝒙/𝑡 is convex for
𝑡 > 0.

Also, since the negative logarithm 𝑓 (𝑥) = −log 𝑥 is convex, its perspective (known as the
relative entropy function) 𝑔(𝑥, 𝑡) = 𝑡log 𝑡 − 𝑡log 𝑥 is also convex on R2

++.

A.3.5 Quasi-convex Functions
The 𝛼-sublevel set of a function 𝑓 : R𝑛 → R is defined as

S𝛼 = {𝒙 ∈ dom 𝑓 | 𝑓 (𝒙) ≤ 𝛼} .
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Sublevel sets of a convex function are convex for any value of 𝛼. The converse is not true:
a function can have all its sublevel sets convex, but not be a convex function. For example,
𝑓 (𝑥) = −𝑒𝑥 is not convex on R (indeed, it is strictly concave) but all its sublevel sets are
convex.

A function 𝑓 : R𝑛 → R is called quasi-convex if its domain and all its sublevel sets S𝛼, for
all 𝛼, are convex. A function 𝑓 is quasi-concave if − 𝑓 is quasi-convex. A function that is
both quasi-convex and quasi-concave is called quasi-linear.

For example, for a function on R to be quasi-convex, each sublevel set must be an interval.
Here are some other illustrative examples:

•
√︁
|𝑥 | is quasi-convex on R;

• ceil (𝑥) = inf {𝑧 ∈ Z | 𝑧 ≥ 𝑥} is quasi-linear;
• log 𝑥 is quasi-linear on R++;
• 𝑓 (𝑥1, 𝑥2) = 𝑥1𝑥2 is quasi-concave on R2

++;
• the linear-fractional function

𝑓 (𝒙) = 𝒂T𝒙 + 𝑏
𝒄T𝒙 + 𝑑 , dom 𝑓 =

{
𝒙 | 𝒄T𝒙 + 𝑑 > 0

}
is quasi-linear.

We can always represent the sublevel sets of a quasi-convex function 𝑓 (which are convex)
via inequalities of convex functions:

𝑓 (𝒙) ≤ 𝑡 ⇐⇒ 𝜙𝑡 (𝒙) ≤ 0,

where 𝜙𝑡 (𝒙) is a family of convex functions in 𝒙 (indexed by 𝑡).

For example, consider a convex over concave function 𝑓 (𝒙) = 𝑝(𝒙)/𝑞(𝒙), where 𝑝(𝒙) ≥ 0
and 𝑞(𝒙) > 0. The function 𝑓 (𝒙) is not convex but it is quasi-convex:

𝑓 (𝒙) ≤ 𝑡 ⇐⇒ 𝑝(𝒙) − 𝑡𝑞(𝒙) ≤ 0,

so we can take the convex function 𝜙𝑡 (𝒙) = 𝑝(𝒙) − 𝑡𝑞(𝒙) for 𝑡 ≥ 0.

A.4 Convex Optimization Problems
We will now delve into the basics of convex optimization problems. For more detailed
information, readers are referred to Chapter 4 in Boyd and Vandenberghe (2004).

If the objective and inequality constraint functions of the general optimization problem (A.1)
are convex and the equality constraint functions are linear (or, more generally, affine), the
problem is then a convex optimization problem or convex program.

We can write a convex optimization problem in standard form as

minimize
𝒙

𝑓0(𝒙)
subject to 𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚,

𝑨𝒙 = 𝒃,

(A.6)
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where 𝑓0, 𝑓1, . . . , 𝑓𝑚 are convex and the 𝑝 equality constraints are affine with 𝑨 ∈ R𝑝×𝑛 and
𝒃 ∈ R𝑝.

Convex problems enjoy a rich body of theory and availability of algorithms with desirable
convergence properties. However, most problems are not convex when naturally formulated.
Reformulating a nonconvex problem in convex form may still be possible, but it is an art and
there is no systematic way.

A fundamental property of convex optimization problems is that any locally optimal point is
also (globally) optimal.

A.4.1 Optimality Characterization
Suppose 𝑓0 is differentiable. Then, from the first-order characterization of convexity in
Section A.3, we have that

𝑓0(𝒚) ≥ 𝑓0(𝒙) + ∇ 𝑓0(𝒙)T(𝒚 − 𝒙)

for all 𝒙, 𝒚 ∈ dom 𝑓0.

Then, a feasible point 𝒙 is optimal if and only if

∇ 𝑓0(𝒙)T(𝒚 − 𝒙) ≥ 0 for all 𝑦 ∈ X, (A.7)

where X denotes the feasible set. This is the so-called minimum principle. Geometrically, it
means that the gradient ∇ 𝑓0(𝒙) defines a supporting hyperplane.

The minimum principle in (A.7) may be difficult to manage in most practical cases. One
more convenient characterization of optimality, when the feasible set X is explicitly given
in terms of constraint functions, is the so-called KKT optimality conditions as elaborated in
Section A.6. Two simple illustrative examples are considered next.

Example A.4 (Unconstrained minimization problem) For an unconstrained problem (i.e.,
𝑚 = 𝑝 = 0 with feasible setX = R𝑛), the condition (A.7) reduces to the well-known necessary
and sufficient condition

∇ 𝑓0(𝒙) = 0

for 𝒙 to be optimal.

Example A.5 (Minimization over the nonnegative orthant) Consider the problem

minimize
𝒙

𝑓0(𝒙)
subject to 𝒙 ≥ 0,

where the only inequality constraints are nonnegativity constraints on the variables and there
are no equality constraints.

The optimality condition (A.7) becomes

𝒙 ≥ 0, ∇ 𝑓0(𝒙)T(𝒚 − 𝒙) ≥ 0 for all 𝒚 ≥ 0.

The term ∇ 𝑓0(𝒙)T𝒚 is unbounded below on 𝒚 ≥ 0, unless ∇ 𝑓0(𝒙) ≥ 0. The condition reduces
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to −∇ 𝑓0(𝒙)T𝒙 ≥ 0, which further becomes ∇ 𝑓0(𝒙)T𝒙 = 0, due to 𝒙 ≥ 0 and ∇ 𝑓0(𝒙) ≥ 0, and
also elementwise (∇ 𝑓0(𝒙))𝑖 𝑥𝑖 = 0. This means that if 𝑥𝑖 > 0, that is, the 𝑖th component is
in the interior of the feasible set, then (∇ 𝑓0(𝒙))𝑖 = 0. So we can finally write the optimality
conditions as

𝒙 ≥ 0, ∇ 𝑓0(𝒙) ≥ 0, (∇ 𝑓0(𝒙))𝑖 𝑥𝑖 = 0, 𝑖 = 1, . . . , 𝑛.

Note that the condition (∇ 𝑓0(𝒙))𝑖 𝑥𝑖 = 0 implies that the two conditions (∇ 𝑓0(𝒙))𝑖 > 0 and
𝑥𝑖 > 0 cannot both be true. This is known as a complementary condition, which we will revisit
in Section A.6.

A.4.2 Equivalent Reformulations
As previously mentioned, most problems are not convex when naturally formulated. In some
cases, fortunately, there is a hidden convexity that can be unveiled by properly reformulating
an equivalent problem. However, there is no systematic way to reformulate a problem in
convex form: it is rather an art.

Two problems are considered equivalent if a solution to one can be easily converted into a
solution for the other, and vice versa. A stricter form of this equivalence can be established
by requiring a mapping between the two problems for every feasible point, not just for the
optimal solutions.

Example A.6 Consider the problem

minimize
𝑥

1/
(
1 + 𝑥2)

subject to 𝑥2 ≥ 1,

which is nonconvex (both the cost function and the constraint are nonconvex). It can be
rewritten in convex form, after the change of variable 𝑦 = 𝑥2, as

minimize
𝑦

1/(1 + 𝑦)
subject to 𝑦 ≥ 1,

and the optimal points 𝑥 can be recovered from the optimal 𝑦 as 𝑥 = ±√𝑦.

Example A.7 This example does not employ a change of variable, but transforms the
problematic functions into more convenient ones. Consider the problem

minimize
𝑥1 ,𝑥2

𝑥2
1 + 𝑥2

2

subject to 𝑥1/
(
1 + 𝑥2

2
)
≤ 0,

(𝑥1 + 𝑥2)2 = 0,

which is nonconvex (the inequality constraint function is nonconvex and the equality constraint
function is not affine). It can be equivalently rewritten as the convex problem

minimize
𝑥1 ,𝑥2

𝑥2
1 + 𝑥2

2

subject to 𝑥1 ≤ 0,
𝑥1 = −𝑥2.
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Example A.8 The class of geometric problems is a very important example of nonconvex
problems that can be reformulated in convex form by a change of variable. This is revisited in
Section A.5.

We now explore some of the common tricks to obtain equivalent problems.

Change of Variables
Suppose 𝜙 is a one-to-one mapping from 𝒛 to 𝒙, then we can define 𝑓𝑖 (𝒛) = 𝑓𝑖 (𝜙(𝒛)) and
problem (A.6) can be rewritten (ignoring equality constraints) as

minimize
𝒛

𝑓0(𝒛)
subject to 𝑓𝑖 (𝒛) ≤ 0, 𝑖 = 1, . . . , 𝑚.

Convexity may or may not be preserved depending on the mapping 𝜙 (see Section A.3 for
details). With equality constraints, the mapping 𝜙 has to be affine to preserve the convexity of
the problem.

Transformation of Objective and Constraint Functions
Suppose 𝜓𝑖 are strictly increasing functions satisfying 𝜓𝑖 (0) = 0. Then we can define
𝑓𝑖 (𝒙) = 𝜓𝑖 ( 𝑓𝑖 (𝒙)) and problem (A.6) can be rewritten (ignoring equality constraints) as

minimize
𝒙

𝑓0(𝒙)
subject to 𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚.

For equality constraints, the mapping has to be affine to preserve the convexity of the problem.

The requirements on the mappings can be relaxed; for example, for the inequality constraints
we simply need 𝜓𝑖 (𝑢) ≤ 0 if and only if 𝑢 ≤ 0.

Slack Variables
One simple transformation of interest is based on the observation that 𝑓𝑖 (𝒙) ≤ 0 if and only if
there is an 𝑠𝑖 ≥ 0 that satisfies 𝑓𝑖 (𝒙) + 𝑠𝑖 = 0.

By introducing nonnegative slack variables 𝑠𝑖 ≥ 0, we can transform linear (or affine)
inequalities 𝒂T

𝑖 𝒙 ≤ 𝑏𝑖 into linear equalities 𝒂T
𝑖 𝒙 + 𝑠𝑖 = 𝑏𝑖.

Eliminating Equality Constraints
Equality constraints in convex problems must be affine, that is, of the form 𝑨𝒙 = 𝒃. From
linear algebra, we know that the subspace of points satisfying such affine constraints can be
written as 𝒙 = 𝑭𝒛 + 𝒙0, where 𝒙0 is any solution to 𝑨𝒙 = 𝒃, 𝑭 is a matrix whose range is the
nullspace of 𝑨, that is, 𝑨𝑭 = 0, and 𝒛 is any vector of appropriate dimensions.

Then, the problem
minimize

𝒙
𝑓0(𝒙)

subject to 𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚,
𝑨𝒙 = 𝒃
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is equivalent to
minimize

𝒛
𝑓0(𝑭𝒛 + 𝒙0)

subject to 𝑓𝑖 (𝑭𝒛 + 𝒙0) ≤ 0, 𝑖 = 1, . . . , 𝑚,

with variable 𝒛. Since the composition of a convex function with an affine function is convex,
eliminating equality constraints preserves the convexity of a problem.

Introducing Equality Constraints
We can introduce new variables and equality constraints into a convex optimization problem,
provided the equality constraints are linear, and the resulting problem will also be convex.

For example, if an objective or constraint function has the form 𝑓𝑖 (𝑨𝑖𝒙 + 𝒃𝑖), we can introduce
a new variable 𝒚𝑖, replace 𝑓𝑖 (𝑨𝑖𝒙 + 𝒃𝑖) with 𝑓𝑖 (𝒚𝑖), and add the linear equality constraint
𝒚𝑖 = 𝑨𝑖𝒙 + 𝒃𝑖.

Epigraph Problem Form
The epigraph form of the convex problem (A.6) is the problem

minimize
𝑡 ,𝒙

𝑡

subject to 𝑓0(𝒙) − 𝑡 ≤ 0,
𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚,
𝑨𝒙 = 𝒃,

(A.8)

with variables 𝒙 ∈ R𝑛 and 𝑡 ∈ R. We can easily see that it is equivalent to the original problem:
(𝒙, 𝑡) is optimal for (A.8) if and only if 𝒙 is optimal for (A.6) and 𝑡 = 𝑓0(𝒙).

It is often stated that a linear objective is universal for convex optimization, as any convex
optimization problem can be readily transformed into one with a linear objective. This
transformation can aid in theoretical analysis and algorithm development.

Minimizing Over Some Variables
We always have

inf
𝒙,𝒚

𝑓 (𝒙, 𝒚) = inf
𝒙
𝑓 (𝒙),

where 𝑓 (𝒙) = inf𝒚 𝑓 (𝒙, 𝒚). In addition, if 𝑓 (𝒙, 𝒚) is jointly convex in 𝒙 and 𝒚, that is, it is
convex in (𝒙, 𝒚), then 𝑓 (𝒙) is convex.

In plain words, we can always minimize a function by first minimizing over some set of
variables, and then minimizing over the remaining ones. Note that this is a nested minimization,
in the sense that as 𝒙 changes, then implicitly the 𝒚 that minimizes 𝑓 (𝒙, 𝒚) to obtain 𝑓 (𝒙)
changes as well. Do not confuse this nested minimization with an alternate minimization
method, where one optimizes alternately over 𝒙 and 𝒚 until convergence is achieved.

Suppose the variable 𝒙 ∈ R𝑛 is partitioned into two blocks as 𝒙 = (𝒙1, 𝒙2). Then, the convex
problem

minimize
𝒙

𝑓0(𝒙1, 𝒙2)
subject to 𝑓𝑖 (𝒙1) ≤ 0, 𝑖 = 1, . . . , 𝑚1,

𝑓𝑖 (𝒙2) ≤ 0, 𝑖 = 1, . . . , 𝑚2,
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in which each of the constraints involves either 𝒙1 or 𝒙2, is equivalent to the convex problem

minimize
𝒙1

𝑓0(𝒙1)
subject to 𝑓𝑖 (𝒙1) ≤ 0, 𝑖 = 1, . . . , 𝑚1,

where

𝑓0(𝒙1) = inf𝒛{ 𝑓0(𝒙1, 𝒛) | 𝑓𝑖 (𝒛) ≤ 0, 𝑖 = 1, . . . , 𝑚2}.

A.4.3 Approximate Reformulations
In many cases, the formulated optimization problem may still remain nonconvex despite
all attempts to use some transformation to unveil any possible hidden convexity. In such
situations, one can resort to some kind of approximation to form an approximated problem,
possibly convex, that is easy to solve:

minimize
𝒙

𝑓0(𝒙)
subject to 𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚,

𝑨𝒙 = 𝒃,

where 𝑓𝑖 (𝒙) ≈ 𝑓𝑖 (𝒙).

There are three types of approximations:

1. Conservative approximation or tightened approximation leading to a tightened formulation:
𝑓𝑖 (𝒙) ≥ 𝑓𝑖 (𝒙). This approximation defines a feasible set that is a subset of the original
feasible set, which guarantees the feasibility of the approximated solution.

2. Relaxed approximation leading to a relaxed formulation or simply a relaxation: 𝑓𝑖 (𝒙) ≤
𝑓𝑖 (𝒙). This approximation defines a feasible set that is a superset of the original feasible
set. It does not guarantee the feasibility of the approximated solution and may require an
additional step to enforce feasibility.

3. Approximation without any guarantees: 𝑓𝑖 (𝒙) ≈ 𝑓𝑖 (𝒙).

Relaxed formulations are very commonly used in practice, often by simply removing some of
the constraints (typically the more difficult ones). A notable example of this approach is found
in Bengtsson and Ottersten (2001) for multiuser beamforming in wireless communications,
where a nonconvex rank-one constraint was removed (thus relaxing the problem). However, it
was still proven to be an equivalent reformulation and not a relaxation.

Example A.9 Suppose a problem contains the nonconvex constraint 𝑥2 = 1 or, equivalently,
𝑥 ∈ {±1}, which is a nonconvex discrete set. This is typically associated with combinatorial
optimization, which has exponential complexity. A relaxation would involve enlarging the
feasible set, which could be achieved by using instead the interval −1 ≤ 𝑥 ≤ 1. On the other
hand, a tightening would involve reducing the feasible set, which could be accomplished
simply by using 𝑥 = 1. Both approximations, −1 ≤ 𝑥 ≤ 1 and 𝑥 = 1, are convex and can be
easily handled.
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A.4.4 Quasi-convex Optimization
A quasi-convex optimization problem has the standard form

minimize
𝒙

𝑓0(𝒙)
subject to 𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚,

𝑨𝒙 = 𝒃,

(A.9)

where the inequality constraint functions 𝑓1, . . . , 𝑓𝑚 are convex, and the objective 𝑓0 is
quasi-convex, unlike in a convex optimization problem where the objective is convex. For
details on quasi-convex functions, see Section A.3.5.

The most significant difference between convex and quasi-convex optimization is that a
quasi-convex optimization problem can have locally optimal solutions that are not globally
optimal. For instance, this can occur when the function becomes flat before reaching the
optimal value.

A general approach to quasi-convex optimization relies on the representation of the sublevel
sets of a quasi-convex function via a family of convex inequalities:

𝑓 (𝒙) ≤ 𝑡 ⇐⇒ 𝜙𝑡 (𝒙) ≤ 0,

where 𝜙𝑡 (𝒙) is a family of convex functions in 𝒙 (indexed by 𝑡).

Let 𝑝★ denote the optimal value of the quasi-convex optimization problem (A.9). If the (now
convex) feasibility problem

find
𝒙

𝒙

subject to 𝜙𝑡 (𝒙) ≤ 0,
𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚,
𝑨𝒙 = 𝒃

(A.10)

is feasible, then we have 𝑝★ ≤ 𝑡. Conversely, if it is infeasible, then 𝑝★ > 𝑡.

This observation can serve as the foundation for a simple algorithm to solve quasi-convex
optimization problems termed the bisection method. This involves solving a sequence of
convex feasibility problems, like the one in (A.10), at each step. Suppose that the original
problem (A.9) is feasible and that we start with an interval [𝑙, 𝑢] known to contain the optimal
value 𝑝★. We can then solve the convex feasibility problem at the interval midpoint 𝑡 = (𝑙+𝑢)/2
to determine whether the optimal value is in the lower or upper half of this interval, and update
the interval accordingly. This produces a new interval, which also contains the optimal value,
but has half the width of the initial interval; so the length of the interval after 𝑘 iterations is
2−𝑘 (𝑢 − 𝑙), where (𝑢 − 𝑙) is the length of the initial interval. Therefore, if a tolerance of 𝜖 is
desired in the computation of 𝑝★, the number of iterations is ⌈log2 ((𝑢 − 𝑙)/𝜖)⌉, where ⌈·⌉
denoted the ceiling rounding operation. The bisection method (a.k.a. sandwich technique) is
summarized in Algorithm A.1.
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Algorithm A.1: Bisection method for the quasi-convex optimization problem in (A.9).
1: Choose interval [𝑙, 𝑢] containing 𝑝★ and tolerance 𝜖 > 0;
2: repeat
3: 𝑡 ← (𝑙 + 𝑢)/2;
4: Solve the convex feasibility problem (A.10);
5: if feasible then
6: 𝑢 ← 𝑡 and keep solution 𝒙;
7: else
8: 𝑙 ← 𝑡;
9: end if

10: until 𝑢 − 𝑙 ≤ 𝜖 ;

A.5 Taxonomy of Convex Problems
A convex problem, such as the one in (A.6), can be further classified into different specific
types of problems. These can be identified by abbreviations such as LP, QP, QCQP, SOCP,
SDP, CP, FP, LFP, and GP, which we will briefly explore next. For more detailed information,
readers are referred to Chapter 4 in Boyd and Vandenberghe (2004). In traditional optimization
literature, a problem is also referred to as a program. Therefore, for example, a linear program
is the same as a linear problem.

This classification is beneficial for both theoretical and algorithmic purposes. For instance,
solvers are designed to handle specific types of problems (see Section B.1 in Appendix B for
more details on solvers).

A.5.1 Linear Programming
When the objective and constraint functions are all affine, a problem is called a linear program
or linear problem (LP):

minimize
𝒙

𝒄T𝒙 + 𝑑
subject to 𝑮𝒙 ≤ 𝒉,

𝑨𝒙 = 𝒃,

where the parameters 𝑨, 𝒃, 𝒄, 𝑑, 𝑮, and 𝒉 are of appropriate size. Linear programs are, of
course, convex optimization problems.

The geometric interpretation of an LP can be visualized as a polyhedron on an inclined flat
surface, where an optimal solution is always located at a corner of the polyhedron. This
observation forms the basis of the popular simplex method, developed by Dantzig in 1947,
for solving LPs.

While problems invoving only linear functions are easily recognizable as LPs, some formula-
tions involving ℓ∞-norm and ℓ1-norm minimization can also be rewritten as LPs, as shown
next.
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Example A.10 (ℓ∞-norm minimization as an LP) The problem

minimize
𝒙

∥𝒙∥∞
subject to 𝑮𝒙 ≤ 𝒉,

𝑨𝒙 = 𝒃,

is equivalent to the LP

minimize
𝑡 ,𝒙

𝑡

subject to −𝑡1 ≤ 𝒙 ≤ 𝑡1,
𝑮𝒙 ≤ 𝒉,
𝑨𝒙 = 𝒃.

Example A.11 (ℓ1-norm minimization as an LP) The problem

minimize
𝒙

∥𝒙∥1
subject to 𝑮𝒙 ≤ 𝒉,

𝑨𝒙 = 𝒃

is equivalent to the LP

minimize
𝒕 ,𝒙

∑
𝑖 𝑡𝑖

subject to −𝒕 ≤ 𝒙 ≤ 𝒕,
𝑮𝒙 ≤ 𝒉,
𝑨𝒙 = 𝒃.

A.5.2 Linear-Fractional Programming
The problem of minimizing a ratio of affine functions over a polyhedron is called a linear-
fractional program (LFP):

minimize
𝒙

(
𝒄T𝒙 + 𝑑

)
/
(
𝒆T𝒙 + 𝑓

)
subject to 𝑮𝒙 ≤ 𝒉,

𝑨𝒙 = 𝒃

(A.11)

with dom 𝑓0 =
{
𝒙 | 𝒆T𝒙 + 𝑓 > 0

}
.

An LFP is not a convex problem, but it is quasi-convex. Therefore, problem (A.11) can be
solved via bisection (see Algorithm A.1) by sequentially solving a series of feasibility LPs of
the form:

find
𝒙

𝒙

subject to 𝑡
(
𝒆T𝒙 + 𝑓

)
≥ 𝒄T𝒙 + 𝑑,

𝑮𝒙 ≤ 𝒉,
𝑨𝒙 = 𝒃.

Alternatively, the LFP in (A.11) can be transformed into the following LP via the Charnes–
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Cooper transform (Bajalinov, 2003; Charnes & Cooper, 1962):

minimize
𝒚,𝑡

𝒄T𝒚 + 𝑑𝑡
subject to 𝑮𝒚 ≤ 𝒉𝑡,

𝑨𝒚 = 𝒃𝑡,
𝒆T𝒚 + 𝑓 𝑡 = 1,
𝑡 > 0,

with variables 𝒚, 𝑡, related to the original variable 𝒙 as

𝒚 =
𝒙

𝒆T𝒙 + 𝑓 and 𝑡 =
1

𝒆T𝒙 + 𝑓 .

The original variable can be easily recovered from 𝒚, 𝑡 as 𝒙 = 𝒚/𝑡. For details on the
Charnes–Cooper transform, the reader is referred to Section B.5.3 in Appendix B.

A.5.3 Quadratic Programming
The convex optimization problem (A.6) is called a quadratic program (QP) if the objective
function is (convex) quadratic, and the constraint functions are affine:

minimize
𝒙

1
2𝒙

T𝑷𝒙 + 𝒒T𝒙 + 𝑟
subject to 𝑮𝒙 ≤ 𝒉,

𝑨𝒙 = 𝒃,

where 𝑷 ⪰ 0. QPs include LPs as special case when 𝑷 = 0.

The geometric interpretation of a QP can be visualized as an elliptical surface intersecting a
polyhedron, where the optimal solution does not necessarily coincide with a vertex of the
polyhedron.

Example A.12 (Least squares) The LS problem

minimize
𝒙

∥𝑨𝒙 − 𝒃∥22

is an unconstrained QP.

Example A.13 (Box-constrained LS) The following regression problem with upper and
lower bounds on the variables,

minimize
𝒙

∥𝑨𝒙 − 𝒃∥22
subject to 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 = 1, . . . , 𝑛,

is a QP.

If the objective function in (A.6) as well as the inequality constraints are (convex) quadratic,
then the problem is called a quadratically constrained quadratic program (QCQP):

minimize
𝒙

1
2𝒙

T𝑷0𝒙 + 𝒒T
0𝒙 + 𝑟0

subject to 1
2𝒙

T𝑷𝑖𝒙 + 𝒒T
𝑖 𝒙 + 𝑟𝑖 ≤ 0, 𝑖 = 1, . . . , 𝑚,

𝑨𝒙 = 𝒃,
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where 𝑷𝑖 ⪰ 0. In this case, the feasible region is the intersection of ellipsoids. QCQPs include
QPs as a special case when 𝑷𝑖 = 0 for 𝑖 = 1, . . . , 𝑚.

A.5.4 Second-Order Cone Programming
A convex problem that is closely related to quadratic programming is the second-order cone
program (SOCP):

minimize
𝒙

𝒇T𝒙

subject to ∥𝑨𝑖𝒙 + 𝒃𝑖 ∥ ≤ 𝒄T
𝑖 𝒙 + 𝑑𝑖, 𝑖 = 1, . . . , 𝑚,

𝑭𝒙 = 𝒈,

where the constraints ∥𝑨𝑖𝒙 + 𝒃𝑖 ∥ ≤ 𝒄T
𝑖 𝒙 + 𝑑𝑖 are called second-order cone (SOC) constraints

since they are affine compositions of the (convex) SOC{
(𝒙, 𝑡) ∈ R𝑛+1 | ∥𝒙∥ ≤ 𝑡

}
. (A.12)

An SOCP reduces to a QCQP when 𝑐𝑖 = 0 for 𝑖 = 1, . . . , 𝑚 (by squaring both sides of the
inequalities). If each 𝑨𝑖 is a row-vector (or 𝑨𝑖 = 0), then an SOCP reduces to an LP.

A comprehensive monograph on SOCPs is Lobo et al. (1998).

Example A.14 (Robust LP) Consider the linear program

minimize
𝒙

𝒄T𝒙

subject to 𝒂T
𝑖 𝒙 ≤ 𝑏𝑖, 𝑖 = 1, . . . , 𝑚.

Now suppose there is some uncertainty in the parameters 𝒂𝑖 and they are known to lie in
given ellipsoids,

E𝑖 = { �̄�𝑖 + 𝑷𝑖𝒖 | ∥𝒖∥ ≤ 1} ,

where 𝑷𝑖 ∈ R𝑛×𝑛. If we require that the constraints be satisfied for all possible values of the
parameters 𝒂𝑖, we obtain a robust LP:

minimize
𝒙

𝒄T𝒙

subject to 𝒂T
𝑖 𝒙 ≤ 𝑏𝑖, for all 𝒂𝑖 ∈ E𝑖, 𝑖 = 1, . . . , 𝑚.

The robust constraint 𝒂T
𝑖 𝒙 ≤ 𝑏𝑖 for all 𝒂𝑖 ∈ E𝑖 can equivalently expressed as

sup
{
𝒂T
𝑖 𝒙 | 𝒂𝑖 ∈ E𝑖

}
= �̄�T

𝑖 𝒙 +
𝑷T

𝑖 𝒙


2 ≤ 𝑏𝑖 .

Hence, the robust LP can be expressed as the SOCP

minimize
𝒙

𝒄T𝒙

subject to �̄�T
𝑖 𝒙 +

𝑷T
𝑖 𝒙


2 ≤ 𝑏𝑖, 𝑖 = 1, . . . , 𝑚.



510 Convex Optimization Theory

A.5.5 Semidefinite Programming
A more general convex problem than an SOCP is the semidefinite program (SDP), formulated
as

minimize
𝒙

𝒄T𝒙

subject to 𝑥1𝑭1 + 𝑥2𝑭2 + · · · + 𝑥𝑛𝑭𝑛 + 𝑮 ⪯ 0,
𝑨𝒙 = 𝒃,

which has (convex) linear matrix inequality (LMI) constraints of the form

𝑥1𝑭1 + · · · + 𝑥𝑛𝑭𝑛 + 𝑮 ⪯ 0, (A.13)

where 𝑭1, . . . , 𝑭𝑛,𝑮 ∈ S𝑘 (S𝑘 is the set of symmetric 𝑘 × 𝑘 matrices) and 𝑨 ⪰ 𝑩 means that
𝑨 − 𝑩 is positive semidefinite. Note that multiple LMI constraints can always be written as a
single one by using block diagonal matrices.

An SDP reduces to an LP when the matrix in the LMI inequality is diagonal, that is, the SDP

minimize
𝒙

𝒄T𝒙

subject to Diag(𝑨𝒙 − 𝒃) ⪯ 0

is equivalent to the LP

minimize
𝒙

𝒄T𝒙

subject to 𝑨𝒙 ≤ 𝒃.

An SDP can also be reduced to an SOCP when the matrix in the LMI has a specific 2 × 2
block structure. In this case, the SDP

minimize
𝒙

𝒇T𝒙

subject to
[ (
𝒄T
𝑖 𝒙 + 𝑑𝑖

)
𝑰 𝑨𝑖𝒙 + 𝒃𝑖

(𝑨𝑖𝒙 + 𝒃𝑖)T 𝒄T
𝑖 𝒙 + 𝑑𝑖

]
⪰ 0, 𝑖 = 1, . . . , 𝑚,

is equivalent to the SOCP

minimize
𝒙

𝒇T𝒙

subject to ∥𝑨𝑖𝒙 + 𝒃𝑖 ∥ ≤ 𝒄T
𝑖 𝒙 + 𝑑𝑖, 𝑖 = 1, . . . , 𝑚.

The equivalence can be shown via the Schur complement:

𝑿 =

[
𝑨 𝑩
𝑩T 𝑪

]
⪰ 0 ⇐⇒ 𝑺 = 𝑪 − 𝑩T𝑨−1𝑩 ⪰ 0,

where we have tacitly assumed 𝑨 ≻ 0.

A comprehensive monograph on SDPs is Vandenberghe and Boyd (1996).

Example A.15 (Eigenvalue minimization) The maximum eigenvalue minimization problem

minimize
𝒙

𝜆max (𝑨(𝒙)) ,
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where 𝑨(𝒙) = 𝑨0 + 𝑥1𝑨1 + · · · + 𝑥𝑛𝑨𝑛, is equivalent to the SDP

minimize
𝒙

𝑡

subject to 𝑨(𝒙) ⪯ 𝑡 𝑰.

This follows from

𝜆max (𝑨(𝒙)) ≤ 𝑡 ⇐⇒ 𝑨(𝒙) ⪯ 𝑡 𝑰.

A.5.6 Conic Programming
A useful generalization of the standard convex optimization problem (A.6) can be achieved
by allowing the inequality constraints to be vector-valued and incorporating generalized
inequalities into the constraints:

minimize
𝒙

𝑓0(𝒙)
subject to 𝒇𝑖 (𝒙) ⪯K𝑖

0,
𝒉𝑖 (𝒙) = 0,

1 ≤ 𝑖 ≤ 𝑚,
1 ≤ 𝑖 ≤ 𝑝,

where the generalized inequalities2 ‘⪯K𝑖
’ are defined by the proper cones K𝑖 (note that

𝒂 ⪯K 𝒃⇔ 𝒃− 𝒂 ∈ K) and 𝑓𝑖 areK𝑖-convex3 (see Section A.7 for more details on generalized
inequalities).

Among the simplest convex optimization problems with generalized inequalities are cone
programs (CP), or conic-form problems, which have a linear objective and one inequality
constraint function (Ben-Tal & Nemirovski, 2001; Boyd & Vandenberghe, 2004):

minimize
𝒙

𝒄T𝒙

subject to 𝑭𝒙 + 𝒈 ⪯K 0,
𝑨𝒙 = 𝒃.

(A.14)

CPs particularize nicely to LPs, SOCPs, and SDPs as follows:

• If K = R𝑛+ (nonnegative orthant), the partial ordering ⪯K is the usual componentwise
inequality between vectors and the CP (A.14) reduces to an LP.

• If K = C𝑛 (second-order cone), ⪯K corresponds to a constraint of the form (A.12) and the
CP (A.14) becomes an SOCP.

• If K = S𝑛+ (positive semidefinite cone), the generalized inequality ⪯K reduces to the usual
matrix inequality as in (A.13) and the CP (A.14) simplifies to an SDP.

2 A generalized inequality is a partial ordering on R𝑛 that has many of the properties of the standard ordering on
R. A common example is the matrix inequality defined by the cone of positive semidefinite 𝑛 × 𝑛 matrices S𝑛

+ .
3 A function 𝒇 : R𝑛 → R𝑘𝑖 is K𝑖-convex if the domain is a convex set and, for all 𝒙, 𝒚 ∈ dom 𝑓 and 𝜃 ∈ [0, 1],

𝒇 (𝜃𝒙 + (1 − 𝜃 )𝒚 ) ⪯K𝑖
𝜃 𝒇 (𝒙) + (1 − 𝜃 ) 𝒇 (𝒚 ) .
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A.5.7 Fractional Programming
Fractional programming is a family of optimization problems that involve ratios. Its origins
can be traced back to a 1937 paper on economic expansion (von Neumann, 1937). Since then,
it has inspired research in various fields such as economics, management science, optics,
information theory, communication systems, graph theory, and computer science.

The simplest form of a fractional program (FP) is

maximize
𝒙

𝑓 (𝒙)
𝑔(𝒙)

subject to 𝒙 ∈ X,
(A.15)

where 𝑓 (𝒙) ≥ 0, 𝑔(𝒙) > 0, and X denotes the feasible set. One particular case is the LFP in
(A.11), when both 𝑓 and 𝑔 are linear functions.

FPs have been widely studied and extended to deal with multiple ratios such as

maximize
𝒙

min
𝑖

𝑓𝑖 (𝒙)
𝑔𝑖 (𝒙)

subject to 𝒙 ∈ X.

FPs are nonconvex problems, which in principle makes them challenging to solve (Stancu-
Minasian, 1997). Fortunately, in the case known as concave–convex FP, where 𝑓 is a concave
function and 𝑔 is a convex function, they can be solved relatively easily using different
methods. The three main approaches, covered in detail in Section B.5 of Appendix B, are:

• Bisection method: Similar to the linear case of LFP, the bisection method (see Algorithm A.1)
involves solving a sequence of convex feasibility problems of the form

find
𝒙

𝒙

subject to 𝑡𝑔(𝒙) ≤ 𝑓 (𝒙),
𝒙 ∈ X.

• Dinkelbach’s transform: This approach eliminates the fractional objective by solving a
sequence of simpler convex problems of the form

maximize
𝒙

𝑓 (𝒙) − 𝑦𝑘𝑔(𝒙)
subject to 𝒙 ∈ X,

(A.16)

where the weight 𝑦𝑘 is updated as 𝑦𝑘 = 𝑓 (𝒙𝑘)/𝑔(𝒙𝑘) (see Section B.5.2).

• Schaible transform: This is a more general case of the Charnes–Cooper transform (used for
LFPs) proposed by Schaible (1974). The original concave–convex FP is thus transformed
into an equivalent convex problem,

maximize
𝒚,𝑡

𝑡 𝑓
( 𝒚
𝑡

)
subject to 𝑡𝑔

( 𝒚
𝑡

)
≤ 1,

𝑡 > 0,
𝒚/𝑡 ∈ X,
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with variables 𝒚, 𝑡, related to the original variable 𝒙 by

𝒚 =
𝒙

𝑔(𝒙) and 𝑡 =
1

𝑔(𝒙) .

The original variable can be easily recovered from 𝒚, 𝑡 by 𝒙 = 𝒚/𝑡 (see Section B.5.3).

A.5.8 Geometric Programming
We will now examine a family of optimization problems that are not naturally convex, but
can be converted into convex optimization problems through a change of variables and a
transformation of the objective and constraint functions.

A monomial function, or simply a monomial, is a function 𝑓 : R𝑛 → R with dom 𝑓 = R𝑛++
defined as

𝑓 (𝒙) = 𝑐𝑥𝑎1
1 𝑥

𝑎2
2 · · · 𝑥

𝑎𝑛
𝑛 ,

where 𝑐 > 0 and 𝑎𝑖 ∈ R.

A posynomial function, or simply a posynomial, is a sum of monomials:

𝑓 (𝒙) =
𝐾∑︁
𝑘=1

𝑐𝑘𝑥
𝑎1𝑘
1 𝑥

𝑎2𝑘
2 · · · 𝑥

𝑎𝑛𝑘
𝑛 ,

where 𝑐𝑘 > 0.

A geometric program (GP) is a (nonconvex) problem of the form

minimize
𝒙

𝑓0(𝒙)
subject to 𝑓𝑖 (𝒙) ≤ 1,

ℎ𝑖 (𝒙) = 1,
𝑖 = 1, . . . , 𝑚,
𝑖 = 1, . . . , 𝑝,

where 𝑓0, . . . , 𝑓𝑚 are posynomials and ℎ1, . . . , ℎ𝑝 are monomials. The domain of this problem
is D = R𝑛++, i.e., the constraint 𝒙 > 0 is implicit.

Suppose we apply the change of variables 𝑦𝑖 = log 𝑥𝑖 and 𝑏 = log 𝑐 on the monomial
𝑓 (𝒙) = 𝑐𝑥𝑎1

1 𝑥
𝑎2
2 · · · 𝑥

𝑎𝑛
𝑛 . Then the log of the monomial is

𝑓 (𝒚) = log 𝑓 (𝑒𝒙) = 𝑏 + 𝑎1𝑦1 + 𝑎2𝑦2 + · · · + 𝑎𝑛𝑦𝑛 = 𝑏 + 𝒂T𝒚,

which is an affine function.

Similarly, for a posynomial, we obtain

𝑓 (𝒚) = log
𝐾∑︁
𝑘=1

𝑒𝑏𝑘+𝒂
T
𝑘
𝒚 ,

which is the so-called log-sum-exp function, a convex function.

Finally, the resulting transformed GP in convex form is

minimize
𝒚

log
∑𝐾0
𝑘=1 𝑒

𝑏0𝑘+𝒂T
0𝑘𝒚

subject to log
∑𝐾𝑖

𝑘=1 𝑒
𝑏𝑖𝑘+𝒂T

𝑖𝑘
𝒚 ≤ 0,

ℎ𝑖 + 𝒈T
𝑖 𝒚 = 0,

𝑖 = 1, . . . , 𝑚,
𝑖 = 1, . . . , 𝑝.
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Some comprehensive monographs on GP include Boyd et al. (2007) and Chiang (2005).

A.6 Lagrange Duality
Lagrange duality theory is a very rich and mature theory that links the original minimization
problem (A.1), termed primal problem, with a maximization problem, termed dual problem.
In some occasions, it is simpler to solve the dual problem than the primal one. A fundamental
result in duality theory is given by the Karush–Kuhn–Tucker (KKT) optimality conditions
that any primal-dual solution must satisfy. By exploring the KKT conditions, it is possible in
many cases to obtain a closed-form solution to the original problem.

We next overview the basic results on duality theory, including the KKT conditions. For
further details the reader is referred to Chapter 5 in Boyd and Vandenberghe (2004), Bertsekas
(1999), and Bertsekas et al. (2003).

A.6.1 Lagrangian
Recall the optimization problem in standard form (A.1) (not necessarily convex):

minimize
𝒙

𝑓0(𝒙)
subject to 𝑓𝑖 (𝒙) ≤ 0,

ℎ𝑖 (𝒙) = 0,
𝑖 = 1, . . . , 𝑚,
𝑖 = 1, . . . , 𝑝,

(A.17)

with variable 𝒙 ∈ R𝑛, domain D, and optimal value 𝑝★.

The basic idea in Lagrange duality is to take the constraints in (A.17) into account by
augmenting the objective function with a weighted sum of the constraint functions. The
Lagrangian 𝐿 : R𝑛 × R𝑚 × R𝑝 → R associated with the problem (A.17) is defined as

𝐿 (𝒙, 𝝀, 𝝂) = 𝑓0(𝒙) +
𝑚∑︁
𝑖=1

𝜆𝑖 𝑓𝑖 (𝒙) +
𝑝∑︁
𝑖=1

𝜈𝑖ℎ𝑖 (𝒙),

with dom 𝐿 = D × R𝑚 × R𝑝. We refer to 𝜆𝑖 and 𝜈𝑖 as the Lagrange multipliers associated
with the 𝑖th inequality constraint 𝑓𝑖 (𝒙) ≤ 0 and with the 𝑖th equality constraint ℎ𝑖 (𝒙) = 0,
respectively. The vectors 𝝀 and 𝝂 are then called dual variables or Lagrange multiplier vectors
associated with the problem (A.17).

We define the Lagrange dual function (or just dual function) 𝑔 : ×R𝑚 × R𝑝 → R as the
minimum value of the Lagrangian over 𝒙 for a given (𝝀, 𝝂):

𝑔(𝝀, 𝝂) = inf
𝒙∈D

𝐿 (𝒙, 𝝀, 𝝂) = inf
𝒙∈D

{
𝑓0(𝒙) +

𝑚∑︁
𝑖=1

𝜆𝑖 𝑓𝑖 (𝒙) +
𝑝∑︁
𝑖=1

𝜈𝑖ℎ𝑖 (𝒙)
}
. (A.18)

Note that the infimum in (A.18) is with respect to all 𝒙 ∈ D (not necessarily feasible points).
When the Lagrangian is unbounded below in 𝒙, the dual function takes on the value −∞.
Since the dual function is the pointwise infimum of a family of affine functions of (𝝀, 𝝂), it is
concave, even when the original problem (A.17) is not convex.

In contrast to the dual variables and dual function, the original optimization variable 𝒙 is
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then called the primal variable, and the original objective function 𝑓0(𝒙) is referred to as the
primal function.

The dual function 𝑔(𝝀, 𝝂) provides lower bounds on the optimal value 𝑝★ of the problem
(A.17). Specifically, for any 𝝀 ≥ 0 and any 𝝂 (referred to dual feasible) we have

𝑔(𝝀, 𝝂) ≤ 𝑝★,

which holds even if the original problem is not convex.

This important property can be easily verified through the following inequalities: for any
feasible 𝒙,

𝑓0(𝒙) ≥ 𝑓0(𝒙) +
𝑚∑︁
𝑖=1

𝜆𝑖 𝑓𝑖 (𝒙) +
𝑝∑︁
𝑖=1

𝜈𝑖ℎ𝑖 (𝒙)

≥ inf
𝒛∈D

{
𝑓0(𝒛) +

𝑚∑︁
𝑖=1

𝜆𝑖 𝑓𝑖 (𝒛) +
𝑝∑︁
𝑖=1

𝜈𝑖ℎ𝑖 (𝒛)
}

= 𝑔(𝝀, 𝝂),

where we have used the fact that 𝑓𝑖 (𝒙) ≤ 0 and ℎ𝑖 (𝒙) = 0 for any feasible 𝒙.

As a consequence of the lower-bound property, a primal–dual feasible pair (𝒙, (𝝀, 𝝂)) localizes
the optimal value of the primal (and dual) problem within an interval:

𝑝★ ∈ [𝑔 (𝝀, 𝝂) , 𝑓0(𝒙)] . (A.19)

This can be utilized in optimization algorithms to provide non-heuristic stopping criteria.

A.6.2 Lagrange Dual Problem
As we have seen, the Lagrange dual function gives us a lower bound on the optimal value
of the optimization problem (A.17): 𝑔(𝝀, 𝝂) ≤ 𝑝★. Since the lower bound depends on the
choice of (𝝀, 𝝂), a natural question is what would be the tightest lower bound that can be
obtained. Precisely, this leads to the Lagrange dual problem associated with the original
problem (A.17):

maximize
𝝀,𝝂

𝑔(𝝀, 𝝂)
subject to 𝝀 ≥ 0.

(A.20)

This is a convex optimization problem (irrespective of the convexity of the original problem
(A.17)) because the objective to be maximized is concave, and the constraints are convex.

In view of the dual problem, the original problem (A.17) is also called primal problem. In the
dual problem (A.20), we say the variables (𝝀, 𝝂) are dual feasible if 𝝀 ≥ 0 and 𝑔(𝝀, 𝝂) > −∞.
We refer to (𝝀★, 𝝂★) as dual optimal if they are optimal for the problem (A.20). The optimal
value of the dual problem (A.20) is denoted by 𝑑★ in contraposition to the optimal value of
the primal problem 𝑝★.
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Example A.16 (Least-norm solution of linear equations) Consider the problem

minimize
𝒙

𝒙T𝒙

subject to 𝑨𝒙 = 𝒃.

Its Lagrangian is
𝐿 (𝒙, 𝝂) = 𝒙T𝒙 + 𝝂T(𝑨𝒙 − 𝒃).

To find the dual function, we need to solve an unconstrained minimization of the Lagrangian.
We set the gradient equal to zero,

∇𝒙𝐿 (𝒙, 𝝂) = 2𝒙 + 𝑨T𝝂 = 0 =⇒ 𝒙 = −1
2
𝑨T𝝂,

and we plug the solution in 𝐿 to obtain the dual function 𝑔:

𝑔(𝝂) = 𝐿
(
−1

2
𝑨T𝝂, 𝝂

)
= −1

4
𝝂T𝑨𝑨T𝝂 − 𝒃T𝝂,

which is, as expected, a concave function of 𝝂.

From the lower bound property, we have

𝑝★ ≥ −1
4
𝝂T𝑨𝑨T𝝂 − 𝒃T𝝂 for all 𝝂.

Finally, the dual problem is the QP:

maximize
𝝂

− 1
4𝝂

T𝑨𝑨T𝝂 − 𝒃T𝝂.

Example A.17 (Standard-form LP) Consider the problem

minimize
𝒙

𝒄T𝒙

subject to 𝑨𝒙 = 𝒃, 𝒙 ≥ 0.

Its Lagrangian is
𝐿 (𝒙, 𝝀, 𝝂) = 𝒄T𝒙 + 𝝂T(𝑨𝒙 − 𝒃) − 𝝀T𝒙

=
(
𝒄 + 𝑨T𝝂 − 𝝀

)T
𝒙 − 𝒃T𝝂.

To find the dual function, note that 𝐿 is a linear function of 𝒙 and it is unbounded if the term
multiplying 𝒙 is nonzero. Therefore, we can write the dual function as

𝑔(𝝀, 𝝂) = inf
𝒙
𝐿 (𝒙, 𝝀, 𝝂) =

{
−𝒃T𝝂 𝒄 + 𝑨T𝝂 − 𝝀 = 0,
−∞ otherwise,

which, as expected, is a concave function of (𝝀, 𝝂) since it is linear on an affine domain.

From the lower bound property, we have

𝑝★ ≥ −𝒃T𝝂 if 𝒄 + 𝑨T𝝂 ≥ 0.
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Finally, the dual problem is the LP

maximize
𝝂

−𝒃T𝝂

subject to 𝒄 + 𝑨T𝝂 ≥ 0.

Example A.18 (Two-way partitioning) Consider the problem

minimize
𝒙

𝒙T𝑾𝒙

subject to 𝑥2
𝑖 = 1, 𝑖 = 1, . . . , 𝑛.

This is a nonconvex problem because the matrix 𝑾 is not necessarily positive semidefinite
and because of the quadratic equality constraints (the feasible set contains 2𝑛 discrete points).

Its Lagrangian is

𝐿 (𝒙, 𝝂) = 𝒙T𝑾𝒙 +
𝑛∑︁
𝑖=1

𝜈𝑖
(
𝑥2
𝑖 − 1

)
= 𝒙T (𝑾 + Diag(𝝂)) 𝒙 − 1T𝝂.

To find the dual function, note that 𝐿 is a quadratic function of 𝒙 and it is unbounded if the
matrix 𝑾 + Diag(𝝂) has a negative eigenvalue. Therefore, we can write the dual function as

𝑔(𝝂) = inf
𝒙
𝐿 (𝒙, 𝝂) =

{
−1T𝝂 𝑾 + Diag(𝝂) ⪰ 0,
−∞ otherwise.

From the lower bound property, we have

𝑝★ ≥ −1T𝝂 if 𝑾 + Diag(𝝂) ⪰ 0.

One particular lower bound is obtained by choosing 𝝂 = −𝝀min(𝑾)1:

𝑝★ ≥ 𝑛𝜆min(𝑾).

Finally, the dual problem is the SDP

maximize
𝝂

−1T𝝂

subject to 𝑾 + Diag(𝝂) ⪰ 0.

Equivalent formulations of a problem can lead to different dual problems as the following
examples illustrate.

Example A.19 (Introducing new variables) Consider the problem

minimize
𝒙

∥𝑨𝒙 − 𝒃∥2 .

Since the problem has no constraints, the dual problem does not even make sense since it
would be a constant. Instead, we can introduce some dummy variables in the original problem
and rewrite it as

minimize
𝒙,𝒚

∥𝒚∥2
subject to 𝒚 = 𝑨𝒙 − 𝒃.
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Then the dual problem can be derived as

maximize
𝝂

𝒃T𝝂

subject to 𝑨T𝝂 = 0, ∥𝝂∥2 ≤ 1.

Example A.20 (Implicit constraints) Consider the following LP with box constraints:

minimize
𝒙

𝒄T𝒙

subject to 𝑨𝒙 = 𝒃,
−1 ≤ 𝒙 ≤ 1.

The dual problem is
maximize

𝝂,𝝀1 ,𝝀2
−𝒃T𝝂 − 1T𝝀1 − 1T𝝀2

subject to 𝒄 + 𝑨T𝝂 + 𝝀1 − 𝝀2 = 0,
𝝀1 ≥ 0, 𝝀2 ≥ 0,

which does not give much insight. If, instead, we rewrite the primal problem (after making
some explicit constraints implicit) as

minimize
𝒙

𝑓0(𝒙) =
{
𝒄T𝒙 −1 ≤ 𝒙 ≤ 1,
∞ otherwise

subject to 𝑨𝒙 = 𝒃,

then the dual becomes way more insightful:

maximize
𝝂

−𝒃T𝝂 −
𝑨T𝝂 + 𝒄


1 .

A.6.3 Weak and Strong Duality
The optimal value 𝑑★ of the Lagrange dual problem (A.20) is, by definition, the tightest lower
bound on 𝑝★ that can be obtained from the Lagrange dual function. This property is called
the weak duality:

𝑑★ ≤ 𝑝★, (A.21)

which holds even if the original problem is not convex. The difference Γ = 𝑝★ − 𝑑★ is called
optimal duality gap of the original problem (and is always nonnegative).

The bound in (A.21) can be utilized to establish a lower limit on the optimal value of a
problem that is challenging to solve, given that the dual problem (A.20) is always convex.

Of particular interest is when equality is attained in (A.21). This is referred to as strong
duality,

𝑑★ = 𝑝★, (A.22)

and implies that the duality gap is zero. Strong duality is very desirable and may facilitate the
resolution of a difficult problem via the dual.

Unfortunately, strong duality does not hold for general optimization problems. However, if
the primal problem (A.17) is convex, we usually (but not always) have strong duality. There
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are specific conditions under which strong duality holds, and these conditions are referred to
as constraint qualifications.

Slater’s condition is a simple constraint qualification that requires the existence of a strictly
feasible point, that is, 𝒙 ∈ relint D (relative interior of the domain) such that 𝑓𝑖 (𝒙) < 0,
𝑖 = 1, . . . , 𝑚, and ℎ𝑖 (𝒙) = 0, 𝑖 = 1, . . . , 𝑝. Strict feasibility is typically easy to verify in
practical problems. Slater’s theorem states that strong duality holds if Slater’s condition is
met and the optimization problem is convex.

Example A.21 (Inequality-form LP) Consider the problem

minimize
𝒙

𝒄T𝒙

subject to 𝑨𝒙 ≤ 𝒃.

Its dual problem is also an LP:

maximize
𝝀

−𝒃T𝝀

subject to 𝑨T𝝀 + 𝒄 = 0, 𝝀 ≥ 0.

From Slater’s condition, strong duality holds if 𝑨�̃� < 𝒃 for some �̃�, which may be difficult
to verify. Interestingly, in this case, we do not need Slater’s condition, as we always have
𝑝★ = 𝑑★ (except when both the primal and dual problems are infeasible).

Example A.22 (Convex QP) Consider the problem (with 𝑷 ⪰ 0)

minimize
𝒙

𝒙T𝑷𝒙

subject to 𝑨𝒙 ≤ 𝒃.

Its dual problem is also a QP:

maximize
𝝀

− 1
4𝝀

T𝑨𝑷−1𝑨T𝝀 − 𝒃T𝝀

subject to 𝝀 ≥ 0.

From Slater’s condition, strong duality holds if 𝑨�̃� < 𝒃 for some �̃�. However, in this case, we
always have 𝑝★ = 𝑑★.

Example A.23 (Nonconvex QP) Consider the problem

minimize
𝒙

𝒙T𝑨𝒙 + 2𝒃T𝒙

subject to 𝒙T𝒙 ≤ 1,

which is nonconvex in general as 𝑨 ⪰̸ 0.

Its dual problem can be written as the SDP:

maximize
𝑡 ,𝜆

−𝑡 − 𝜆

subject to
[
𝑨 + 𝜆𝑰 𝒃
𝒃T 𝑡

]
⪰ 0.

In this case, strong duality holds even though the original problem is nonconvex (not trivial to
show).
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A.6.4 Optimality Conditions
In Section A.4, we examined the optimality characterization of a solution through the minimum
principle. In the following discussion, we will consider a more explicit characterization that is
of great practical interest, as it often enables us to derive solutions to problems.

Complementary Slackness
Suppose that strong duality holds so that the primal and dual optimal values are equal, 𝑑★ = 𝑝★.
Let 𝒙★ be a primal optimal point and (𝝀★, 𝝂★) be a dual optimal point. Then,

𝑓0(𝒙★) = 𝑔(𝝀★, 𝝂★)

= inf
𝒙∈D

{
𝑓0(𝒙) +

𝑚∑︁
𝑖=1

𝜆★𝑖 𝑓𝑖 (𝒙) +
𝑝∑︁
𝑖=1

𝜈★𝑖 ℎ𝑖 (𝒙)
}

≤ 𝑓0(𝒙★) +
𝑚∑︁
𝑖=1

𝜆★𝑖 𝑓𝑖 (𝒙★) +
𝑝∑︁
𝑖=1

𝜈★𝑖 ℎ𝑖 (𝒙★)

≤ 𝑓0(𝒙★),

where the first line comes from the zero duality gap, the second line is the definition of the
dual function, the third line follows trivially from the definition of infimum, and the fourth
line results from feasibility (i.e., 𝜆★𝑖 ≥ 0, 𝑓𝑖 (𝒙★) ≤ 0, and ℎ𝑖 (𝒙★) = 0).

We then conclude that the two inequalities in this chain must hold with equality. Equality in
the first inequality means that 𝒙★ minimizes 𝐿 (𝒙, 𝝀★, 𝝂★) over 𝒙 (note that there may be other
minimizers). Equality in the second inequality implies that

𝑚∑︁
𝑖=1

𝜆★𝑖 𝑓𝑖 (𝒙★) = 0,

which in turns means (because each term is nonpositive)

𝜆★𝑖 𝑓𝑖 (𝒙★) = 0, 𝑖 = 1, . . . , 𝑚.

These conditions are referred to as complementary slackness. They hold for any primal
optimal 𝒙★ and dual optimal (𝝀★, 𝝂★) (assuming strong duality holds).

The interpretation of complementary slackness provides relevant and practical information:

𝜆★𝑖 > 0 =⇒ 𝑓𝑖
(
𝑥★

)
= 0

and

𝑓𝑖
(
𝑥★

)
< 0 =⇒ 𝜆★𝑖 = 0.

In simpler terms, if a Lagrange multiplier is active (i.e., 𝜆★𝑖 > 0), it indicates that the constraint
is at the boundary of the feasible set and would be violated otherwise. Similarly, if a constraint
is strictly feasible (i.e., 𝑓𝑖 (𝑥★) < 0), it implies that it is not active, and the corresponding
Lagrange multiplier is not even necessary, hence 𝜆★𝑖 = 0.
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KKT Optimality Conditions
We are now ready to write the famous Karush–Kuhn–Tucker (KKT) optimality condi-
tions for convex and nonconvex optimization problems. We assume that the functions
𝑓0, 𝑓1, . . . , 𝑓𝑚, ℎ1, . . . , ℎ𝑝 are differentiable.

Let 𝒙★ and (𝝀★, 𝝂★) be any primal and dual optimal points with zero duality gap. Since 𝒙★

minimizes 𝐿 (𝒙, 𝝀★, 𝝂★) over 𝒙, it follows that its gradient must vanish, that is,

∇ 𝑓0(𝒙★) +
𝑚∑︁
𝑖=1

𝜆★𝑖 ∇ 𝑓𝑖 (𝒙★) +
𝑝∑︁
𝑖=1

𝜈★𝑖 ∇ℎ𝑖 (𝒙★) = 0.

Thus, for any optimization problem (not necessarily convex), any pair of optimal and dual
points, 𝒙★ and (𝝀★, 𝝂★), must satisfy the KKT optimality conditions:

𝑓𝑖 (𝒙★) ≤ 0, 𝑖 = 1, . . . , 𝑚, (primal feasibility)
ℎ𝑖 (𝒙★) = 0, 𝑖 = 1, . . . , 𝑝,

𝜆★𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑚, (dual feasibility)
𝜆★𝑖 𝑓𝑖 (𝒙★) = 0, 𝑖 = 1, . . . , 𝑚, (complementary slackness)

∇ 𝑓0(𝒙★) +
𝑚∑︁
𝑖=1

𝜆★𝑖 ∇ 𝑓𝑖 (𝒙★) +
𝑝∑︁
𝑖=1

𝜈★𝑖 ∇ℎ𝑖 (𝒙★) = 0. (zero Lagrangian gradient)

(A.23)

When the primal problem is convex, the KKT conditions (A.23) are also sufficient for the
points to be primal and dual optimal. To see this, simply note that since the problem is convex,
the Lagrangian in 𝒙 is also convex. A point �̃� that achieves a zero gradient in the Lagrangian
implies that it minimizes the Lagrangian, so

𝑔(�̃�, �̃�) = 𝐿 (�̃�, �̃�, �̃�)

= 𝑓0(�̃�) +
𝑚∑︁
𝑖=1

𝜆𝑖 𝑓𝑖 (�̃�) +
𝑝∑︁
𝑖=1

�̃�𝑖ℎ𝑖 (�̃�)

= 𝑓0(�̃�),

which shows zero duality gap and, therefore, primal and dual optimality. This is summarized
in the next statement.

Theorem A.1 (KKT optimality conditions) Suppose we have an optimization problem with
differentiable functions.

• For any optimization problem (not necessarily convex) with strong duality, the KKT
conditions (A.23) are necessary for optimality.

• For a convex optimization problem satisfying Slater’s condition, strong duality follows and
the KKT conditions (A.23) are necessary and sufficient for optimality.

The KKT conditions play a key role in optimization. In some cases, it is possible to characterize
analytically the solution in a convenient form. More generally, many algorithms are conceived,
or can be interpreted, as methods for solving the KKT conditions.
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A.7 Multi-objective Optimization
In Section A.5, we expanded the scope of inequality constraints to include vector values
through the use of generalized inequalities, as illustrated in the conic programming (CP)
formulation in (A.14). We will now briefly explore the implications of having a vector-valued
objective function.

The reader interested in more details is referred to Chapter 2 in Boyd and Vandenberghe
(2004) for generalized inequalities and Chapter 4 in Boyd and Vandenberghe (2004) for vector
optimization, Pareto optimality, and multi-objective optimization.

A.7.1 Generalized Inequalities
A cone was defined in Section A.2 as a set K ∈ R𝑛 such that for every 𝒙 ∈ K and 𝜃 ≥ 0
we have 𝜃𝒙 ∈ K. A cone K is called a proper cone if it is convex, closed, solid (i.e., has a
nonempty interior), and pointed (i.e., it contains no line).

A proper coneK can be used to define a generalized inequality, which is a partial ordering on
R𝑛 that has many of the properties of the standard ordering on R:

𝒙 ⪯K 𝒚 ⇐⇒ 𝒚 − 𝒙 ∈ K .

We also write 𝒙 ⪯K 𝒚 as 𝒚 ⪰K 𝒙.

Example A.24 (Nonnegative orthant and componentwise inequality) The nonnegative
orthant K = R𝑛+ is a proper cone and its associated generalized inequality ⪯K corresponds to
the componentwise inequality between vectors: 𝒙 ⪯K 𝒚 means 𝑥𝑖 ≤ 𝑦𝑖, 𝑖 = 1, . . . , 𝑚.

Example A.25 (Positive semidefinite cone and matrix inequality) The positive semidefinite
cone S𝑛+ is a proper cone in the set of 𝑛×𝑛 symmetric matrices S𝑛 and its associated generalized
inequality ⪯K is the usual matrix inequality: 𝑿 ⪯K 𝒀 means 𝒀 − 𝑿 is positive semidefinite
(typically written as 𝒀 ⪰ 𝑿).

The notation of generalized inequality (i.e., ⪯K) is meant to suggest the analogy to ordinary
inequality on R (i.e., ≤). While many properties of ordinary inequality do hold for generalized
inequalities, some important ones do not. The most obvious difference is that ≤ on R is a
total ordering: any two points are comparable, meaning that we can always write 𝑥 ≤ 𝑦 or
𝑦 ≤ 𝑥. This property does not hold for other generalized inequalities as they simply define
a partial ordering. One implication is that concepts like minimum and maximum are more
complicated in the context of generalized inequalities.

We can also use generalized inequalities to extend the definition of a convex function from
Section A.3 to the vector case. We say a function 𝒇 : R𝑛 → R𝑞 isK-convex if the domain is a
convex set and, for all 𝒙, 𝒚 ∈ dom 𝒇 and 𝜃 ∈ [0, 1], 𝒇 (𝜃𝒙+ (1−𝜃)𝒚) ⪯K 𝜃 𝒇 (𝒙) + (1−𝜃) 𝒇 (𝒚).
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A.7.2 Vector Optimization
We denote a general vector optimization problem as

minimize
𝒙

(with respect to K) 𝒇0(𝒙)
subject to 𝑓𝑖 (𝒙) ≤ 0,

ℎ𝑖 (𝒙) = 0,
1 ≤ 𝑖 ≤ 𝑚,
1 ≤ 𝑖 ≤ 𝑝,

(A.24)

where K ∈ R𝑞 is a proper cone, 𝒇0 : R𝑛 → R𝑞 is the vector-valued objective function,
𝑓𝑖 : R𝑛 → R are the inequality constraint functions, and ℎ𝑖 : R𝑛 → R are the equality
constraint functions. The only difference between this problem and the standard optimization
problem (A.1) is that here the objective function takes values in R𝑞 and the problem
specification includes a proper cone K, which is used to compare objective values.

We say the vector optimization problem (A.24) is a convex vector optimization problem if the
objective function 𝒇0 is K-convex, the inequality constraint functions 𝑓1, . . . , 𝑓𝑚 are convex,
and the equality constraint functions ℎ1, . . . , ℎ𝑝 are affine (which can then be written as
𝑨𝒙 = 𝒃).

The interpretation of problem (A.24) is not straightforward because the general inequality
⪯K , which is used to compare different points based on their objective values 𝒇0(𝒙), is not
a total ordering but rather a partial ordering. This means we may encounter two points, 𝒙
and 𝒚, that are not comparable; that is, neither 𝒇0(𝒙) ⪯K 𝒇0(𝒚) nor 𝒇0(𝒚) ⪯K 𝒇0(𝒙) holds (a
situation that cannot occur in the standard optimization problem (A.1)).

A.7.3 Pareto Optimality
Let us start with a special case in which the meaning of the vector optimization problem is
clear. Consider the set of achievable objective values, that is, the set of objective values of
feasible points:

O = { 𝒇0 (𝒙) | 𝒙 is feasible} .

We say this set has a minimum element if there is a feasible 𝒙★ such that 𝒇0(𝒙★) ⪯K 𝒇0(𝒙) for
all feasible 𝒙. Then we say that 𝒙★ is optimal for the problem (A.24) and refer to 𝒇0(𝒙★) as
the optimal value. Using set notation, a point 𝒙★ is optimal if and only if it is feasible and
O ⊆ 𝒇0(𝒙★) + K. In this case, 𝒙★ is unambiguously a best choice for 𝒙 among the feasible
points. However, most vector optimization problems do not have an optimal point because
there may be other points that are not comparable via the cone K.

We now turn our attention to a more general case, which is common in most vector optimization
problems of interest. In this case, the set of achievable objective values, O, does not have
a minimum element. Consequently, the problem does not have an optimal point or optimal
value. When O lacks a minimum element, we can only discuss the so-called minimal elements.
These are the best among the objective values that can be compared, although there are other
objective values that cannot be compared. The points 𝒙 that achieve such minimal elements
in the set of objective values O are referred to as Pareto optimal points. We say that 𝒇0(𝒙) is a
Pareto optimal value for the vector optimization problem (A.24).

Thus, a point 𝒙po is Pareto optimal if it is feasible and, for any other feasible 𝒙, 𝒇0(𝒙) ⪯K 𝒇0(𝒙po)
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implies 𝒇0(𝒙) = 𝒇0(𝒙po). Using set notation, a point 𝒙po is Pareto optimal if and only if it
is feasible and ( 𝒇0(𝒙po) − K) ∩ O = 𝒇0(𝒙po). In words, 𝒙★ cannot be in the cone of points
worse than any other point.

A vector optimization problem usually has many Pareto optimal values (and points), and they
lie in the boundary of the set of achievable objective values, usually termed efficient frontier.

A.7.4 Multi-objective Optimization
When a vector optimization problem is based on the cone K = R𝑞+ , that is, the nonnegative
orthant, it is called a multi-objective or multi-criterion optimization problem. The components
of the vector objective function 𝒇0, denoted by 𝐹1, . . . , 𝐹𝑞, can be interpreted as 𝑞 different
scalar objectives to be minimized. The simplest case of multi-objective optimization is
bi-objective or bi-criterion optimization problems, where we just have two objectives 𝐹1(𝒙)
and 𝐹2(𝒙).

A multi-objective optimization problem is convex if the inequality constraint functions
𝑓1, . . . , 𝑓𝑚 are convex, the equality constraint functions ℎ1, . . . , ℎ𝑝 are affine (denoted then as
𝑨𝒙 = 𝒃), and the objectives 𝐹1, . . . , 𝐹𝑞 are convex.

For two feasible points 𝒙 and 𝒚, 𝐹𝑖 (𝒙) ≤ 𝐹𝑖 (𝒚) means that 𝒙 is at least as good as 𝒚 and
𝐹𝑖 (𝒙) < 𝐹𝑖 (𝒚) means that 𝒙 is better than 𝒚, according to the 𝑖th objective. We say that 𝒙
is better than 𝒚, or 𝒙 dominates 𝒚, if 𝐹𝑖 (𝒙) ≤ 𝐹𝑖 (𝒚) for 𝑖 = 1, . . . , 𝑞, and for at least one 𝑗 ,
𝐹𝑗 (𝒙) < 𝐹𝑗 (𝒚). In words, 𝒙 is better than 𝒚 if 𝒙 meets or beats 𝒚 on all objectives, and beats
it in at least one objective.

In a multi-objective optimization problem, for a point to be considered optimal, 𝒙★, it has to
be simultaneously optimal for each of the scalar problems:

𝐹𝑖 (𝒙★) ≤ 𝐹𝑖 (𝒚), 𝑖 = 1, . . . , 𝑞.

In general, however, this cannot happen unless in the trivial case that the objectives are
noncompeting, since no compromises have to be made among the objectives. In most practical
problems, there is naturally a trade-off among the objectives. Consequently, an optimal
solution does not exists and we have to resort to the concept of Pareto optimality. For a point to
be considered Pareto optimal, 𝒙po, it must be such that no objective can be improved without
degrading at least one other objective.

The set of Pareto optimal values for a multi-objective problem is called the optimal trade-off
surface or, when 𝑞 = 2, the optimal trade-off curve. In other contexts, this is also referred to
as the efficient frontier.
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A.7.5 Scalarization
Scalarization is a standard technique for finding Pareto optimal points for a vector optimization
problem. Specifically, for a multi-objective optimization problem the scalarized problem is

minimize
𝒙

∑𝑞

𝑖=1 𝜆𝑖𝐹𝑖 (𝒙)
subject to 𝑓𝑖 (𝒙) ≤ 0,

ℎ𝑖 (𝒙) = 0,
1 ≤ 𝑖 ≤ 𝑚,
1 ≤ 𝑖 ≤ 𝑝,

(A.25)

where the 𝜆𝑖’s are the weights associated to the objectives and must satisfy 𝜆𝑖 ≥ 0.

An optimal point of the scalarized problem is Pareto optimal for the multi-objective optimiza-
tion problem. By choosing different values for the weights we can obtain different Pareto
optimal solutions for the multi-objective optimization problem. However, there may be some
Pareto optimal points that cannot be obtained via scalarization.

For convex multi-objective optimization problems, the scalarized problem is also convex and
yields all Pareto optimal points for different weights. That is, for every Pareto optimal point,
there are some weights such that it is optimal in the scalarized problem.

Example A.26 (Regularized LS) Consider a modified least squares problem where the
energy of the solution is also desired to be small. We can then consider a multi-objective
optimization problem with two objectives:

• 𝐹1(𝒙) = ∥𝑨𝒙 − 𝒃∥22 is a measure of the regression error;
• 𝐹2(𝒙) = ∥𝒙∥22 is a measure of the energy of 𝒙.

The multi-objective optimization problem formulation is

minimize
𝒙

(with respect to R2
+) 𝑓0(𝒙) = (𝐹1(𝒙), 𝐹2(𝒙))

and its corresponding scalarization is

minimize
𝒙

∥𝑨𝒙 − 𝒃∥22 + 𝛾 ∥𝒙∥22 ,

where 𝛾 ≥ 0 is the weight to indicate the preference in the trade-off.

A.8 Summary
• Optimization has a long history. The theory has been extensively developed over the

past century, whereas the evolution of algorithms began in 1947 with the introduction
of the simplex method and culminated in the mid-1990s with the advent of the powerful
interior-point methods.

• Generally, optimization problems are hard to solve, with an exponential time complexity.
However, the class of convex problems enjoys a manageable polynomial time complexity,
hence the interest in convex optimization.

• Convex problems are composed of convex functions and convex sets. They enjoy a
rich theoretical foundation as well as efficient algorithms. There is a plethora of solvers
available in most programming languages that can be used to solve optimization problems
numerically.



526 Convex Optimization Theory

• Lagrange duality is a beautiful and powerful theory that provides numerous useful theoretical
results, including the KKT optimality conditions that can be used to characterize optimal
solutions.

• The standard problem formulation can be extended in many ways, such as with multi-
objective formulations and robust formulations.

Exercises
A.1 (Concepts on convexity)

a. Define a convex set and provide an example.
b. Define a convex function and provide an example.
c. Explain the concept of convex optimization problems and provide an example.
d. What is the difference between active and inactive constraints in an optimization problem?
e. What is the difference between a locally optimal point and a globally optimal point?
f. Define a feasibility problem and provide an example.
g. Explain the concept of least squares problems and provide an example.
h. Explain the concept of linear programming and provide an example.
i. Explain the concept of nonconvex optimization and provide an example.
j. Explain the difference between a convex and a nonconvex optimization problem.

A.2 (Convexity of sets) Determine the convexity of the following sets:

a. X =
{
𝑥 ∈ R | 𝑥2 − 3𝑥 + 2 ≥ 0

}
.

b. X = {𝒙 ∈ R𝑛 | max{𝑥1, 𝑥2, . . . , 𝑥𝑛} ≤ 1}.
c. X =

{
𝒙 ∈ R𝑛 | 𝛼 ≤ 𝒄T𝒙 ≤ 𝛽

}
.

d. X =
{
𝒙 ∈ R2 | 𝑥1 ≥ 1, 𝑥2 ≥ 2, 𝑥1𝑥2 ≥ 1

}
.

e. X =
{
(𝑥, 𝑦) ∈ R2 | 𝑦 ≥ 𝑥2

}
.

f. X =
{
𝒙 ∈ R𝑛 | ∥𝒙 − 𝒄∥ ≤ 𝒂T𝒙 + 𝑏

}
.

g. X =
{
𝒙 ∈ R𝑛 | (𝒂T𝒙 + 𝑏)/(𝒄T𝒙 + 𝑑) ≥ 1, 𝒄T𝒙 + 𝑑 ≥ 1

}
.

h. X =
{
𝒙 ∈ R𝑛 | 𝒂T𝒙 ≥ 𝑏 or ∥𝒙 − 𝒄∥ ≤ 1

}
.

i. X =
{
𝒙 ∈ R𝑛 | 𝒙T𝒚 ≤ 1 for all 𝒚 ∈ S

}
, where S is an arbitrary set.

A.3 (Convexity of functions) Determine the convexity of the following functions:

a. 𝑓 (𝒙) = 𝛼𝑔(𝒙) + 𝛽, where 𝑔 is a convex function, and 𝛼 and 𝛽 are scalars with 𝛼 > 0.
b. 𝑓 (𝒙) = ∥𝒙∥ 𝑝 with 𝑝 ≥ 1.
c. 𝑓 (𝒙) = ∥𝑨𝒙 − 𝒃∥22.
d. The difference between the maximum and minimum value of a polynomial on a given

interval, as a function of its coefficients:

𝑓 (𝒙) = sup
𝑡∈[0,1]

𝑝𝒙 (𝑡) − inf
𝑡∈[0,1]

𝑝𝒙 (𝑡),

where 𝑝𝒙 (𝑡) = 𝑥1 + 𝑥2𝑡 + 𝑥3𝑡
2 + · · · + 𝑥𝑛𝑡𝑛−1.

e. 𝑓 (𝒙) = 𝒙T𝒀−1𝒙 (with 𝒀 ≻ 0).
f. 𝑓 (𝒀) = 𝒙T𝒀−1𝒙 (with 𝒀 ≻ 0).
g. 𝑓 (𝒙,𝒀) = 𝒙T𝒀−1𝒙 (with 𝒀 ≻ 0). Hint: Use the Schur complement.
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h. 𝑓 (𝒙) =
√︁√

𝒂T𝒙 + 𝑏.
i. 𝑓 (𝑿) = log det (𝑿) on S𝑛++.
j. 𝑓 (𝑿) = det (𝑿)1/𝑛 on S𝑛+.
k. 𝑓 (𝑿) = Tr

(
𝑿−1) on S𝑛++.

l. 𝑓 (𝒙) = 1
2𝒙

T𝚺𝒙 − 𝒃Tlog(𝒙), where 𝚺 ≻ 0 and the log function is applied elementwise.

A.4 (Reformulation of problems)

a. Rewrite the following optimization problem as an LP (assuming 𝑑 > ∥𝒄∥1):

minimize
𝒙

∥𝑨𝒙 − 𝒃∥1
𝒄T𝒙 + 𝑑

subject to ∥𝒙∥∞ ≤ 1.

b. Rewrite the following optimization problem as an LP:

minimize
𝒙

∥𝑨𝒙 − 𝒃∥1
1 − ∥𝒙∥∞

.

c. Rewrite the following constraint as an SOC constraint:{
(𝒙, 𝑦, 𝑧) ∈ R𝑛+2 | ∥𝒙∥2 ≤ 𝑦𝑧, 𝑦 ≥ 0, 𝑧 ≥ 0

}
.

Hint: You may need the equality 𝑦𝑧 = 1
4
(
(𝑦 + 𝑧)2 − (𝑦 − 𝑧)2

)
.

d. Rewrite the following problem as an SOCP:

minimize
𝒙,𝑦≥0,𝑧≥0

𝒂T𝒙 + 𝜅
√
𝒙T𝚺𝒙

subject to ∥𝒙∥2 ≤ 𝑦𝑧,

where 𝚺 ⪰ 0.

e. Rewrite the following problem as an SOCP:

minimize
𝒙

𝒙T𝑨𝒙 + 𝒂T𝒙

subject to 𝑩𝒙 ≤ 𝒃,

where 𝑨 ⪰ 0.

f. Rewrite the following problem as an SDP:

minimize
𝑿⪰0

Tr
(
(𝑰 + 𝑿)−1) + Tr (𝑨𝑿) .

A.5 (Concepts on problem resolution)

a. How would you determine if a convex problem is feasible or infeasible?
b. How would you determine if a convex problem has a unique solution or multiple solutions?
c. What are the main ways to solve a convex problem?
d. Given a nonconvex optimization problem, what strategies can be used to find an approximate

solution?
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A.6 (Linear regression)

a. Consider the line equation 𝑦 = 𝛼𝑥 + 𝛽. Choose some values for 𝛼 and 𝛽, and generate 100
noisy pairs (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . . . , 100 (i.e., add some random noise to each observation 𝑦𝑖).

b. Formulate a regression problem to fit the 100 data points with a line based on least squares.
Plot the true and estimated lines along with the points.

c. Repeat the regression using several other definitions of error in the problem formulation.
Plot and compare all the estimated lines.

A.7 (Concepts on Lagrange duality)

a. Define Lagrange duality and explain its significance in convex optimization.
b. Give an example of a problem and its dual.
c. List the KKT conditions and explain their role in convex optimization.
d. Provide an example of a problem with its KKT conditions.
e. Try to find a solution that satisfies the previous KKT conditions. Is this always possible?

A.8 (Solution via KKT conditions) For the following problems, determine the convexity,
write the Lagrangian and KKT conditions, and derive a closed-form solution:

a. Risk parity portfolio:
minimize

𝒙≥0

√
𝒙T𝚺𝒙

subject to 𝒃T log(𝒙) ≥ 1,

where 𝚺 ≻ 0 and the log function is applied elementwise.

b. Projection onto the simplex:

minimize
𝒙

1
2 ∥𝒙 − 𝒚∥22

subject to 1T𝒙 = (≤)1, 𝒙 ≥ 0.

c. Projection onto a diamond:

minimize
𝒙

1
2 ∥𝒙 − 𝒚∥22

subject to ∥𝒙∥1 ≤ 1.

A.9 (Dual problems) Find the dual of the following problems:

a. Vanishing maximum eigenvalue problem:

minimize
𝑡 ,𝑿

𝑡

subject to 𝑡 𝑰 ⪰ 𝑿,
𝑿 ⪰ 0.

b. Matrix upper bound problem:

minimize
𝑿

Tr(𝑿)
subject to 𝑿 ⪰ 𝑨,

𝑿 ⪰ 𝑩

where 𝑨, 𝑩 ∈ S𝑛+.
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c. Log det problem:

minimize
𝑿⪰0

Tr(𝑪𝑿) + log det(𝑿−1)
subject to 𝑨T

𝑖 𝑿𝑨𝑖 ⪯ 𝑩𝑖, 𝑖 = 1, . . . , 𝑚,

where 𝑪 ∈ S𝑛+ and 𝑩𝑖 ∈ S𝑛++ for 𝑖 = 1, . . . , 𝑚,.

A.10 (Multi-objective optimization)

a. Explain the concept of multi-objective optimization problems.
b. What is the significance of the weights in the scalarization of a multi-objective problem?
c. Provide an example of a bi-objective convex optimization problem and its scalarization.
d. Solve this scalarized bi-objective problem for different values of the weight and plot the

optimal trade-off curve.
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Appendix B

Optimization Algorithms

“Waste no more time arguing what a good man should be. Be one.”

— Marcus Aurelius

Over the past century, there has been a remarkable progression in the development of efficient
algorithms designed to solve a broad range of convex optimization problems. In 1947, Dantzig
introduced the widely used and efficient simplex method for linear programming (LP), despite
its theoretical worst-case complexity being exponential. Later, in 1984, Karmarkar presented
a groundbreaking paper (Karmarkar, 1984) proposing an interior-point method for solving
LPs, which offered a worst-case polynomial time complexity. This development was followed
by numerous researchers extending the application of interior-point methods to quadratic
programming (QP) and linear complementarity problems. In 1994, Nesterov and Nemirovskii
further advanced the field by developing the theory of self-concordant functions. This theory
facilitated the expansion of algorithms based on the log-barrier function to a wider array of
convex problems, notably including semidefinite programming (SDP) and second-order cone
programming (SOCP) (Nesterov & Nemirovski, 1994).

In addition to these general-purpose algorithms designed for various classes of convex
problems, there exist other highly beneficial techniques and algorithmic frameworks, such
as block coordinate descent, majorization–minimization, successive convex approximation,
among others. These can be employed to develop customized, straightforward algorithms
specifically tailored to certain (potentially nonconvex) problems, often with improved
complexity and convergence rates. This chapter will explore a broad array of such practical
algorithms.

B.1 Solvers
A solver, also referred to as an optimizer, is an engine designed to solve specific types of
mathematical problems. Most programming languages, including R, Python, MATLAB, Julia,
Rust, C, and C++, offer a comprehensive list of available solvers. Each of these solvers is
typically capable of handling only a certain category of problems, such as LP, QP, QCQP,
SOCP, or SDP. For a detailed classification of optimization problems, refer to Section A.5.

This material will be published by Cambridge University Press as Portfolio Optimization: Theory and
Application by Daniel P. Palomar. This pre-publication version is free to view and download for personal use
only; not for re-distribution, re-sale, or use in derivative works. © Daniel P. Palomar 2025.
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B.1.1 Some Popular Solvers
Many of the currently popular solvers were originally developed in a specific programming
language, such as Fortran, C, C++, or MATLAB. However, over time, they have been adapted
and integrated into a wide range of other programming languages.

For the purpose of illustration, among many others, some popular solvers include:

• GLPK (GNU Linear Programming Kit):1 intended for large-scale LP including mixed-
integer variables, written in C.

• quadprog:2 very popular open-source QP solver originally written in Fortran by Berwin
Turlach in the late 1980s, and now accessible from most other programming languages.

• MOSEK:3 proprietary LP, QP, SOCP, SDP solver including mixed-integer variables
established in 1997 by Erling Andersen (free licence available for academia); specialized
in large-scale problems and very fast, robust, and reliable.

• SeDuMi:4 open-source LP, QP, SOCP, SDP solver originally developed by Sturm in 1999
for MATLAB (Sturm, 1999).

• SDPT3:5 open-source LP, QP, SOCP, SDP solver originally developed in 1999 for MATLAB
(Tütüncü et al., 2003).

• Gurobi:6 proprietary LP, QP, and SOCP solver including mixed-integer variables (free
licence available for academia).

• Embedded COnic Solver (ECOS):7 SOCP solver originally written in C.

• CPLEX:8 proprietary LP and QP solver that also handles mixed-integer variables (free
licence available for academia).

B.1.2 Complexity of Interior-Point Methods
Internally, solvers can be based on different types of algorithms like the simplex method
for LP (Nocedal & Wright, 2006), cutting plane methods (Bertsekas, 1999), interior-point
methods (Ben-Tal & Nemirovski, 2001; Boyd & Vandenberghe, 2004; Luenberger & Ye, 2021;
Nemirovski, 2000; Nesterov, 2018; Nesterov & Nemirovski, 1994; Nocedal & Wright, 2006),
or even more specific algorithms tailored to a more narrow type of problem such as ℓ2-norm
regression with an ℓ1-norm regularization term (used to promote sparsity) (Tibshirani, 1996).

In general, the complexity of interior-point methods for LP, QP, QCQP, SOCP, and SDP is
1 GLPK: www.gnu.org/software/glpk
2 quadprog R version: https://cran.r-project.org/package=quadprog
3 MOSEK: www.mosek.com
4 SeDuMi: https://sedumi.ie.lehigh.edu; MATLAB version at https://github.com/sqlp/sedumi
5 SDPT3: https://blog.nus.edu.sg/mattohkc/softwares/sdpt3, https://github.com/Kim-ChuanToh/SDPT3,

https://github.com/sqlp/sdpt3
6 Gurobi optimizer: www.gurobi.com
7 ECOS: https://github.com/embotech/ecos
8 IBM CPLEX optimizer: www.ibm.com/analytics/cplex-optimizer

https://www.gnu.org/software/glpk
https://cran.r-project.org/package=quadprog
https://www.mosek.com
https://sedumi.ie.lehigh.edu
https://github.com/sqlp/sedumi
https://blog.nus.edu.sg/mattohkc/softwares/sdpt3
https://github.com/Kim-ChuanToh/SDPT3
https://github.com/sqlp/sdpt3
https://www.gurobi.com
https://github.com/embotech/ecos
https://www.ibm.com/analytics/cplex-optimizer
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𝑂
(
𝑛3𝐿

)
,9 where 𝑛 is the number of variables and 𝐿 is the number of accuracy digits of the

solution. To further discern the difference in the complexity, we need to take into account the
number of constraints, 𝑚, and dimensionality of the different cones, 𝑘 (Nemirovski, 2000):

• LP: complexity of 𝑂
(
(𝑚 + 𝑛)3/2𝑛2𝐿

)
, later improved to 𝑂

(
((𝑚 + 𝑛)𝑛2 + (𝑚 + 𝑛)1.5𝑛)𝐿

)
,

and even to 𝑂
( (
𝑛3/log(𝑛)

)
𝐿
)

when 𝑚 and 𝑛 are of the same order;

• QCQP: complexity of 𝑂
(√
𝑚(𝑚 + 𝑛)𝑛2𝐿

)
;

• SOCP: complexity of 𝑂
(√
𝑚 + 1 𝑛(𝑛2 + 𝑚 + (𝑚 + 1)𝑘2)𝐿

)
; and

• SDP: complexity of𝑂
(√

1 + 𝑚𝑘 𝑛(𝑛2 + 𝑛𝑚𝑘2 + 𝑚𝑘3)𝐿
)
, where the matrices are of dimen-

sion 𝑘 × 𝑘 .

For example, consider an SOCP where the number of constraints and cone dimension are
both of the same order as the number of variables (i.e., 𝑚 = 𝑂 (𝑛) and 𝑘 = 𝑂 (𝑛)), then the
complexity order is 𝑂 (𝑛4.5𝐿). Consider now an SDP where the cone dimension is of the same
order as the number of variables (i.e., 𝑘 = 𝑂 (𝑛)), then the complexity order is to 𝑂 (𝑛4); if, in
addition, the number of constraints also grows with the number of variables (i.e., 𝑚 = 𝑂 (𝑛)),
then the complexity order becomes 𝑂

(
𝑛6𝐿

)
. We can clearly see that the complexity for

solving SOCP is much higher than that of LP, QP, and QCQP, and it only gets worse for SDP.

B.1.3 Interface with Solvers
Solvers require that problems be expressed in a standard form; that is, the arguments to be
passed to the solvers must be formatted in a very specific way. However, most formulated
problems do not immediately present themselves in a standard form and they must be
transformed. This process is time-consuming and, more importantly, it is susceptible to human
transcription errors, as illustrated by the following examples.

Example B.1 (Norm approximation problem) Consider the problem

minimize
𝒙

∥𝑨𝒙 − 𝒃∥ ,

whose solution depends on the choice of the norm and so does the process of conversion to
standard form.

• If we choose the Euclidean or ℓ2-norm, ∥𝑨𝒙 − 𝒃∥2, then the problem is just a least squares
(LS) with analytic solution 𝒙★ = (𝑨T𝑨)−1𝑨T𝒃.

• If we choose the Chebyshev or ℓ∞-norm, ∥𝑨𝒙 − 𝒃∥∞, then the problem can be rewritten as
the LP

minimize
𝒙,𝑡

𝑡

subject to −𝑡1 ≤ 𝑨𝒙 − 𝒃 ≤ 𝑡1

9 The “big O” notation,𝑂 ( ·) , measures the order of complexity. To be specific, we say that the complexity is
𝑂 (𝑔 (𝑁 ) ) , as 𝑁 →∞, if there exists a positive real number 𝑀 and 𝑁0 such that the complexity is
upper-bounded by 𝑀𝑔 (𝑁 ) for all 𝑁 ≥ 𝑁0.
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or, equivalently,

minimize
𝒙,𝑡

[
0T 1

] [
𝒙
𝑡

]
subject to

[
𝑨 −1
−𝑨 −1

] [
𝒙
𝑡

]
≤

[
𝒃
−𝒃

]
,

which finally can be written as the MATLAB code
xt = linprog( [zeros(n,1); 1],

[A,-ones(m,1); -A,-ones(m,1)],
[b; -b] )

x = xt(1:n)

• If we choose the Manhattan or ℓ1-norm, ∥𝑨𝒙 − 𝒃∥1, then the problem can be rewritten as
the LP

minimize
𝒙,𝒕

1T 𝒕

subject to −𝒕 ≤ 𝑨𝒙 − 𝒃 ≤ 𝒕

or, equivalently,

minimize
𝒙,𝑡

[
0T 1T] [

𝒙
𝒕

]
subject to

[
𝑨 −𝑰
−𝑨 −𝑰

] [
𝒙
𝒕

]
≤

[
𝒃
−𝒃

]
,

which finally can be written as the MATLAB code
xt = linprog( [zeros(n,1); ones(n,1)],

[A,-eye(m,1); -A,-eye(m,1)],
[b; -b] )

x = xt(1:n)

The previous example was as simple as it can get. We explore now a slightly more complicated
problem with linear constraints and observe how quickly the code becomes complicated and
prone to errors.

Example B.2 (Euclidean norm approximation problem with linear constraints) Consider
the problem

minimize
𝒙

∥𝑨𝒙 − 𝒃∥2
subject to 𝑪𝒙 = 𝒅,

𝒍 ≤ 𝒙 ≤ 𝒖.
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This can be expressed as
minimize
𝒙,𝒚,𝑡 ,𝒔𝑙 ,𝒔𝑢

𝑡

subject to 𝑨𝒙 − 𝒃 = 𝒚,
𝑪𝒙 = 𝒅,
𝒙 − 𝒔𝑙 = 𝒍,
𝒙 + 𝒔𝑢 = 𝒖,
𝒔𝑙, 𝒔𝑢 ≥ 0,
∥𝒚∥2 ≤ 𝑡

or, equivalently,

minimize
𝒙,𝒚,𝑡 ,𝒔𝑙 ,𝒔𝑢

[
0T 0T 0T 0T 1

]
�̄�

subject to


𝑨 −𝑰
𝑪
𝑰 −𝑰
𝑰 𝑰

 �̄� ≤

𝒃
𝒅
𝒍
𝒖

 ,
�̄� ∈ 𝑹𝑛 × 𝑹𝑛+ × 𝑹𝑛+ × 𝑸𝑚,

which finally can be written as the MATLAB code
AA = [ A, zeros(m,n), zeros(m,n), -eye(m), 0;

C, zeros(p,n), zeros(p,n), zeros(p,n), 0;
eye(n), -eye(n), zeros(n,n), zeros(n,n), 0;
eye(n), zeros(n,n), eye(n), zeros(n,n), 0 ]

bb = [ b; d; l; u ]
cc = [ zeros(3*n + m, 1); 1 ]
K.f = n; K.l = 2*n; K.q = m + 1
xsyz = sedumi( AA, bb, cc, K )
x = xsyz(1:n)

B.1.4 Modeling Frameworks
A modeling framework simplifies the use of solvers by shielding the user from the specific
details of the solver argument formatting. It effectively acts as an interface between the user
and the solver. In fact, a modeling framework can typically interface with a variety of solvers
that the user can choose depending on the type of problem. A modeling framework is a
fantastic tool for rapid prototyping of models while avoiding transcription errors when writing
the code. Nevertheless, if high speed is desired, then one should consider calling the solver
directly while avoiding the convenient interface provided by a modeling framework.

Arguably, the two most successful examples (both of which are freely available) are YALMIP10

(Löfberg, 2004) and CVX.11 CVX was initially released in 2005 for MATLAB and is now
available in Python, R, and Julia (Fu et al., 2020; Grant & Boyd, 2008, 2014).

CVX stands for “convex disciplined programming” and it is a convenient and powerful tool
10 YALMIP: https://yalmip.github.io
11 CVX: http://cvxr.com; CVX in R: https://cvxr.rbind.io

https://yalmip.github.io
http://cvxr.com
https://cvxr.rbind.io
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for the rapid prototyping of models and algorithms incorporating convex optimization (also
allows integer constraints). It interfaces with many solvers such as the free solvers SeDuMi
and SDPT3, as well as the commercial solvers Gurobi and MOSEK. Internally, CVX knows
the elementary convex and concave functions as well as the rules of composition that preserve
convexity. This way, it can determine whether the problem is convex or not. CVX is extremely
simple to use and it is very convenient for prototyping while avoiding transcript errors.

Example B.3 (Constrained Euclidean norm approximation in CVX) Consider the problem

minimize
𝒙

∥𝑨𝒙 − 𝒃∥2
subject to 𝑪𝒙 = 𝒅,

𝒍 ≤ 𝒙 ≤ 𝒖.

The corresponding code in different popular languages (e.g., MATLAB, R, and Python) is
almost identical and very simple:

• MATLAB:
cvx_begin

variable x(n)
minimize(norm(A * x - b, 2))
subject to

C * x == d
l <= x
x <= u

cvx_end

• R:
x <- Variable(n)
prob <- Problem(Minimize(cvxr_norm(A %*% x - b, 2)),

list(C %*% x == d,
l <= x,
x <= u))

solve(prob)

• Python:
x = cvxpy.Variable(n)
prob = cvxp.Minimize(cvxpy.norm(A @ x - b, 2),

[C @ x == d,
l <= x,
x <= u])

prob.solve()
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B.2 Gradient Methods
Consider the unconstrained optimization problem

minimize
𝒙

𝑓 (𝒙) (B.1)

where 𝑓 is the objective function (assumed to be continuously differentiable).

An iterative method or algorithm produces a sequence of iterates 𝒙0, 𝒙1, 𝒙2, . . . that may or
may not converge to an optimal solution 𝒙★. In an ideal case with 𝑓 convex, one may expect
that, as the iterations proceed with 𝑘 →∞, the objective function converges to the optimal
value of the problem,

𝑓
(
𝒙𝑘

)
→ 𝑝★,

and the gradient tends to zero,
∇ 𝑓

(
𝒙𝑘

)
→ 0.

For details on iterative methods and convergence properties, the reader is referred to the many
available textbooks, such as Bertsekas (1999), Boyd and Vandenberghe (2004), Nocedal
and Wright (2006), and Beck (2017). The case of nondifferentiable 𝑓 leads to subgradient
methods (Beck, 2017), which are not considered herein.

B.2.1 Descent Methods
Descent methods (a.k.a. gradient methods) satisfy the property that 𝑓

(
𝒙𝑘+1

)
< 𝑓

(
𝒙𝑘

)
and

obtain the iterates as follows:
𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒅𝑘 ,

where 𝒅𝑘 is the search direction and 𝛼𝑘 is the stepsize at iteration 𝑘 .

For a sufficiently small step, the descent property implies that 𝒅 has to satisfy ∇ 𝑓 (𝒙)T 𝒅 < 0
and that 𝛼 has to be properly chosen (if 𝛼 is too large, even with a descent direction, the
descent property may be violated).

B.2.2 Line Search
Line search is the procedure by which the stepsize 𝛼 is chosen. There are several possible
methods but the following two are widely used due to their good theoretical convergence
properties as well as their practical performance.

• Exact line search: Based on solving the univariate optimization problem:

𝛼 = arg min
𝛼>0

𝑓 (𝒙 + 𝛼𝒅).

• Backtracking line search (a.k.a. Armijo rule): Starting at 𝛼 = 1, repeat 𝛼← 𝛽𝛼 until

𝑓 (𝒙 + 𝛼𝒅) < 𝑓 (𝒙) + 𝜎𝛼∇ 𝑓 (𝒙)T𝒅,

where 𝜎 ∈ (0, 1/2) and 𝛽 ∈ (0, 1) are given parameters.
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B.2.3 Gradient Descent Method
The gradient descent method (also known as steepest descent method) is a descent method
where the search direction is chosen as the opposite direction of the gradient:

𝒅 = −∇ 𝑓 (𝒙),

which is clearly a descent direction since it satisfies ∇ 𝑓 (𝒙)T 𝒅 < 0.

The gradient descent update is then

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘∇ 𝑓
(
𝒙𝑘

)
.

As a stopping criterion, the heuristic ∥∇ 𝑓 (𝒙)∥2 ≤ 𝜖 is commonly used.

Unfortunately, convergence for the gradient descent method is often slow, so it is rarely used in
practice unless there is a need due to the high dimensionality of the problem or a requirement
for distributed implementation. The gradient descent method is summarized in Algorithm B.1.

Algorithm B.1: Gradient descent method for the unconstrained problem (B.1).
1: Choose initial point 𝒙0;
2: Set 𝑘 ← 0;
3: repeat
4: Compute the negative gradient as descent direction: 𝒅𝑘 = −∇ 𝑓

(
𝒙𝑘

)
;

5: Line search: Choose a stepsize 𝛼𝑘 > 0 via exact or backtracking line search;
6: Obtain next iterate:

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘∇ 𝑓
(
𝒙𝑘

)
;

7: 𝑘 ← 𝑘 + 1;
8: until convergence;

B.2.4 Newton’s Method
Newton’s method is a descent method that uses not only the gradient but also the Hessian of
𝑓 , denoted by ∇2 𝑓 (𝒙), in the search direction:

𝒅 = −∇2 𝑓 (𝒙)−1∇ 𝑓 (𝒙),

which is a descent direction (assuming 𝑓 is convex). It is tacitly assumed that 𝑓 is twice
continuously differentiable and that the Hessian matrix is positive definite for all 𝒙.

This direction has the interesting interpretation that 𝒙 + 𝒅 minimizes the second-order
approximation of 𝑓 (𝒙) around 𝒙:

𝑓 (𝒙 + 𝒗) = 𝑓 (𝒙) + ∇ 𝑓 (𝒙)T𝒗 + 1
2
𝒗T∇2 𝑓 (𝒙)𝒗.

Newton’s method update is then

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘∇2 𝑓
(
𝒙𝑘

)−1 ∇ 𝑓
(
𝒙𝑘

)
.
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An interesting quantity in Newton’s method is the Newton decrement

𝜆(𝒙) = (∇ 𝑓 (𝒙)T∇2 𝑓 (𝒙)−1∇ 𝑓 (𝒙))1/2

that measures the proximity of 𝒙 to an optimal point. More specifically, it gives an estimate of
𝑓 (𝒙) − 𝑝★ as

𝑓 (𝒙) − inf𝒚 𝑓 (𝒚) =
1
2
𝜆(𝒙)2,

where 𝑓 (𝒙) is the quadratic approximation of 𝑓 (𝒙). Observe that the computational cost
of the Newton decrement is negligible given that we already have the Newton direction:
𝜆(𝒙)2 = −∇ 𝑓 (𝒙)T𝒅.

Newton’s method enjoys fast convergence and it is at the heart of most modern solvers. Only
when the dimensionality of the problem is very large does it becomes impractical to implement
due the computation and storage of the Hessian. For such cases there are approximate versions
of Newton’s method called quasi-Newton’s methods (Nocedal & Wright, 2006). Newton’s
method is summarized in Algorithm B.2.

Algorithm B.2: Newton’s method for the unconstrained problem (B.1).
1: Choose initial point 𝒙0 and tolerance 𝜖 > 0;
2: Set 𝑘 ← 0;
3: repeat
4: Compute Newton direction and decrement:

𝒅𝑘 = −∇2 𝑓 (𝒙𝑘)−1∇ 𝑓 (𝒙𝑘) and 𝜆(𝒙𝑘)2 = −∇ 𝑓 (𝒙𝑘)T𝒅𝑘;

5: Line search: Choose a stepsize 𝛼𝑘 > 0 via exact or backtracking line search;
6: Obtain next iterate:

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘∇2 𝑓
(
𝒙𝑘

)−1 ∇ 𝑓
(
𝒙𝑘

)
;

7: 𝑘 ← 𝑘 + 1;
8: until convergence (i.e., 𝜆(𝒙𝑘)2/2 ≤ 𝜖);

B.2.5 Convergence
Ideally, we would like the sequence of a descent method {𝒙𝑘} to converge to a global minimum.
Unfortunately, however, this is much to expect, at least when 𝑓 is not convex, because of the
presence of local minima that are not global. Thus, the most we can expect from a descent
method is that it converges to a stationary point. Such a point is a global minimum if 𝑓 is
convex, but this need not be so for nonconvex problems.

Descent methods enjoys nice theoretical convergence (Bertsekas, 1999) as summarized in
Theorem B.1.

Theorem B.1 (Convergence of descent methods) Suppose {𝒙𝑘} is a sequence generated by
a descent method (such as the gradient descent method or Newton’s method) and the stepsize
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𝛼𝑘 is chosen by exact line search or backtracking line search. Then every limit point of {𝒙𝑘}
is a stationary point of the problem.

Other simpler stepsize rules also enjoy theoretical convergence (Bertsekas, 1999):

• constant stepsize: 𝛼𝑘 = 𝛼 for sufficiently small 𝛼;
• dimishing stepsize rule: 𝛼𝑘 → 0 with

∑∞
𝑘=0 𝛼

𝑘 = ∞.

Regarding Newton’s method, it is worth knowing that its convergence can be divided into two
phases:

1. damped Newton phase: the convergence is slow; and
2. quadratically convergent phase: the convergence is extremely fast.

In practice, the gradient descent method converges slowly, whereas Newton’s method enjoys
much faster convergence (at the expense of computing the Hessian). Thus, if the problem
dimensionality is manageable, Newton’s method is preferred. In some applications, however,
the dimensionality can be extremely large (such as in deep learning) and computing and
storing the Hessian is not a feasible option.

B.3 Projected Gradient Methods
Consider the constrained optimization problem

minimize
𝒙

𝑓 (𝒙)
subject to 𝒙 ∈ X,

where 𝑓 is the objective function (assumed to be continuously differentiable) and X is a
convex set.

If we were to use a descent method,

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒅𝑘

with 𝒅𝑘 a descent direction, we would possibly end up with an infeasible point 𝒙𝑘+1.

Projected gradient methods or gradient projection methods address this issue by projecting
onto the feasible set after taking the step (Beck, 2017; Bertsekas, 1999):

𝒙𝑘+1 =
[
𝒙𝑘 + 𝛼𝑘𝒅𝑘

]
X ,

where [𝒙]X denotes projection onto the set X defined as the solution to min𝒚 ∥𝒚 − 𝒙∥ subject
to 𝒚 ∈ X.

A slightly more general version of the gradient projection method is

�̄�𝑘 =
[
𝒙𝑘 + 𝑠𝑘𝒅𝑘

]
X ,

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘
(
�̄�𝑘 − 𝒙𝑘

)
,

where 𝒅𝑘 = �̄�𝑘 − 𝒙𝑘 is a feasible direction (because �̄�𝑘 is feasible due to the projection), 𝛼𝑘 is
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the stepsize, and 𝑠𝑘 is a positive scalar (Bertsekas, 1999). Note that if we choose 𝛼𝑘 = 1 then
the iteration simplifies to the previous expression:

𝒙𝑘+1 =
[
𝒙𝑘 + 𝑠𝑘𝒅𝑘

]
X ,

where now 𝑠𝑘 can be viewed as a stepsize. Further note that if 𝒙𝑘 + 𝑠𝑘𝒅𝑘 is already feasible,
then the gradient projection method reduces to the regular gradient method.

In practice, the gradient projection method only makes sense if the projection is easy to
compute.

B.3.1 Projected Gradient Descent Method
The projected gradient descent method simply uses as search direction the negative gradient:

�̄�𝑘 =
[
𝒙𝑘 − 𝑠𝑘∇ 𝑓

(
𝒙𝑘

) ]
X ,

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘
(
�̄�𝑘 − 𝒙𝑘

)
.

B.3.2 Constrained Newton’s Method
Let us assume that 𝑓 is twice continuously differentiable and that the Hessian matrix is
positive definite for all 𝒙 ∈ X.

The constrained Newton’s method is

�̄�𝑘 = arg min
𝒙∈X

{
∇ 𝑓

(
𝒙𝑘

)T (
𝒙 − 𝒙𝑘

)
+ 1

2𝑠𝑘
(
𝒙 − 𝒙𝑘

)T ∇2 𝑓
(
𝒙𝑘

) (
𝒙 − 𝒙𝑘

)}
,

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘
(
�̄�𝑘 − 𝒙𝑘

)
.

Note that if 𝑠𝑘 = 1, the quadratic cost above is the second-order Taylor series expansion of 𝑓
around 𝒙𝑘 (apart from a constant term). In particular, if 𝛼𝑘 = 1 and 𝑠𝑘 = 1, then 𝒙𝑘+1 is the
vector that minimizes the second-order Taylor series expansion around 𝒙𝑘 , just as in the case
of Newton’s method for unconstrained optimization.

The main difficulty with this method is in solving the quadratic subproblem to find �̄�𝑘 . This
may not be simple even when the constraint set X has a simple structure. Thus the method
typically makes practical sense only for problems of small dimension.

B.3.3 Convergence
The convergence of gradient projection methods can be found in Bertsekas (1999) and it is
summarized in Theorem B.2.

Theorem B.2 (Convergence of gradient projection methods) Suppose {𝒙𝑘} is a sequence
generated by a gradient projection method (such as the projected gradient descent method
or the constrained Newton’s method) and the stepsize 𝛼𝑘 is chosen by exact line search or
backtracking line search. Then every limit point of {𝒙𝑘} is a stationary point of the problem.

Other simpler stepsize rules also enjoy theoretical convergence, such as the constant stepsize
𝛼𝑘 = 1 and 𝑠𝑘 = 𝑠 for sufficiently small 𝑠 (Bertsekas, 1999).
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B.4 Interior-Point Methods
Traditional optimization algorithms based on gradient projection methods may suffer from
slow convergence and sensitivity to the algorithm initialization and stepsize selection. The
more modern interior-point methods (IPM) for convex problems enjoy excellent convergence
properties (polynomial convergence) and do not suffer from the usual problems of the
traditional methods. Some standard textbooks that cover IPMs in detail include Nesterov
and Nemirovski (1994), Ye (1997), Nesterov (2018), Bertsekas (1999), Nemirovski (2000),
Ben-Tal and Nemirovski (2001), Boyd and Vandenberghe (2004), Luenberger and Ye (2021),
and Nocedal and Wright (2006).

Consider the following convex optimization problem:

minimize
𝒙

𝑓0(𝒙)
subject to 𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚,

𝑨𝒙 = 𝒃,

(B.2)

where all 𝑓𝑖 are convex and twice continuously differentiable, and 𝑨 ∈ R𝑝×𝑛 is a fat (i.e.,
more columns than rows), full rank matrix. We assume that the optimal value 𝑝★ is finite
and attained, and that the problem is strictly feasible, hence strong duality holds and dual
optimum is attained.

B.4.1 Eliminating Equality Constraints
Equality constraints can be conveniently dealt with via Lagrange duality (Boyd & Vanden-
berghe, 2004). Alternatively, they can be simply eliminated in a pre-processing stage as shown
next.

From linear algebra, we know that the possibly infinite solutions to 𝑨𝒙 = 𝒃 can be represented
as follows:

{𝒙 ∈ R𝑛 | 𝑨𝒙 = 𝒃} = {𝑭𝒛 + 𝒙0 | 𝒛 ∈ R𝑛−𝑝},

where 𝒙0 is any particular solution to 𝑨𝒙 = 𝒃 and the range of 𝑭 ∈ R𝑛×(𝑛−𝑝) is the nullspace
of 𝑨 ∈ R𝑝×𝑛, that is, 𝑨𝑭 = 0.

The reduced or eliminated problem equivalent to problem (B.2) is

minimize
𝒛

𝑓0(𝒛) ≜ 𝑓0(𝑭𝒛 + 𝒙0)
subject to 𝑓𝑖 (𝒛) ≜ 𝑓𝑖 (𝑭𝒛 + 𝒙0) ≤ 0, 𝑖 = 1, . . . , 𝑚,

where each function 𝑓𝑖 has gradient and Hessian given by

∇ 𝑓𝑖 (𝒛) = 𝑭𝑇∇ 𝑓𝑖 (𝒙),
∇2 𝑓𝑖 (𝒛) = 𝑭𝑇∇2 𝑓𝑖 (𝒙)𝑭.

Once the solution 𝒛★ to the reduced problem has been obtained, the solution to the original
problem (B.2) can be readily derived as

𝒙★ = 𝑭𝒛★ + 𝒙0.
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B.4.2 Indicator Function
We can equivalently reformulate problem (B.2) via the indicator function as

minimize
𝒙

𝑓0(𝒙) +
∑𝑚
𝑖=1 𝐼− ( 𝑓𝑖 (𝒙))

subject to 𝑨𝒙 = 𝒃,

where the indicator function is defined as

𝐼− (𝑢) =
{

0 if 𝑢 ≤ 0,
∞ otherwise.

In this form, the inequality constraints have been eliminated at the expense of the indi-
cator function in the objective. Unfortunately, the indicator function is a noncontinuous,
nondifferentiable function, which is not practical.

B.4.3 Logarithmic Barrier
In practice, we need to use some smooth approximation of the indicator function. A very
popular and convenient choice is the so-called logarithmic barrier:

𝐼− (𝑢) ≈ −
1
𝑡
log(−𝑢),

where 𝑡 > 0 is a parameter that controls the approximation and improves as 𝑡 →∞. Figure B.1
illustrates the logarithmic barrier for several values of 𝑡.
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Figure B.1 Logarithmic barrier for several values of the parameter 𝑡.

With the logarithmic barrier, we can approximate the problem (B.2) as

minimize
𝒙

𝑓0(𝒙) − 1
𝑡

∑𝑚
𝑖=1 log (− 𝑓𝑖 (𝒙))

subject to 𝑨𝒙 = 𝒃.
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We can define the overall logarithmic barrier function (excluding the 1/𝑡 factor) as

𝜙(𝒙) = −
𝑚∑︁
𝑖=1

log (− 𝑓𝑖 (𝒙)) ,

which is convex (from the composition rules in Section A.3) with gradient and Hessian given
by

∇𝜙(𝒙) =
𝑚∑︁
𝑖=1

1
− 𝑓𝑖 (𝒙)

∇ 𝑓𝑖 (𝒙),

∇2𝜙(𝒙) =
𝑚∑︁
𝑖=1

1
𝑓𝑖 (𝒙)2

∇ 𝑓𝑖 (𝒙)∇ 𝑓𝑖 (𝒙)T +
𝑚∑︁
𝑖=1

1
− 𝑓𝑖 (𝒙)

∇2 𝑓𝑖 (𝒙).

B.4.4 Central Path
For convenience, we multiply the objective function by a positive scalar 𝑡 > 0 and define
𝒙★(𝑡) as the solution to the equivalent problem

minimize
𝒙

𝑡 𝑓0(𝒙) + 𝜙(𝒙)
subject to 𝑨𝒙 = 𝒃,

(B.3)

which can be conveniently solved via Newton’s method.

The central path is defined as the curve {𝒙★(𝑡) | 𝑡 > 0} (assuming that the solution for each 𝑡
is unique). Figure B.2 illustrates the central path of an LP.

x★
x★

x★

(10)

(0)

Figure B.2 Example of central path of an LP.

Ignoring the equality constraints for convenience of exposition, a solution to (B.3), 𝒙★(𝑡),
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must satisfy the equation

𝑡∇ 𝑓0(𝒙) +
𝑚∑︁
𝑖=1

1
− 𝑓𝑖 (𝒙)

∇ 𝑓𝑖 (𝒙) = 0.

Equivalently, defining 𝜆★𝑖 (𝑡) = 1/(−𝑡 𝑓𝑖 (𝒙★(𝑡))), the point 𝒙★(𝑡) minimizes the Lagrangian

𝐿 (𝒙; 𝝀★(𝑡)) = 𝑓0(𝒙) +
𝑚∑︁
𝑖=1

𝜆★𝑖 (𝑡) 𝑓𝑖 (𝒙).

This confirms the intuitive idea that 𝑓0(𝒙★(𝑡)) → 𝑝★ as 𝑡 →∞. In particular, from Lagrange
duality theory (refer to Section A.6.3 in Appendix A for details),

𝑝★ ≥ 𝑔
(
𝝀★(𝑡)

)
= 𝐿

(
𝒙★(𝑡); 𝝀★(𝑡)

)
= 𝑓0

(
𝒙★(𝑡)

)
− 𝑚/𝑡.

In addition, the central path has a nice connection with the Karush–Kuhn–Tucker (KKT)
optimality conditions (refer to Section A.6.4 for details). In particular, the point 𝒙★(𝑡) together
with the dual point 𝝀★(𝑡) satisfy the following:

𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚, (primal feasibility)
𝜆𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑚, (dual feasibility)

𝜆𝑖 𝑓𝑖 (𝒙) = − 1
𝑡
, 𝑖 = 1, . . . , 𝑚, (approximate complementary slackness)

∇ 𝑓0(𝒙) +
𝑚∑
𝑖=1
𝜆𝑖∇ 𝑓𝑖 (𝒙) = 0. (zero Lagrangian gradient)

Clearly, the difference from the KKT conditions of the original constrained problem (see
(A.23) in Appendix A) is that the complementary slackness is now approximately satisfied,
with the approximation becoming better as 𝑡 →∞.

B.4.5 Barrier Method
Problem (B.3) with the logarithmic barrier is a smooth approximation of the original
constrained problem (B.2), and the approximation gets better as 𝑡 →∞.

One might be tempted to choose a very large value for 𝑡 and then apply Newton’s method to
solve the problem. However, this approach would lead to very slow convergence because the
gradients and Hessians would experience extremely large variations near the boundary of the
feasible set. Consequently, the convergence of Newton’s method would be hindered, failing
to reach the phase of quadratic convergence. On the other hand, a small value of 𝑡 would
facilitate better convergence, but the resulting approximation would not be satisfactorily close
to the original problem.

Instead of directly choosing one value for 𝑡, we may change it over the iterations in an
appropriate way, in order to achieve the best of both worlds: fast convergence and an accurate
approximation to the original problem. More specifically, at each outer iteration, the value
of 𝑡 is updated and then the solution 𝒙★(𝑡) is computed (the so-called centering step) with
Newton’s method starting at the current point 𝒙 and running over a few inner iterations.
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Interior-point methods achieve precisely such a trade-off and they get their name because for
each value of 𝑡 > 0 the solution 𝒙★(𝑡) is strictly feasible and lies in the interior of the feasible
set.

The barrier method, which is one type of primal-based IPM, uses a simple, yet effective, way
to update the value of 𝑡 with the iterations as 𝑡𝑘+1 ← 𝜇𝑡𝑘 , where 𝜇 > 1 is a parameter and
typically 𝑡0 = 1. The choice of 𝜇 involves a trade-off: large 𝜇 means fewer outer iterations,
but more inner (Newton) iterations; typical values are 𝜇 = 10 to around 20. In addition, the
termination criterion can be chosen as 𝑚/𝑡 < 𝜖 , guaranteeing 𝑓0(𝒙) − 𝑝★ ≤ 𝜖 . Algorithm B.3
summarizes the implementation of the barrier method; the reader is referred to Boyd and
Vandenberghe (2004) for practical discussions on the details.

Algorithm B.3: Barrier method for the constrained problem (B.2).
1: Choose initial point 𝒙0 ∈ X stricly feasible, 𝑡0 > 0, 𝜇 > 1, and tolerance 𝜖 > 0;
2: Set 𝑘 ← 0;
3: repeat
4: Centering step: compute next iterate 𝒙𝑘+1 by solving problem (B.3) with 𝑡 = 𝑡𝑘 and

initial point 𝒙𝑘;
5: Increase 𝑡: 𝑡𝑘+1 ← 𝜇𝑡𝑘;
6: 𝑘 ← 𝑘 + 1;
7: until convergence (i.e., 𝑚/𝑡 < 𝜖);

Example B.4 (Barrier method for LP) Consider the following LP:

minimize
𝒙

𝒄T𝒙

subject to 𝑨𝒙 ≤ 𝒃.

We employ Algorithm B.3 with different values of 𝜇 to see the effect of this parameter in the
total number of Newton iterations.

Figure B.3 shows the convergence for the case of 𝑚 = 100 inequalities and 𝑛 = 50 variables,
with 𝜖 = 10−6 for the duality gap (the centering problem is solved via Newton’s method). We
can verify that the total number of Newton iterations is not very sensitive to the choice of 𝜇
as long as 𝜇 ≥ 10.

B.4.6 Convergence
From the termination criterion in Algorithm B.3, the number of outer iterations (or centering
steps) required is 𝑘 such that

𝑚

𝜇𝑘𝑡0
≤ 𝜖,

that is, ⌈ log
(
𝑚/

(
𝜖𝑡0

) )
log(𝜇)

⌉
,
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Figure B.3 Convergence of barrier method for an LP for different values of 𝜇.

where ⌈·⌉ is the ceiling operator. The convergence of each centering step can also be
characterized via the convergence for Newton’s method. But this approach ignores the specific
updates for 𝜇 and the good initialization points for each centering step.

For a convergence analysis, the reader is referred to Nesterov and Nemirovski (1994),
Nemirovski (2000), Ben-Tal and Nemirovski (2001), Boyd and Vandenberghe (2004), Nesterov
(2018), Luenberger and Ye (2021), and Nocedal and Wright (2006).

B.4.7 Feasibility and Phase I Methods
The barrier method in Algorithm B.3 contains a small hidden detail: the need for a strictly
feasible initial point 𝒙0 (such that 𝑓𝑖

(
𝒙0) < 0). When such a point is not known, the barrier

method is preceded by a preliminary stage, called phase I, in which a strictly feasible point is
computed. Such a point can then be used as a starting point for the barrier method, which is
then called phase II.

There are several phase I methods that can be used to find a feasible point for problem (B.2)
by solving the feasibility problem

find
𝒙

𝒙

subject to 𝑓𝑖 (𝒙) ≤ 0, 𝑖 = 1, . . . , 𝑚,
𝑨𝒙 = 𝒃.

However, note that a barrier method cannot be used to solve the feasibility problem directly
because it would also require a feasible starting point.

Phase I methods have to be formulated in a convenient way so that a feasible point can be
readily constructed and a barrier method can then be used. A simple example relies on solving
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the convex optimization problem

minimize
𝒙,𝑠

𝑠

subject to 𝑓𝑖 (𝒙) ≤ 𝑠, 𝑖 = 1, . . . , 𝑚,
𝑨𝒙 = 𝒃.

A strictly feasible point can be easily constructed for this problem: choose any value of
𝒙 that satisfies the equality constraints, and then choose 𝑠 satisfying 𝑠 > 𝑓𝑖 (𝒙) such as
𝑠 = 1.1 ×max𝑖{ 𝑓𝑖 (𝒙)}. With such an initial strictly feasible point, the feasibility problem can
be solved, obtaining (𝒙★, 𝑠★). If 𝑠★ < 0, then 𝒙★ is a strictly feasible point that can be used in
the barrier method to solve the original problem (B.2). However, if 𝑠★ > 0, it means that no
feasible point exists and there is no need to even attempt to solve problem (B.2) since it is
infeasible.

B.4.8 Primal-Dual Interior-Point Methods
The barrier method described herein is a primal version of an IPM. However, there are more
sophisticated primal–dual IPMs that are more efficient than the primal barrier method when
high accuracy is needed. They often exhibit superlinear asymptotic convergence.

The idea is to update the primal and dual variables at each iteration; as a consequence, there
is no distinction between inner and outer iterations. In addition, they can start at infeasible
points, which alleviates the need for phase I methods.

B.5 Fractional Programming Methods
Consider the concave–convex fractional program (FP) (refer to Section A.5 for details)

maximize
𝒙

𝑓 (𝒙)
𝑔(𝒙)

subject to 𝒙 ∈ X,
(B.4)

where 𝑓 (𝒙) is a concave function, 𝑔(𝒙) > 0 is a convex function, and X denotes the convex
feasible set.

Recall that FPs are nonconvex problems, so in principle they are difficult to solve (Stancu-
Minasian, 1997). Fortunately, the concave–convex FP in (B.4), albeit still being nonconvex, is
a quasi-convex optimization problem and can be conveniently solved. In the following, we
briefly look at three practical methods to solve the FP in (B.4), namely, the iterative bisection
method, the Dinkelbach method, which is still an iterative method, and the Schaible transform,
which allows a direct convex reformulation.
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B.5.1 Bisection Method
Problem (B.4) is a quasi-convex problem and can be conveniently solved by solving a sequence
of convex feasibility problems (see Section A.4.4 in Appendix A for details) of the form:

find
𝒙

𝒙

subject to 𝑡𝑔(𝒙) ≤ 𝑓 (𝒙),
𝒙 ∈ X,

(B.5)

where 𝑡 > 0 is not an optimization variable but a fixed parameter.

The goal is to find the right value of 𝑡 to be equal to the optimal value of problem (B.4). This
can be done iteratively based on the following simple observation: if the feasibility problem
(B.5) is infeasible, then 𝑡 is too large and has to be decreased, otherwise 𝑡 is probably too
small and can be further increased.

The bisection method, also known as the sandwich technique, performs a series of attempts
for the parameter 𝑡 in a very efficient way by halving an interval known to contain the optimal
value of 𝑡 at each iteration. More specifically, suppose that the original problem (B.4) is
feasible and that we start with an interval [𝑙, 𝑢] known to contain the optimal value denoted by
𝑡★, we can then solve the convex feasibility problem at the interval midpoint 𝑡 = (𝑙 + 𝑢)/2, to
determine whether the optimal value is in the lower or upper half of this interval, and update
the interval accordingly. This produces a new interval, which also contains the optimal value,
but has half the width of the initial interval; so the length of the interval after 𝑘 iterations
is 2−𝑘 (𝑢 − 𝑙), where (𝑢 − 𝑙) is the length of the initial interval. Therefore, if a tolerance of
𝜖 is desired in the computation of 𝑡★, the number of iterations is ⌈log2 ((𝑢 − 𝑙)/𝜖)⌉, where
⌈·⌉ denotes the ceiling rounding operation. This procedure is summarized in Algorithm B.4
(which is a particular case of the more general Algorithm A.1 in Section A.4).

Algorithm B.4: Bisection method to solve the concave–convex FP in (B.4).
1: Choose interval [𝑙, 𝑢] containing optimal value of problem (B.4) and tolerance 𝜖 > 0;
2: repeat
3: 𝑡 ← (𝑙 + 𝑢)/2;
4: Solve the convex feasibility problem (B.5);
5: if feasible then
6: 𝑙 ← 𝑡 and keep solution 𝒙;
7: else
8: 𝑢 ← 𝑡;
9: end if

10: until convergence (i.e., 𝑢 − 𝑙 ≤ 𝜖);

B.5.2 Dinkelback Method
The Dinkelbach transform (Dinkelbach, 1967) reformulates the original concave–convex FP
in (B.4) into a sequence of simpler convex problems of the form
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maximize
𝒙

𝑓 (𝒙) − 𝑦𝑘𝑔(𝒙)
subject to 𝒙 ∈ X,

(B.6)

where the parameter 𝑦𝑘 is sequentially updated as 𝑦𝑘 = 𝑓 (𝒙𝑘)/𝑔(𝒙𝑘) with 𝑘 the iteration
index. This is summarized in Algorithm B.5.

Algorithm B.5: Dinkelbach method to solve the concave–convex FP in (B.4).
1: Choose initial point 𝒙0;
2: Set 𝑘 ← 0;
3: repeat
4: Set 𝑦𝑘 = 𝑓 (𝒙𝑘)/𝑔(𝒙𝑘);
5: Solve the convex problem (B.6) and keep current solution as 𝒙𝑘+1;
6: 𝑘 ← 𝑘 + 1;
7: until convergence;

The Dinkelbach method can be shown to converge to the global optimum of the original
concave–convex FP in (B.4) by carefully analyzing the increasingness of {𝑦𝑘} and the function
𝐹 (𝑦) = arg max𝒙 𝑓 (𝒙) − 𝑦𝑔(𝒙).

B.5.3 Charnes–Cooper–Schaible Transform
We first consider the linear FP case and then move to the more general concave–convex FP.

Charnes–Cooper Transform
One particular case of FP is when both 𝑓 and 𝑔 are linear as well as the constraint set, termed
linear FP (LFP):

minimize
𝒙

𝒄T𝒙 + 𝑑
𝒆T𝒙 + 𝑓

subject to 𝑮𝒙 ≤ 𝒉,
𝑨𝒙 = 𝒃,

(B.7)

with dom 𝑓0 =
{
𝒙 | 𝒆T𝒙 + 𝑓 > 0

}
.

Interestingly, the LFP in (B.7) can be transformed into the following LP via the Charnes–
Cooper transform (Charnes & Cooper, 1962):

minimize
𝒚,𝑡

𝒄T𝒚 + 𝑑𝑡
subject to 𝑮𝒚 ≤ 𝒉𝑡,

𝑨𝒚 = 𝒃𝑡,
𝒆T𝒚 + 𝑓 𝑡 = 1,
𝑡 ≥ 0,

(B.8)

from which the original variable 𝒙 can be easily recovered from 𝒚 and 𝑡 as 𝒙 = 𝒚/𝑡; see also
Bajalinov (2003).
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Proof Define two new variables, 𝒚 and 𝑡, related to the original variable 𝒙 in the LFP in
(B.7) by

𝒚 =
𝒙

𝒆T𝒙 + 𝑓 and 𝑡 =
1

𝒆T𝒙 + 𝑓 .

Obviously, any feasible point 𝒙 in the original LFP in (B.7) leads to a feasible point (𝒚, 𝑡)
in the LP in (B.8) with the same objective value. Conversely, any feasible point (𝒚, 𝑡) in the
LP in (B.8) leads to a feasible point 𝒙 in the original LFP in (B.7) via 𝒙 = 𝒚/𝑡, also with the
same objective value:

𝒄T𝒚 + 𝑑𝑡
1

=
𝒄T𝒚 + 𝑑𝑡
𝒆T𝒚 + 𝑓 𝑡 =

𝒄T𝒚/𝑡 + 𝑑
𝒆T𝒚/𝑡 + 𝑓 =

𝒄T𝒙 + 𝑑
𝒆T𝒙 + 𝑓 .

□

Schaible Transform
The Schaible transform (Schaible, 1974) is a more general case of the Charnes–Cooper
transform that rewrites the original concave–convex FP in (B.4) into the following convex
problem:

maximize
𝒚,𝑡

𝑡 𝑓

( 𝒚
𝑡

)
subject to 𝑡𝑔

( 𝒚
𝑡

)
≤ 1,

𝑡 ≥ 0,
𝒚/𝑡 ∈ X,

(B.9)

from which the original variable 𝒙 can be easily recovered from 𝒚 and 𝑡 as 𝒙 = 𝒚/𝑡.

Proof Define two new variables, 𝒚 and 𝑡, related to the original variable 𝒙 in the FP in (B.4)
by

𝒚 =
𝒙

𝑔(𝒙) and 𝑡 =
1

𝑔(𝒙) .

Any feasible point 𝒙 in the original FP in (B.4) leads to a feasible point (𝒚, 𝑡) in the convex
problem (B.9) (in fact, satisfying 𝑡𝑔 (𝒚/𝑡) = 1) with the same objective value. Conversely, any
feasible point (𝒚, 𝑡) in (B.9) leads to a feasible point 𝒙 in the original FP in (B.4) via 𝒙 = 𝒚/𝑡,
also with the same objective value:

𝑡 𝑓

( 𝒚
𝑡

)
=
𝑓 (𝒙)
𝑔 (𝒙) .

□

Observe that if instead of maximizing a concave–convex FP as in (B.4), we consider the
minimization of a convex-concave FP, the Schaible transform similarly leads to the following
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convex problem:

minimize
𝒚,𝑡

𝑡 𝑓

( 𝒚
𝑡

)
subject to 𝑡𝑔

( 𝒚
𝑡

)
≥ 1,

𝑡 ≥ 0,
𝒚/𝑡 ∈ X.

B.6 Block Coordinate Descent (BCD)
The block coordinate descent (BCD) method, also known as the Gauss–Seidel or alternate
minimization method, solves a difficult optimization problem by instead solving a sequence
of simpler subproblems. We now give a brief description; for details, the reader is referred to
the textbooks Bertsekas (1999), Bertsekas and Tsitsiklis (1997), and Beck (2017).

Consider the following problem where the variable 𝒙 can be partitioned into 𝑛 blocks
𝒙 = (𝒙1, . . . , 𝒙𝑛) that are separately constrained:

minimize
𝒙

𝑓 (𝒙1, . . . , 𝒙𝑛)
subject to 𝒙𝑖 ∈ X𝑖, 𝑖 = 1, . . . , 𝑛,

(B.10)

where 𝑓 is the (possibly nonconvex) objective function and each X𝑖 is a convex set. Instead of
attempting to directly obtain a solution 𝒙★ (either a local or global solution), the BCD method
will produce a sequence of iterates 𝒙0, 𝒙1, 𝒙2, . . . that will converge to 𝒙★. Each of these
updates is generated by optimizing the problem with respect to each block 𝒙𝑖 in a sequential
manner, which presumably will be easier to obtain (perhaps even with a closed-form solution).

More specifically, at each outer iteration 𝑘 , BCD will execute 𝑛 inner iterations sequentially:

𝒙𝑘+1𝑖 = arg min
𝒙𝑖∈X𝑖

𝑓
(
𝒙𝑘+11 , . . . , 𝒙𝑘+1𝑖−1 , 𝒙𝑖, 𝒙

𝑘
𝑖+1, . . . , 𝒙

𝑘
𝑛

)
, 𝑖 = 1, . . . , 𝑛.

It is not difficult to see that BCD enjoys monotonicity, that is, 𝑓
(
𝒙𝑘+1

)
≤ 𝑓

(
𝒙𝑘

)
. The BCD

method is summarized in Algorithm B.6.

Algorithm B.6: BCD to solve the problem in (B.10).
1: Choose initial point 𝒙0 =

(
𝒙0

1, . . . , 𝒙
0
𝑛

)
∈ X1 × · · · × X𝑛;

2: Set 𝑘 ← 0;
3: repeat
4: Execute 𝑛 inner iterations sequentially:

𝒙𝑘+1𝑖 = arg min
𝒙𝑖∈X𝑖

𝑓
(
𝒙𝑘+11 , . . . , 𝒙𝑘+1𝑖−1 , 𝒙𝑖, 𝒙

𝑘
𝑖+1, . . . , 𝒙

𝑘
𝑛

)
, 𝑖 = 1, . . . , 𝑛;

5: 𝑘 ← 𝑘 + 1;
6: until convergence;
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B.6.1 Convergence
BCD is a very useful framework for deriving simple and practical algorithms. The convergence
properties are summarized in Theorem B.3; for details, the reader is referred to Bertsekas and
Tsitsiklis (1997) and Bertsekas (1999).

Theorem B.3 (Convergence of BCD) Suppose that 𝑓 is (i) continuously differentiable over
the convex closed set X = X1 × · · · × X𝑛, and (ii) blockwise strictly convex (i.e., in each block
variable 𝒙𝑖). Then every limit point of the sequence {𝒙𝑘} is a stationary point of the original
problem.

If the convex set X is compact, that is, closed and bounded, then the blockwise strict convexity
can be relaxed to each block optimization having a unique solution.

Theorem B.3 can be extended by further relaxing the blockwise strictly convex condition to
any of the following cases (Grippo & Sciandrone, 2000):

• the two-block case 𝑛 = 2;
• the case where 𝑓 is blockwise strictly quasi-convex with respect to 𝑛 − 2 components; and
• the case where 𝑓 is pseudo-convex.

B.6.2 Parallel Updates
One may be tempted to execute the 𝑛 inner iterations in a parallel fashion (as opposed to the
sequential update of BCD):

𝒙𝑘+1𝑖 = arg min
𝒙𝑖∈X𝑖

𝑓
(
𝒙𝑘1 , . . . , 𝒙

𝑘
𝑖−1, 𝒙𝑖, 𝒙

𝑘
𝑖+1, . . . , 𝒙

𝑘
𝑛

)
, 𝑖 = 1, . . . , 𝑛.

This parallel update is called the Jacobi method. Unfortunately, even though the parallel
update may be algorithmically attractive, it does not enjoy nice convergence properties.
Convergence is guaranteed if the mapping defined by 𝑇 (𝒙) = 𝒙 − 𝛾∇ 𝑓 (𝒙) is a contraction for
some 𝛾 (Bertsekas, 1999).

B.6.3 Illustrative Examples
We now consider a few illustrative examples of applications of BCD (or the Gauss–Seidel
method), along with numerical experiments.

It is convenient to start with the introduction of the popular so-called soft-thresholding
operator (Zibulevsky & Elad, 2010).

Example B.5 (Soft-thresholding operator) Consider the following univariate convex opti-
mization problem:

minimize
𝑥

1
2 ∥𝒂𝑥 − 𝒃∥22 + 𝜆 |𝑥 |,

with 𝜆 ≥ 0.
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The solution can be written as

𝑥 =
1
∥𝒂∥22

sign
(
𝒂T𝒃

) (
|𝒂T𝒃 | − 𝜆

)+
,

where

sign(𝑢) =

+1 𝑢 > 0,

0 𝑢 = 0,
−1 𝑢 < 0

is the sign function and (·)+ = max(0, ·). This can be written more compactly as

𝑥 =
1
∥𝒂∥22
S𝜆

(
𝒂T𝒃

)
,

where S𝜆(·) is the so-called soft-thresholding operator defined as

S𝜆(𝑢) = sign(𝑢) ( |𝑢 | − 𝜆)+ (B.11)

and shown in Figure B.4.

-1

0

1

-2 -λ 0 λ 2

u

Figure B.4 Soft-thresholding operator.

One useful property of the soft-thresholding operator is the scaling property,

S𝜆(𝜅 × 𝑢) = 𝜅S𝜆/𝜅 (𝑢),

where 𝜅 > 0 is a positive scaling factor, so we can write

𝑥 =
1
∥𝒂∥22
S𝜆

(
𝒂T𝒃

)
= S 𝜆

∥𝒂∥22

(
𝒂T𝒃

∥𝒂∥22

)
.

Example B.6 (ℓ2–ℓ1-norm minimization via BCD) Consider the ℓ2–ℓ1-norm minimization
problem

minimize
𝒙

1
2 ∥𝑨𝒙 − 𝒃∥22 + 𝜆∥𝒙∥1.



B.7 Majorization–Minimization (MM) 555

This problem can be easily solved with a QP solver. However, we will now derive a convenient
iterative algorithm via BCD based on the soft-thresholding operator (Zibulevsky & Elad,
2010).

To be specific, we will use BCD by dividing the variable into each constituent element
𝒙 = (𝑥1, . . . , 𝑥𝑛). Therefore, the sequence of problems at each iteration 𝑘 = 0, 1, 2, . . . for
each element 𝑖 = 1, . . . , 𝑛 is

minimize
𝑥𝑖

1
2

𝒂𝑖𝑥𝑖 − �̃�𝑘𝑖
2

2 + 𝜆 |𝑥𝑖 |,

where �̃�𝑘𝑖 ≜ 𝒃 −∑
𝑗<𝑖 𝒂 𝑗𝑥

𝑘+1
𝑗 −

∑
𝑗>𝑖 𝒂 𝑗𝑥

𝑘
𝑗 .

This leads to the following iterative algorithm for 𝑘 = 0, 1, 2, . . .:

𝑥𝑘+1𝑖 =
1
∥𝒂𝑖 ∥22

S𝜆
(
𝒂T
𝑖 �̃�

𝑘
𝑖

)
, 𝑖 = 1, . . . , 𝑛,

where S𝜆(·) is the soft-thresholding operator defined in (B.11). Figure B.5 shows the
convergence of the BCD iterates.
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Figure B.5 Convergence of BCD for the ℓ2–ℓ1-norm minimization.

B.7 Majorization–Minimization (MM)
The majorization–minimization (MM) method (or framework) approximates a difficult
optimization problem by a sequence of simpler problems. We now give a brief description.
For details, the reader is referred to the concise tutorial in Hunter and Lange (2004), the long
tutorial with applications in Sun et al. (2017), and the convergence analysis in Razaviyayn
et al. (2013).
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Suppose the following (difficult) problem is to be solved:

minimize
𝒙

𝑓 (𝒙)
subject to 𝒙 ∈ X,

(B.12)

where 𝑓 is the (possibly nonconvex) objective function and X is a (possibly nonconvex) set.
Instead of attempting to directly obtain a solution 𝒙★ (either a local or a global solution), the
MM method will produce a sequence of iterates 𝒙0, 𝒙1, 𝒙2, . . . that will converge to 𝒙★.

More specifically, at iteration 𝑘 , MM approximates the objective function 𝑓 (𝒙) by a surrogate
function around the current point 𝒙𝑘 , denoted by 𝑢

(
𝒙; 𝒙𝑘

)
, leading to the sequence of (simpler)

problems:
𝒙𝑘+1 = arg min

𝒙∈X
𝑢

(
𝒙; 𝒙𝑘

)
, 𝑘 = 0, 1, 2, . . .

This iterative process is illustrated in Figure B.6.

x k x k+1

f (  )x

x k+2

u(  ;    )x x k

u(  ;      )x x k+1

Figure B.6 Illustration of sequence of surrogate problems in MM.

In order to guarantee convergence of the iterates, the surrogate function 𝑢
(
𝒙; 𝒙𝑘

)
has to satisfy

the following technical conditions (Razaviyayn et al., 2013; Sun et al., 2017):

• upper-bound property: 𝑢
(
𝒙; 𝒙𝑘

)
≥ 𝑓 (𝒙);

• touching property: 𝑢
(
𝒙𝑘; 𝒙𝑘

)
= 𝑓

(
𝒙𝑘

)
; and

• tangent property: 𝑢
(
𝒙; 𝒙𝑘

)
must be differentiable with ∇𝑢

(
𝒙; 𝒙𝑘

)
= ∇ 𝑓 (𝒙).

One immediate consequence of the first two conditions is the monotonicity property of MM,
that is, 𝑓

(
𝒙𝑘+1

)
≤ 𝑓

(
𝒙𝑘

)
, while the third condition is necessary for the convergence of

the iterates 𝒙0, 𝒙1, 𝒙2, . . . – the third condition can be relaxed by requiring continuity and
directional derivatives instead (Razaviyayn et al., 2013; Sun et al., 2017). More specifically,
under the above technical conditions, if the feasible set X is convex, then every limit point of
the sequence {𝒙𝑘} is a stationary point of the original problem (Razaviyayn et al., 2013).

The surrogate function 𝑢
(
𝒙; 𝒙𝑘

)
is also referred to as the majorizer because it is an upper
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bound on the original function. The fact that, at each iteration, first the majorizer is constructed
and then it is minimized gives the name majorization–minimization to the method.

In practice, the difficulty lies in finding the appropriate majorizer 𝑢
(
𝒙; 𝒙𝑘

)
that satisfies the

technical conditions for convergence and, at the same time, leads to a simpler easy-to-solve
surrogate problem. The reader is referred to Sun et al. (2017) for techniques and examples
on majorizer construction. Once the majorizer has been chosen, the MM description is very
simple, as summarized in Algorithm B.7.

Algorithm B.7: MM to solve the general problem in (B.12).
1: Choose initial point 𝒙0 ∈ X;
2: Set 𝑘 ← 0;
3: repeat
4: Construct majorizer of 𝑓 (𝒙) around current point 𝒙𝑘 as 𝑢

(
𝒙; 𝒙𝑘

)
;

5: Obtain next iterate by solving the majorized problem:

𝒙𝑘+1 = arg min
𝒙∈X

𝑢
(
𝒙; 𝒙𝑘

)
;

6: 𝑘 ← 𝑘 + 1;
7: until convergence;

B.7.1 Convergence
MM is an extremely versatile framework for deriving practical algorithms. In addition, there
are theoretical guarantees for convergence (Razaviyayn et al., 2013; Sun et al., 2017) as
summarized in Theorem B.4.

Theorem B.4 (Convergence of MM) Suppose that the majorizer 𝑢
(
𝒙; 𝒙𝑘

)
satisfies the

previous technical conditions and the feasible set X is convex. Then, every limit point of the
sequence {𝒙𝑘} is a stationary point of the original problem.

For nonconvex X, convergence must be evaluated on a case-by-case basis – for examples,
refer to Song et al. (2015), Sun et al. (2017), Kumar et al. (2019), and Kumar et al. (2020).

B.7.2 Accelerated MM
Unfortunately, in some situations MM may require many iterations to convergence. This
may happen if the surrogate function 𝑢

(
𝒙; 𝒙𝑘

)
is not tight enough due to the strict global

upper-bound requirement. For that reason, it is necessary to resort to some acceleration
techniques.

One popular quasi-Newton acceleration technique that works well in practice is the so-called
SQUAREM (Varadhan & Roland, 2008). Denote the standard MM update as

𝒙𝑘+1 = MM(𝒙𝑘),
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where
MM(𝒙𝑘) ≜ arg min

𝒙∈X
𝑢

(
𝒙; 𝒙𝑘

)
.

Accelerated MM takes two standard MM steps and combines them in a sophisticated way,
with a final third step to guarantee feasibility. The details are as follows:

difference first update: 𝒓𝑘 = 𝑅(𝒙𝑘) ≜ MM(𝒙𝑘) − 𝒙𝑘;
difference of differences: 𝒗𝑘 = 𝑅(MM(𝒙𝑘)) − 𝑅(𝒙𝑘);

stepsize: 𝛼𝑘 = −max
(
1, ∥𝒓𝑘 ∥2/∥𝒗𝑘 ∥2

)
;

actual step taken: 𝒚𝑘 = 𝒙𝑘 − 𝛼𝑘 𝒓𝑘;
final update on actual step: 𝒙𝑘+1 = MM(𝒚𝑘).

The last step, 𝒙𝑘+1 = MM(𝒚𝑘), can be eliminated (to avoid having to solve the majorized
problem a third time) if we can make sure 𝒚𝑘 is feasible, becoming 𝒙𝑘+1 = 𝒚𝑘 .

B.7.3 Illustrative Examples
We now examine a few illustrative examples of application of MM, along with numerical
experiments.

Example B.7 (Nonnegative LS via MM) Consider the nonnegative least-squares problem

minimize
𝒙≥0

1
2 ∥𝑨𝒙 − 𝒃∥22 ,

where 𝒃 ∈ R𝑚+ has nonnegative elements and 𝑨 ∈ R𝑚×𝑛++ has positive elements.

Due to the nonnegativity constraints, we cannot use the conventional LS closed-form solution
𝒙★ = (𝑨T𝑨)−1𝑨T𝒃. Since the problem is a QP, we can then resort to using a QP solver. More
interestingly, we can develop a simple iterative algorithm based on MM.

The critical step in MM is to find the appropriate majorizer. In this case, one convenient
majorizer of the function 𝑓 (𝒙) = 1

2 ∥𝑨𝒙 − 𝒃∥22 is

𝑢
(
𝒙; 𝒙𝑘

)
= 𝑓

(
𝒙𝑘

)
+ ∇ 𝑓

(
𝒙𝑘

)T (
𝒙 − 𝒙𝑘

)
+ 1

2
(
𝒙 − 𝒙𝑘

)T
𝚽

(
𝒙𝑘

) (
𝒙 − 𝒙𝑘

)
,

where ∇ 𝑓
(
𝒙𝑘

)
= 𝑨T𝑨𝒙𝑘 − 𝑨T𝒃 and 𝚽

(
𝒙𝑘

)
= Diag

(
[𝑨T𝑨𝒙𝑘]1

𝑥𝑘1
, . . . ,

[𝑨T𝑨𝒙𝑘]
𝑛

𝑥𝑘𝑛

)
. It can be

verified that 𝑢
(
𝒙; 𝒙𝑘

)
is a valid majorizer because (i) 𝑢

(
𝒙; 𝒙𝑘

)
≥ 𝑓 (𝒙) (which can be proved

using Jensen’s inequality), (ii) 𝑢
(
𝒙𝑘; 𝒙𝑘

)
= 𝑓

(
𝒙𝑘

)
, and (iii) ∇𝑢

(
𝒙𝑘; 𝒙𝑘

)
= ∇ 𝑓

(
𝒙𝑘

)
.

Therefore, the sequence of majorized problems to be solved for 𝑘 = 0, 1, 2, . . . is

minimize
𝒙≥0

∇ 𝑓
(
𝒙𝑘

)T
𝒙 + 1

2
(
𝒙 − 𝒙𝑘

)T
𝚽

(
𝒙𝑘

) (
𝒙 − 𝒙𝑘

)
,

with solution 𝒙 = 𝒙𝑘 −𝚽
(
𝒙𝑘)−1∇ 𝑓 (𝒙𝑘

)
.

This finally leads to the following MM iterative algorithm:

𝒙𝑘+1 = 𝒄𝑘 ⊙ 𝒙𝑘 , 𝑘 = 0, 1, 2, . . .
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where 𝑐𝑘𝑖 =
[𝑨T𝒃]𝑖
[𝑨T𝑨𝒙𝑘 ]𝑖 and ⊙ denotes elementwise product. Figure B.7 shows the convergence

of the MM iterates.
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Figure B.7 Convergence of MM for the nonnegative LS.

Example B.8 (Reweighted LS for ℓ1-norm minimization via MM) Consider the ℓ1-norm
minimization problem

minimize
𝒙

∥𝑨𝒙 − 𝒃∥1 .

If instead we had the ℓ2-norm in the formulation, then we would have the conventional LS
solution 𝒙★ = (𝑨T𝑨)−1𝑨T𝒃. In any case, this problem is an LP and can be solved with an LP
solver. However, we can develop a simple iterative algorithm based on MM that leverages the
closed-form LS solution.

The critical step in MM is to find the appropriate majorizer. In this case, since we would like
to use the LS solution, we want the majorizer to have the form of an LS problem, that is, we
want to go from ∥ · ∥1 to ∥ · ∥22. This can be achieved if we manage to majorize |𝑡 | in terms of
𝑡2. Indeed, a quadratic majorizer for 𝑓 (𝑡) = |𝑡 | (for simplicitly we assume 𝑡 ≠ 0) is (Sun et al.,
2017)

𝑢(𝑡; 𝑡𝑘) = 1
2|𝑡𝑘 |

(
𝑡2 + (𝑡𝑘)2

)
.

Consequently, a majorizer of the function 𝑓 (𝒙) = ∥𝑨𝒙 − 𝒃∥1 is

𝑢
(
𝒙; 𝒙𝑘

)
=

𝑛∑︁
𝑖=1

1
2 | [𝑨𝒙𝑘 − 𝒃]𝑖 |

(
[𝑨𝒙 − 𝒃]2𝑖 − [𝑨𝒙𝑘 − 𝒃]2𝑖

)
.

Therefore, the sequence of majorized problems to be solved for 𝑘 = 0, 1, 2, . . . is

minimize
𝒙

(𝑨𝒙 − 𝒃) ⊙ 𝒄𝑘
2

2 ,
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where 𝑐𝑘𝑖 =
√︃

1
2| [𝑨𝒙𝑘−𝒃]𝑖 | .

This finally leads to the following MM iterative algorithm:

𝒙𝑘+1 = (𝑨TDiag2(𝒄𝑘)𝑨)−1𝑨TDiag2(𝒄𝑘)𝒃, 𝑘 = 0, 1, 2, . . .

Figure B.8 shows the convergence of the MM iterates.
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Figure B.8 Convergence of MM for the ℓ1-norm minimization (reweighted LS).

Example B.9 (ℓ2–ℓ1-norm minimization via MM) Consider the ℓ2–ℓ1-norm minimization
problem

minimize
𝒙

1
2 ∥𝑨𝒙 − 𝒃∥22 + 𝜆∥𝒙∥1.

This problem can be conveniently solved via BCD (see Section B.6), via SCA (see later
Section B.8), or simply by calling a QP solver. Interestingly, we can develop a simple
iterative algorithm based on MM that leverages the element-by-element closed-form solution
(Zibulevsky & Elad, 2010).

In this case, one possible majorizer of the objective function 𝑓 (𝒙) is

𝑢
(
𝒙; 𝒙𝑘

)
=
𝜅

2
∥𝒙 − �̄�𝑘 ∥22 + 𝜆∥𝒙∥1 + constant,

where �̄�𝑘 = 𝒙𝑘 − 1
𝜅
𝑨T (

𝑨𝒙𝑘 − 𝒃
)
. The way to verify that it is indeed a majorizer of 𝑓 (𝒙) is by

writing it as
𝑢

(
𝒙; 𝒙𝑘

)
= 𝑓 (𝒙) + dist

(
𝒙, 𝒙𝑘

)
,

where dist
(
𝒙, 𝒙𝑘

)
= 𝜅

2 ∥𝒙− 𝒙
𝑘 ∥22− 1

2 ∥𝑨𝒙− 𝑨𝒙
𝑘 ∥22 is a distance measure with 𝜅 > 𝜆max

(
𝑨T𝑨

)
.

Therefore, the sequence of majorized problems to be solved for 𝑘 = 0, 1, 2, . . . is

minimize
𝒙

𝜅

2

𝒙 − �̄�𝑘2
2 + 𝜆∥𝒙∥1,
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which decouples into each component of 𝒙 with closed-form solution given by the soft-
thresholding operator (see Section B.6).

This finally leads to the following MM iterative algorithm:

𝒙𝑘+1 = S𝜆/𝜅
(
�̄�𝑘

)
, 𝑘 = 0, 1, 2, . . . ,

where S𝜆/𝜅 (·) is the soft-thresholding operator defined in (B.11). Figure B.9 shows the
convergence of the MM iterates.
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Figure B.9 Convergence of MM for the ℓ2–ℓ1-norm minimization.

B.7.4 Block MM
Block MM is a combination of BCD and MM. Suppose that not only is the original problem
(B.12) difficult to solve directly, but also a direct application of MM is still too difficult. If the
variables can be partitioned into 𝑛 blocks 𝒙 = (𝒙1, . . . , 𝒙𝑛) that are separately constrained,

minimize
𝒙

𝑓 (𝒙1, . . . , 𝒙𝑛)
subject to 𝒙𝑖 ∈ X𝑖, 𝑖 = 1, . . . , 𝑛,

then we can successfully combine BCD and MM. The idea is to solve block by block as in
BCD (see Section B.6) but majorizing each block 𝑓 (𝒙𝑖) with 𝑢

(
𝒙𝑖; 𝒙𝑘

)
(Razaviyayn et al.,

2013; Sun et al., 2017).

B.8 Successive Convex Approximation (SCA)
The successive convex approximation (SCA) method (or framework) approximates a difficult
optimization problem by a sequence of simpler convex problems. We now give a brief
description. For details, the reader is referred to the original paper, Scutari et al. (2014), and
the comprehensive book chapter, Scutari and Sun (2018).
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Suppose the following (difficult) problem is to be solved:

minimize
𝒙

𝑓 (𝒙)
subject to 𝒙 ∈ X,

(B.13)

where 𝑓 is the (possibly nonconvex) objective function and X is a convex set. Nonconvex sets
can also be accommodated at the expense of significantly complicating the method (Scutari &
Sun, 2018). Instead of attempting to directly obtain a solution 𝒙★ (either a local or a global
solution), the SCA method will produce a sequence of iterates 𝒙0, 𝒙1, 𝒙2, . . . that will converge
to 𝒙★.

More specifically, at iteration 𝑘 , the SCA approximates the objective function 𝑓 (𝒙) by a
surrogate function around the current point 𝒙𝑘 , denoted by 𝑓

(
𝒙; 𝒙𝑘

)
. This surrogate function

need not be an upper bound like in MM; in this sense, it is more relaxed. At this point, one
may be tempted to solve the sequence of (simpler) problems:

𝒙𝑘+1 = arg min
𝒙∈X

𝑓
(
𝒙; 𝒙𝑘

)
, 𝑘 = 0, 1, 2, . . .

Unfortunately, the previous sequence of updates may not converge and a smoothing step is
necessary to introduce some memory in the process, which will avoid undesired oscillations.
Thus, the correct sequence of problems for the SCA method is

�̂�𝑘+1 = arg min
𝒙∈X

𝑓
(
𝒙; 𝒙𝑘

)
𝒙𝑘+1 = 𝒙𝑘 + 𝛾𝑘

(
�̂�𝑘+1 − 𝒙𝑘

)  𝑘 = 0, 1, 2, . . . ,

where {𝛾𝑘} is a properly designed sequence with 𝛾𝑘 ∈ (0, 1] (Scutari et al., 2014). This
iterative process is illustrated in Figure B.10; observe that the surrogate function is not an
upper bound on the original function.

x k

~

f (  )x

x k+1 x k+2

f (  ;    )x x k

f (  ;      )x x k+1
~

Figure B.10 Illustration of sequence of surrogate problems in SCA.
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In order to guarantee convergence of the iterates, the surrogate function 𝑓
(
𝒙; 𝒙𝑘

)
has to

satisfy the following technical conditions (Scutari et al., 2014):

• 𝑓
(
𝒙; 𝒙𝑘

)
must be strongly convex on the feasible set X; and

• 𝑓
(
𝒙; 𝒙𝑘

)
must be differentiable with ∇ 𝑓

(
𝒙; 𝒙𝑘

)
= ∇ 𝑓 (𝒙).

The sequence {𝛾𝑘} can be chosen according to different stepsize rules (Scutari & Sun, 2018;
Scutari et al., 2014):

• Bounded stepsize: The values 𝛾𝑘 are sufficiently small (difficult to use in practice since
the values have to be smaller than some bound which is generally unknown or difficult to
compute).
• Backtracking line search: This is effective in terms of iterations, but performing the line

search requires evaluating the objective function multiple times per iteration, resulting in
more costly iterations.
• Diminishing stepsize: A good practical choice is a sequence satisfying

∑∞
𝑘=1 𝛾

𝑘 = +∞ and∑∞
𝑘=1(𝛾𝑘)2 < +∞. Two very effective examples of diminishing stepsize rules are:

𝛾𝑘+1 = 𝛾𝑘
(
1 − 𝜖𝛾𝑘

)
, 𝑘 = 0, 1, . . . , 𝛾0 < 1/𝜖,

where 𝜖 ∈ (0, 1), and

𝛾𝑘+1 =
𝛾𝑘 + 𝛼𝑘
1 + 𝛽𝑘 , 𝑘 = 0, 1, . . . , 𝛾0 = 1,

where 𝛼𝑘 and 𝛽𝑘 satisfy 0 ≤ 𝛼𝑘 ≤ 𝛽𝑘 and 𝛼𝑘/𝛽𝑘 → 0 as 𝑘 → ∞ while
∑
𝑘 𝛼

𝑘/𝛽𝑘 = ∞.
Examples of such 𝛼𝑘 and 𝛽𝑘 are: 𝛼𝑘 = 𝛼 or 𝛼𝑘 = log(𝑘)𝛼, and 𝛽𝑘 = 𝛽𝑘 or 𝛽𝑘 = 𝛽

√
𝑘 ,

where 𝛼 and 𝛽 are given constants satisfying 𝛼 ∈ (0, 1), 𝛽 ∈ (0, 1), and 𝛼 ≤ 𝛽.

SCA takes its name from the fact that the surrogate function is convex by construction.
Differently from MM, constructing a convex surrogate function is not difficult. This facilitates
the use of SCA in many applications. SCA can be described very simply, as summarized in
Algorithm B.8.

Algorithm B.8: SCA to solve the general problem in (B.13).
1: Choose initial point 𝒙0 ∈ X and sequence {𝛾𝑘};
2: Set 𝑘 ← 0;
3: repeat
4: Construct surrogate of 𝑓 (𝒙) around current point 𝒙𝑘 as 𝑓

(
𝒙; 𝒙𝑘

)
;

5: Obtain intermediate point by solving the surrogate convex problem:

�̂�𝑘+1 = arg min
𝒙∈X

𝑓
(
𝒙; 𝒙𝑘

)
;

6: Obtain next iterate by averaging the intermediate point with the previous one:

𝒙𝑘+1 = 𝒙𝑘 + 𝛾𝑘
(
�̂�𝑘+1 − 𝒙𝑘

)
;

7: 𝑘 ← 𝑘 + 1;
8: until convergence;
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B.8.1 Gradient Descent Method as SCA
Consider the unconstrained problem

minimize
𝒙

𝑓 (𝒙).

If we now employ SCA with the surrogate function

𝑓
(
𝒙; 𝒙𝑘

)
= 𝑓

(
𝒙𝑘

)
+ ∇ 𝑓

(
𝒙𝑘

)T (
𝒙 − 𝒙𝑘

)
+ 1

2𝛼𝑘
∥𝒙 − 𝒙𝑘 ∥2,

then to minimize the convex function 𝑓
(
𝒙; 𝒙𝑘

)
we just need to set its gradient to zero, leading

to the solution 𝒙 = 𝒙𝑘 − 𝛼𝑘∇ 𝑓
(
𝒙𝑘

)
. Thus, the iterations are

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘∇ 𝑓
(
𝒙𝑘

)
, 𝑘 = 0, 1, 2, . . . ,

which coincides with the gradient descent method.

B.8.2 Newton’s Method as SCA
If we now include the second-order information (i.e., the Hessian of 𝑓 ) in the surrogate
function,

𝑓
(
𝒙; 𝒙𝑘

)
= 𝑓

(
𝒙𝑘

)
+ ∇ 𝑓

(
𝒙𝑘

)T (
𝒙 − 𝒙𝑘

)
+ 1

2𝛼𝑘
(
𝒙 − 𝒙𝑘

)T ∇2 𝑓
(
𝒙𝑘

) (
𝒙 − 𝒙𝑘

)
,

then the resulting iterations are

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘∇2 𝑓
(
𝒙𝑘

)−1 ∇ 𝑓
(
𝒙𝑘

)
, 𝑘 = 0, 1, 2, . . . ,

which coincides with Newton’s method.

B.8.3 Parallel SCA
While SCA applied to problem (B.13) can be instrumental in devising efficient algorithms, its
true potential is realized when the variables can be partitioned into 𝑛 blocks 𝒙 = (𝒙1, . . . , 𝒙𝑛)
that are separately constrained:

minimize
𝒙

𝑓 (𝒙1, . . . , 𝒙𝑛)
subject to 𝒙𝑖 ∈ X𝑖, 𝑖 = 1, . . . , 𝑛.

In this case, SCA is able to update each of the variables in a parallel fashion (unlike BCD
or block MM where the updates are sequential) by using the surrogate functions 𝑓𝑖

(
𝒙𝑖; 𝒙𝑘

)
(Scutari et al., 2014):

�̂�𝑘+1𝑖 = arg min
𝒙𝑖∈X𝑖

𝑓𝑖
(
𝒙𝑖; 𝒙𝑘

)
𝒙𝑘+1𝑖 = 𝒙𝑘𝑖 + 𝛾𝑘

(
�̂�𝑘+1𝑖 − 𝒙𝑘𝑖

)  𝑖 = 1, . . . , 𝑛, 𝑘 = 0, 1, 2, . . .
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B.8.4 Convergence
SCA is an extremely versatile framework for deriving practical algorithms. In addition, it
enjoys nice theoretical convergence as derived in Scutari et al. (2014) and summarized in
Theorem B.5.

Theorem B.5 (Convergence of SCA) Suppose that the surrogate function 𝑓
(
𝒙; 𝒙𝑘

)
(or

each 𝑓𝑖
(
𝒙𝑖; 𝒙𝑘

)
in the parallel version) satisfies the previous technical conditions and {𝛾𝑘} is

chosen according to bounded stepsize, diminishing rule, or backtracking line search. Then
the sequence {𝒙𝑘} converges to a stationary point of the original problem.

B.8.5 Illustrative Examples
We now describe a few illustrative examples of applications of SCA, along with numerical
experiments.

Example B.10 (ℓ2–ℓ1-norm minimization via SCA) Consider the ℓ2–ℓ1-norm minimization
problem

minimize
𝒙

1
2 ∥𝑨𝒙 − 𝒃∥22 + 𝜆∥𝒙∥1.

This problem can be conveniently solved via BCD (see Section B.6), via MM (see Section B.7),
or simply by calling a QP solver. We will now develop a simple iterative algorithm based on
SCA that leverages the element-by-element closed-form solution.

In this case, we can use parallel SCA by partitioning the variable 𝒙 into each element
(𝑥1, . . . , 𝑥𝑛) and employing the surrogate functions

𝑓
(
𝒙𝑖; 𝒙𝑘

)
=

1
2

𝒂𝑖𝑥𝑖 − �̃�𝑘𝑖
2

2 + 𝜆 |𝑥𝑖 | +
𝜏

2
(
𝑥𝑖 − 𝑥𝑘𝑖

)2
,

where �̃�𝑘𝑖 = 𝒃 −∑
𝑗≠𝑖 𝒂 𝑗𝑥

𝑘
𝑗 .

Therefore, the sequence of surrogate problems to be solved for 𝑘 = 0, 1, 2, . . . is

minimize
𝒙

1
2

𝒂𝑖𝑥𝑖 − �̃�𝑘𝑖
2

2 + 𝜆 |𝑥𝑖 | + 𝜏
(
𝑥𝑖 − 𝑥𝑘𝑖

)2
, 𝑖 = 1, . . . , 𝑛,

with the solution given by the soft-thresholding operator (see Section B.6).

This finally leads to the following SCA iterative algorithm:

𝑥𝑘+1𝑖 =
1

𝜏 + ∥𝒂𝑖 ∥2
S𝜆

(
𝒂T
𝑖 �̃�

𝑘
𝑖 + 𝜏𝑥𝑘𝑖

)
𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 + 𝛾𝑘

(
𝑥𝑘+1𝑖 − 𝑥𝑘𝑖

)  𝑖 = 1, . . . , 𝑛, 𝑘 = 0, 1, 2, . . . ,

where S𝜆(·) is the soft-thresholding operator defined in (B.11). Figure B.11 shows the
convergence of the SCA iterates.

Example B.11 (Dictionary learning) Consider the dictionary learning problem:

minimize
𝑫,𝑿

1
2 ∥𝒀 − 𝑫𝑿∥2

𝐹
+ 𝜆∥𝑿∥1

subject to ∥ [𝑫] :,𝑖 ∥ ≤ 1, 𝑖 = 1, . . . , 𝑚,
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Figure B.11 Convergence of SCA for the ℓ2–ℓ1-norm minimization.

where ∥𝑫∥𝐹 denotes the matrix Frobenius norm of 𝑫 (i.e., the ℓ2-norm of the vectorized form
of the matrix or the sum of the squares of all the elements) and ∥𝑿∥1 denotes the elementwise
ℓ1-norm of 𝑿 (i.e., the ℓ1-norm of the vectorized form of the matrix).

Matrix 𝑫 is the so-called dictionary and it is a fat matrix that contains a dictionary along the
columns that can explain the columns of the data matrix 𝒀 . Matrix 𝑿 selects a few columns
of the dictionary and, hence, has to be sparse (enforced by the regularizer ∥𝑿∥1).

This problem is not jointly convex in (𝑫, 𝑿), but it is bi-convex: for a fixed 𝑫, it is convex
in 𝑿 and, for a fixed 𝑿, it is convex in 𝑫. One way to deal with this problem is via BCD
(see Section B.6), which would update 𝑫 and 𝑿 sequentially. An alternative way is via SCA,
which allows a parallel update of 𝑫 and 𝑿.

For the SCA approach we can use the following two surrogate functions for 𝑫 and 𝑿,
respectively:

𝑓1
(
𝑫; 𝑿𝑘

)
=

1
2
∥𝒀 − 𝑫𝑿𝑘 ∥2𝐹 ,

𝑓2
(
𝑿; 𝑫𝑘

)
=

1
2
∥𝒀 − 𝑫𝑘𝑿∥2𝐹 .

This leads to the following two convex problems:

• A normalized LS problem:

minimize
𝑫

1
2 ∥𝒀 − 𝑫𝑿𝑘 ∥2

𝐹

subject to ∥ [𝑫] :,𝑖 ∥ ≤ 1, 𝑖 = 1, . . . , 𝑚.

• A matrix version of the ℓ2 − ℓ1-norm problem:

minimize
𝑿

1
2 ∥𝒀 − 𝑫𝑘𝑿∥2

𝐹
+ 𝜆∥𝑿∥1,
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which can be further decomposed into a set of vectorized ℓ2 − ℓ1-norm problems for each
column of 𝑿.

B.8.6 MM vs. SCA
The MM and SCA algorithmic frameworks appear very similar: both are based on solving a
sequence of surrogate problems. The difference is in the details, as we compare next.

• Surrogate function: MM requires the surrogate function to be a global upper bound (which
can be difficult to derive and too restrictive in some cases), albeit not necessarily convex.
On the other hand, SCA relaxes this upper-bound condition in exchange for the requirement
of strong convexity. Figure B.12 illustrates the potential benefit of relaxing the upper-bound
requirement.

MM SCA

Figure B.12 Illustration of MM vs. SCA: relaxing the upper-bound requirement.

• Constraint set: In principle, both SCA and MM require the feasible set X to be convex.
However, the convergence of MM can be easily extended to nonconvexX on a case-by-case
basis – refer to the examples in Song et al. (2015), Sun et al. (2017), Kumar et al. (2019),
and Kumar et al. (2020). SCA cannot deal with a nonconvex X directly, although some
extensions allow for a successive convexification of X at the expense of a much more
complex algorithm (Scutari & Sun, 2018).

• Schedule of updates: Both MM and SCA can deal with a separable variable 𝒙 = (𝒙1, . . . , 𝒙𝑛).
However, block MM requires a sequential update (Razaviyayn et al., 2013; Sun et al.,
2017), whereas SCA naturally implements a parallel update, which is more amenable for
distributed implementations.

B.9 Alternating Direction Method of Multipliers (ADMM)
The alternating direction method of multipliers (ADMM) is a practical algorithm that
resembles BCD (see Section B.6), but is able to cope with coupled block variables in
the constraints (recall that BCD requires each of the variable blocks to be independently
constrained). For details, the reader is referred to Boyd et al. (2010) and Beck (2017).



568 Optimization Algorithms

Consider the convex optimization problem

minimize
𝒙,𝒛

𝑓 (𝒙) + 𝑔(𝒛)
subject to 𝑨𝒙 + 𝑩𝒛 = 𝒄,

(B.14)

where the variables 𝒙 and 𝒛 are coupled via the constraint 𝑨𝒙 + 𝑩𝒛 = 𝒄. We are going
to explore techniques to try to decouple the variables in order to derive simpler practical
algorithms rather than attempting to solve (B.14) directly.

A first attempt to decouple the 𝒙 and 𝒛 in (B.14) is via the dual problem (see Section A.6 in
Appendix A). More exactly, the dual ascent method updates the dual variable 𝒚 via a gradient
method and, at each iteration, the Lagrangian is solved for the given 𝒚:

minimize
𝒙,𝒛

𝐿 (𝒙, 𝒛; 𝒚) ≜ 𝑓 (𝒙) + 𝑔(𝒛) + 𝒚T (𝑨𝒙 + 𝑩𝒛 − 𝒄) ,

which now clearly decouples into two separate problems over 𝒙 and 𝒛. This decoupling leads
to the dual decomposition method, developed in the early 1960s, where the primal variables 𝒙
and 𝒛 are optimized in parallel:

𝒙𝑘+1 = arg min
𝒙

𝑓 (𝒙) + (𝒚𝑘)T𝑨𝒙

𝒛𝑘+1 = arg min
𝒛

𝑔(𝒛) + (𝒚𝑘)T𝑩𝒛

𝒚𝑘+1 = 𝒚𝑘 + 𝛼𝑘
(
𝑨𝒙𝑘+1 + 𝑩𝒛𝑘+1 − 𝒄

)


𝑘 = 0, 1, 2, . . . ,

where 𝛼𝑘 is the stepsize. This method is able to decouple the primal variables; however, it
requires many technical assumptions to work and it is often slow.

A second attempt to solve problem (B.14) with fewer technical assumptions and with a faster
algorithm is via the method of multipliers, developed in the late 1960s, which substitutes the
Lagrangian by the augmented Lagrangian:

𝐿𝜌 (𝒙, 𝒛; 𝒚) ≜ 𝑓 (𝒙) + 𝑔(𝒛) + 𝒚T (𝑨𝒙 + 𝑩𝒛 − 𝒄) + 𝜌
2
∥𝑨𝒙 + 𝑩𝒛 − 𝒄∥22.

The algorithm is then(
𝒙𝑘+1, 𝒛𝑘+1

)
= arg min

𝒙,𝒛
𝐿𝜌 (𝒙, 𝒛; 𝒚𝑘)

𝒚𝑘+1 = 𝒚𝑘 + 𝜌
(
𝑨𝒙𝑘+1 + 𝑩𝒛𝑘+1 − 𝒄

)  𝑘 = 0, 1, 2, . . . ,

where the penalty parameter 𝜌 now serves as the (constant) stepsize. This method converges
under much more relaxed conditions. Unfortunately, it cannot achieve decoupling in 𝒙 and 𝒛
because of the term ∥𝑨𝒙 + 𝑩𝒛 − 𝒄∥22 in the augmented Lagrangian.

A third and final attempt is ADMM, proposed in the mid-1970s, which combines the good
features of both the dual decomposition method and the method of multipliers. The idea
is to minimize the augmented Lagrangian like in the method of multipliers, but instead of
performing a joint minimization over (𝒙, 𝒛), a single round of the BCD method is performed
(see Section B.6). This update follows an alternating or sequential fashion, which accounts
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for the name “alternating direction,” and leads to the ADMM iterations:

𝒙𝑘+1 = arg min
𝒙

𝐿𝜌 (𝒙, 𝒛𝑘; 𝒚𝑘)

𝒛𝑘+1 = arg min
𝒛

𝐿𝜌 (𝒙𝑘+1, 𝒛; 𝒚𝑘)

𝒚𝑘+1 = 𝒚𝑘 + 𝜌
(
𝑨𝒙𝑘+1 + 𝑩𝒛𝑘+1 − 𝒄

)


𝑘 = 0, 1, 2, . . .

This method successfully decouples the primal variables 𝒙 and 𝒛, while enjoying faster
convergence with few technical conditions required for convergence.

For convenience, it is common to express the ADMM iterative updates in terms of the scaled
dual variable 𝒖𝑘 = 𝒚𝑘/𝜌 as used in Algorithm B.9.

Algorithm B.9: ADMM to solve the problem in (B.14).
1: Choose initial point

(
𝒙0, 𝒛0) and 𝜌;

2: Set 𝑘 ← 0;
3: repeat
4: Iterate primal and dual variables:

𝒙𝑘+1 = arg min
𝒙

𝑓 (𝒙) + 𝜌
2

𝑨𝒙 + 𝑩𝒛𝑘 − 𝒄 + 𝒖𝑘
2

2 ,

𝒛𝑘+1 = arg min
𝒛

𝑔(𝒛) + 𝜌
2

𝑨𝒙𝑘+1 + 𝑩𝒛 − 𝒄 + 𝒖𝑘
2

2 ,

𝒖𝑘+1 = 𝒖𝑘 +
(
𝑨𝒙𝑘+1 + 𝑩𝒛𝑘+1 − 𝒄

)
;

5: 𝑘 ← 𝑘 + 1;
6: until convergence;

B.9.1 Convergence
Many convergence results for ADMM are discussed in the literature ((Boyd et al., 2010),
and references therein). Theorem B.6 summarizes the most basic, but still very general,
convergence result.

Theorem B.6 (Convergence of ADMM) Suppose that (i) the functions 𝑓 (𝒙) and 𝑔(𝒛) are
convex and both the 𝒙-update and the 𝒛-update are solvable, and (ii) the Lagrangian has a
saddle point. Then, we have:

• residual convergence: 𝑨𝒙𝑘 + 𝑩𝒛𝑘 − 𝒄 → 0 as 𝑘 → ∞, that is, the iterates approach
feasibility;
• objective convergence: 𝑓 (𝒙) + 𝑔(𝒛) → 𝑝★ as 𝑘 →∞, that is, the objective function of the

iterates approaches the optimal value; and
• dual variable convergence: 𝒚𝑘 → 𝒚★ as 𝑘 →∞.

Note that {𝒙𝑘} and {𝒛𝑘} need not converge to optimal values, although such results can be
shown under additional assumptions.

In practice, ADMM can be slow to converge to high accuracy. However, it is often the case
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that ADMM converges to modest accuracy within a few tens of iterations (depending on the
specific application), which is often sufficient for many practical applications. This behavior
is reminiscent of the gradient method (after all, the update of the dual variable is also a
first-order method like gradient descent) and also different from the fast convergence of
Newton’s method.

B.9.2 Illustrative Examples
We now give a few illustrative examples of applications of ADMM, along with numerical
experiments.

Example B.12 (Constrained convex optimization) Consider the generic convex optimization
problem

minimize
𝒙

𝑓 (𝒙)
subject to 𝒙 ∈ X,

where 𝑓 is convex and X is a convex set.

We could naturally use an algorithm for solving constrained optimization problems. Inter-
estingly, we can use ADMM to transform this problem into an unconstrained one. More
specifically, we can employ ADMM by defining 𝑔 to be the indicator function of the feasible
set X,

𝑔(𝒙) ≜
{

0 𝒙 ∈ X,
+∞ otherwise,

and then formulating the equivalent problem

minimize
𝒙,𝒛

𝑓 (𝒙) + 𝑔(𝒛)
subject to 𝒙 − 𝒛 = 0.

This produces the following ADMM algorithm:

𝒙𝑘+1 = arg min
𝒙

𝑓 (𝒙) + 𝜌
2

𝒙 − 𝒛𝑘 + 𝒖𝑘
2

2

𝒛𝑘+1 =
[
𝒙𝑘+1 + 𝒖𝑘

]
X

𝒖𝑘+1 = 𝒖𝑘 +
(
𝒙𝑘+1 − 𝒛𝑘+1

)


𝑘 = 0, 1, 2, . . . ,

where [·]X denotes projection on the set X.

Example B.13 (ℓ2–ℓ1-norm minimization via ADMM) Consider the ℓ2–ℓ1-norm minimiza-
tion problem

minimize
𝒙

1
2 ∥𝑨𝒙 − 𝒃∥22 + 𝜆∥𝒙∥1.

This problem can be conveniently solved via BCD (see Section B.6), MM (see Section B.7),
SCA (see Section B.8), or simply by calling a QP solver. We will now develop a simple
iterative algorithm based on ADMM that leverages the element-by-element closed-form
solution.
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We start by reformulating the problem as

minimize
𝒙,𝒛

1
2 ∥𝑨𝒙 − 𝒃∥22 + 𝜆∥𝒛∥1

subject to 𝒙 − 𝒛 = 0.

The 𝒙-update, given 𝒛 and the scaled dual variable 𝒖, is the solution to

minimize
𝒙

1
2 ∥𝑨𝒙 − 𝒃∥22 +

𝜌

2 ∥𝒙 − 𝒛 + 𝒖∥22 ,

given by 𝒙 =
(
𝑨T𝑨 + 𝜌𝑰

)−1 (
𝑨T𝒃 + 𝜌(𝒛 − 𝒖)

)
, whereas the 𝒛-update, given 𝒙 and 𝒖, is the

solution to
minimize

𝒛

𝜌

2 ∥𝒙 − 𝒛 + 𝒖∥22 + 𝜆∥𝒛∥1

given by 𝒛 = S𝜆/𝜌 (𝒙 + 𝒖), where S𝜆/𝜌 (·) is the soft-thresholding operator defined in (B.11).

Thus, the ADMM is finally given by the iterates

𝒙𝑘+1 =
(
𝑨T𝑨 + 𝜌𝑰

)−1 (
𝑨T𝒃 + 𝜌

(
𝒛𝑘 − 𝒖𝑘

) )
𝒛𝑘+1 = S𝜆/𝜌

(
𝒙𝑘+1 + 𝒖𝑘

)
𝒖𝑘+1 = 𝒖𝑘 +

(
𝒙𝑘+1 − 𝒛𝑘+1

)
 𝑘 = 0, 1, 2, . . .

Figure B.13 shows the convergence of the ADMM iterates.
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Figure B.13 Convergence of ADMM for the ℓ2–ℓ1-norm minimization.

B.10 Numerical Comparison
We will now compare the different algorithms with the ℓ2–ℓ1-norm minimization example
(Zibulevsky & Elad, 2010):

minimize
𝒙

1
2 ∥𝑨𝒙 − 𝒃∥22 + 𝜆∥𝒙∥1.
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To facilitate comparison, we express the iterates of the various algorithms in a uniform manner,
utilizing the soft-thresholding operator S as defined in (B.11).

• BCD (a.k.a. Gauss–Seidel) iterates:

𝒙𝑘+1 = S 𝜆

diag(𝑨T𝑨)

(
𝒙𝑘 −

𝑨T (
𝑨𝒙 (𝑘,𝑖) − 𝒃

)
diag (𝑨T𝑨)

)
, 𝑖 = 1, . . . , 𝑛, 𝑘 = 0, 1, 2, . . . ,

where 𝒙 (𝑘,𝑖) ≜
(
𝑥𝑘+11 , . . . , 𝑥𝑘+1

𝑖−1 , 𝑥
𝑘
𝑖 , . . . , 𝑥

𝑘
𝑛

)
.

• Parallel version of BCD (a.k.a. Jacobi) iterates:

𝒙𝑘+1 = S 𝜆

diag(𝑨T𝑨)

(
𝒙𝑘 −

𝑨T (
𝑨𝒙𝑘 − 𝒃

)
diag (𝑨T𝑨)

)
, 𝑖 = 1, . . . , 𝑛, 𝑘 = 0, 1, 2, . . .

• MM iterates:

𝒙𝑘+1 = S𝜆
𝜅

(
𝒙𝑘 − 1

𝜅
𝑨T (

𝑨𝒙𝑘 − 𝒃
) )
, 𝑘 = 0, 1, 2, . . .

• Accelerated MM iterates:
𝒓𝑘 = 𝑅(𝒙𝑘) ≜ MM(𝒙𝑘) − 𝒙𝑘

𝒗𝑘 = 𝑅(MM(𝒙𝑘)) − 𝑅(𝒙𝑘)
𝛼𝑘 = −max

(
1, ∥𝒓𝑘 ∥2/∥𝒗𝑘 ∥2

)
𝒚𝑘 = 𝒙𝑘 − 𝛼𝑘 𝒓𝑘

𝒙𝑘+1 = MM(𝒚𝑘)


𝑘 = 0, 1, 2, . . .

• SCA iterates:

�̂�𝑘+1 = S 𝜆

𝜏+diag(𝑨T𝑨)

(
𝒙𝑘 −

𝑨T (
𝑨𝒙𝑘 − 𝒃

)
𝜏 + diag (𝑨T𝑨)

)
𝒙𝑘+1 = 𝛾𝑘 �̂�𝑘+1 +

(
1 − 𝛾𝑘

)
𝒙𝑘

 𝑘 = 0, 1, 2, . . .

• ADMM iterates:

𝒙𝑘+1 =
(
𝑨T𝑨 + 𝜌𝑰

)−1 (
𝑨T𝒃 + 𝜌

(
𝒛𝑘 − 𝒖𝑘

) )
𝒛𝑘+1 = S𝜆/𝜌

(
𝒙𝑘+1 + 𝒖𝑘

)
𝒖𝑘+1 = 𝒖𝑘 +

(
𝒙𝑘+1 − 𝒛𝑘+1

)
 𝑘 = 0, 1, 2, . . .

Observe that BCD updates each element sequentially, whereas all the other methods update all
the elements simultaneously (this translates into an unacceptable increase in the computational
cost for BCD).

The Jacobi update is the parallel version of BCD, although in principle it is not guaranteed to
converge. Interestingly, the Jacobi update looks strikingly similar to the SCA update, except
that SCA includes 𝜏 and the smoothing step, which are precisely the necessary ingredients to
guarantee convergence.

A hidden but critical detail in the MM method is the need to compute the largest eigenvalue of
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𝑨T𝑨 to be able to choose the parameter 𝜅 > 𝜆max
(
𝑨T𝑨

)
, which results in an upfront increase

in computation. In addition, such a value of 𝜅 is a very conservative upper bound used in the
update of all the elements of 𝒙. In SCA, this common conservative value of 𝜅 is replaced
by the vector diag

(
𝑨T𝑨

)
, which is better tailored to each element of 𝒙 and results in faster

convergence.

Figure B.14 compares the convergence of all these methods in terms of iterations, as well as
CPU time, for the resolution of the ℓ2–ℓ1-norm minimization problem with 𝑚 = 500 linear
equations and 𝑛 = 100 variables. Note that each outer iteration of BCD involves a sequential
update of each element, which results in an extremely high CPU time and the curve lies
outside the range of the plot. Observe that ADMM converges with a much lower accuracy
than the other methods.
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Figure B.14 Comparison of different iterative methods for the ℓ2–ℓ1-norm
minimization.

B.11 Summary
• A broad spectrum of algorithms is available to solve optimization problems. The specific

selection depends on the problem’s requirements and the user’s technical expertise.

• Solvers are accessible for most types of convex and nonconvex formulations across most
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programming languages. Most users will simply invoke a solver or, for greater ease, utilize
a modeling framework to define the problem more conveniently. The framework will then
call an appropriate solver.

• Inside a solver, various methods can be employed, such as the gradient descent method,
Newton’s method, and interior-point methods, among others. However, most users do not
need to delve into these details.

• More advanced users may seek to develop improved algorithms tailored to their specific
problem. These can be faster, more efficient, simpler to implement, or capable of handling
larger problems. This advanced approach demands more effort and knowledge from the user,
such as knowledge of the Dinkelbach method or the Charnes–Cooper–Schaible transform
for fractional problems.

• Complex problems can be addressed using iterative algorithmic frameworks. These
frameworks aim to break down the original, intricate problem into more manageable
sub-problems, although this approach necessitates iterations. Some of the most popular
and widely used methods include:

– bisection
– block coordinate descent (BCD)
– majorization–minimization (MM)
– successive convex approximation (SCA)
– alternating direction method of multipliers (ADMM).

Exercises
B.1 (Euclidean norm approximation)

a. Randomly generate the parameters 𝑨 ∈ R10×5 and 𝒃 ∈ R10.
b. Formulate a regression problem to approximate 𝑨𝒙 ≈ 𝒃 based on the ℓ2-norm.
c. Solve it directly with the least squares closed-form solution.
d. Solve it using a modeling framework (e.g., CVX).
e. Solve it invoking a QP solver.

B.2 (Manhattan norm approximation)

a. Randomly generate the parameters 𝑨 ∈ R10×5 and 𝒃 ∈ R10.
b. Formulate a regression problem to approximate 𝑨𝒙 ≈ 𝒃 based on the ℓ1-norm.
c. Solve it using a modeling framework (e.g., CVX).
d. Rewrite it as an LP and solve it invoking an LP solver.

B.3 (Chebyshev norm approximation)

a. Randomly generate the parameters 𝑨 ∈ R10×5 and 𝒃 ∈ R10.
b. Formulate a regression problem to approximate 𝑨𝒙 ≈ 𝒃 based on the ℓ∞-norm.
c. Solve it using a modeling framework (e.g., CVX).
d. Rewrite it as an LP and solve it invoking an LP solver.
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B.4 (Solving an LP) Consider the following LP:

maximize
𝑥1 ,𝑥2

3𝑥1 + 𝑥2

subject to 𝑥1 + 2𝑥2 ≤ 4,
4𝑥1 + 2𝑥2 ≤ 12,
𝑥1, 𝑥2 ≥ 0.

a. Solve it using a modeling framework (e.g., CVX).
b. Solve it by directly invoking an LP solver.
c. Solve it by invoking a general-purpose nonlinear solver.
d. Implement the projected gradient method to solve the problem.
e. Implement the constrained Newton’s method to solve the problem.
f. Implement the log-barrier interior-point method to solve the problem (use (1,1) as the

initial point).
g. Compare all the solutions and the computation time.

B.5 (Central path) Formulate the log-barrier problem corresponding to the LP in Exercise B.4
and plot the central path as the parameter 𝑡 varies.

B.6 (Phase I method) Design a phase I method to find a feasible point for the LP in
Exercise B.4, which can then be used as the starting point for the barrier method.

B.7 (Dual problem) Formulate the dual problem corresponding to the LP in Exercise B.4
and solve it using a solver of your choice.

B.8 (KKT conditions) Write down the Karush–Kuhn–Tucker (KKT) conditions for the LP
in Exercise B.4 and discuss their role in determining the optimality of a solution.

B.9 (Solving a QP) Consider the following QP:

maximize
𝑥1 ,𝑥2

𝑥2
1 + 𝑥2

2

subject to 𝑥1 + 𝑥2 = 1,
𝑥1 ≥ 0, 𝑥2 ≥ 0.

a. Solve it using a modeling framework (e.g., CVX).
b. Solve it by directly invoking a QP solver.
c. Solve it by invoking a general-purpose nonlinear solver.
d. Implement the projected gradient method to solve the problem.
e. Implement the constrained Newton’s method to solve the problem.
f. Implement the log-barrier interior-point method to solve the problem (use (0.5,0.5) as the

initial point).
g. Compare all the solutions and the computation time.

B.10 (Fractional programming) Consider the following fractional program:

maximize
𝒘

𝒘T1
√
𝒘T𝚺𝒘

subject to 1T𝒘 = 1, 𝒘 ≥ 0,

where 𝚺 ≻ 0.
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a. Solve it with a general-purpose nonlinear solver.
b. Solve it via bisection.
c. Solve it via the Dinkelbach method as a sequence of SOCPs.
d. Develop a modified algorithm that solves the problem as a sequence of QPs instead.
e. Solve it via the Schaible transform method.
f. Reformulate the problem as a minimization and then solve it via the Schaible transform

method.
g. Compare all the previous approaches in terms of the accuracy of the solution and the

computation time.

B.11 (Soft-thresholding operator) Consider the following convex optimization problem:

minimize
𝑥

1
2 ∥𝒂𝑥 − 𝒃∥22 + 𝜆 |𝑥 |,

with 𝜆 ≥ 0. Derive the solution and show that it can be written as

𝑥 =
1
∥𝒂∥22
S𝜆

(
𝒂T𝒃

)
,

where S𝜆(·) is the so-called soft-thresholding operator defined as

S𝜆(𝑢) = sign(𝑢) ( |𝑢 | − 𝜆)+,

with sign(·) denoting the sign function and (·)+ = max(0, ·).

B.12 (ℓ2–ℓ1-norm minimization) Consider the following ℓ2–ℓ1-norm minimization problem
(with 𝑨 ∈ R10×5 and 𝒃 ∈ R10 randomly generated):

minimize
𝒙

1
2 ∥𝑨𝒙 − 𝒃∥22 + 𝜆∥𝒙∥1.

a. Solve it using a modeling framework (e.g., CVX).
b. Rewrite the problem as a QP and solve it by invoking a QP solver.
c. Solve it with an ad hoc LASSO solver.

B.13 (BCD for ℓ2–ℓ1-norm minimization) Solve the ℓ2–ℓ1-norm minimization problem in
Exercise B.12 via BCD. Plot the convergence vs. iterations and CPU time.

B.14 (MM for ℓ2–ℓ1-norm minimization) Solve the ℓ2–ℓ1-norm minimization problem in
Exercise B.12 via MM and its accelerated version. Plot the convergence vs. iterations and
CPU time.

B.15 (SCA for ℓ2–ℓ1-norm minimization) Solve the ℓ2–ℓ1-norm minimization problem in
Exercise B.12 via SCA. Plot the convergence vs. iterations and CPU time.

B.16 (ADMM for ℓ2–ℓ1-norm minimization) Solve the ℓ2–ℓ1-norm minimization problem
in Exercise B.12 via ADMM. Plot the convergence vs. iterations and CPU time.
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history, 423
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transformer, 431
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multivariate volatility model, 95
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exponential smoothing methods, 83
exponentially weighted moving average (EWMA),

see EWMA
factor models, 59
false discovery rate (FDR), 341

index tracking, 342
financial index, 320
GARCH model, 90

multivariate, 95, 96
generalized autoregressive conditional

heteroskedasticity (GARCH), see GARCH
graphical model networks, see graphs, graphical

model networks
graphs, 100
𝑘-component GMRF graph, 114, 117
𝑘-component graph, 113, 121, 296
𝑘-component graph approximation, 114, 117
adjacency matrix, 102
bipartite GMRF graph, 116
bipartite graph, 115
bipartite graph approximation, 115
clustered graph, 113, 121
connectivity matrix, 102
degree matrix, 103
dynamic graph, 122
financial graphs, 122, 296
Gaussian Markov random field (GMRF), 121
GLASSO, 121
GMRF, 121
graph spectral properties, 113
graphical model networks, 108

correlation network, 109
Gaussian Markov random field (GMRF), 110
GMRF, 111
graphical LASSO (GLASSO), 109
Laplacian-structured GLASSO, 110
partial correlation network, 109
sparse GMRF, 110, 111

heavy-tailed graph, 119–121, 296
heavy-tailed Markov random field (MRF) graph,

119–121

heavy-tailed Markow random field (MRF) graph,
296

Laplacian matrix, 103
low-rank GMRF Laplacian, 114, 117
low-rank Laplacian approximation, 114, 117
low-rank Laplacian matrix, 113, 121
node degree, 108, 117
sparse GMRF graph, 114, 116, 117, 121
sparse graph, 110, 111, 121
structured graphs, 112
time-varying graph, 122

heavy tails, 22
hierarchical clustering, 297
hierarchical clustering portfolios, see also portfolios,

300
high-order moments, 219

L-moments, 224
portfolio moments, 219
portfolio parametric moments, 223
structured moments, 221

i.i.d. model, 36, 72
index tracking, 321, 327, 331, 334
industries, 116
Kalman, 73, 401, 402

Kalman filtering, 75, 402
Kalman forecasting, 76, 402
Kalman smoothing, 76
mean models, 83, 87
state-space model, 73, 74

observation equation, 74
state equation, 74

volatility models, 93
kurtosis, 22
least squares (LS), 40
MA, 78

volatility envelope, 88
machine learning (ML), 418

finance, 422
learning, 420
models, 421

majorization–minimization (MM), 41, 49, 110, 119,
278, see also algorithms

maximum likelihood (ML), 43
Gaussian estimators, 44
heavy-tailed estimators, 47

mean estimators
𝑀-estimators, 50
Black–Litterman estimator, 66
factor model estimator, 61
Gaussian estimator, 44
heavy-tailed estimator, 48
James–Stein’s shrinkage estimator, 56
median, 40
sample mean, 37, 40
spatial median, 41

mean reversion, 372
moving average (MA), see MA
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net asset value (NAV), 131
Nobel prize

Clive W. J. Granger, 383
Eugene F. Fama, 37, 71
Harry Markowitz, 160
Robert F. Engle, 89, 383
Robert J. Shiller, 37, 71

non-Gaussianity, 22
optimization, 454

Charnes–Cooper transform, 519
complementary slackness, 490
conic program (CP), 481
convex functions, 462
convex optimization problems, 469
convex sets, 459
fractional program (FP), 482
generalized inequalities, 492
geometric program (GP), 483
interior-point methods, 501
Karush–Kuhn–Tucker (KKT) optimality

conditions, 491
Lagrange dual problem, 485
Lagrange duality, 484, 488
Lagrangian, 484
linear program (LP), 476
linear-fractional program (LFP), 477
modeling framework, 504
multi-objective optimization problems, 492, 494
optimization problems, 454
Pareto optimality, 493
quadratic program (QP), 478
quasi-convex functions, 468
quasi-convex optimization problems, 475
Schaible transform, 170, 520
second-order cone program (SOCP), 479
semidefinite program (SDP), 480
solvers, 500
types of convex problems, 476
vector optimization problems, 493

pairs trading, 378, 405
PCA, 63
portfolio constraints, 138

capital budget, 138
cardinality, 139
diversification, 140
dollar neutral, 140
holding, 139
leverage, 140
long-only, 138
margin, 141
market neutral, 140
no-shorting, 138
turnover, 139

portfolio performance measures, 141
Calmar ratio, 149
conditional value-at-risk (CVaR), 147, 247–249
downside deviation, 145
downside risk, 145, 246, 249

drawdown, 147, 249
entropic value-at-risk (EVaR), 247
expected return, 141
expected shortfall (ES), 147, 247
expected tail loss (ETL), 247
gain–loss ratio (GLR), 146
information ratio (IR), 145
lower partial moment (LPM), 145, 246, 249
semi-deviation, 145, 246
semi-variance, 145, 246
Sharpe ratio (SR), 144
Sortino ratio, 146
Sterling ratio, 149
value-at-risk (VaR), 146, 247
volatility, 142
volatility-adjusted returns, 143

portfolio rebalancing, see portfolios
portfolio risk measures, see portfolio performance

measures
portfolios

1/𝑁 portfolio, 150
buy and hold (B&H) portfolio, 149
constraints, see portfolio constraints
deep learning (DL) portfolios, 441
equal risk portfolio (ERP), 154
equally weighted portfolio (EWP), 150
global maximum return portfolio (GMRP), 149
global minimum variance portfolio (GMVP), 153
hierarchical clustering based, 300

cluster-based waterfall portfolio, 301
hierarchical 1/𝑁 portfolio, 301
hierarchical equal risk contribution (HERC)

portfolio, 308
hierarchical risk parity (HRP) portfolio, 306

index tracking, 331, 334
inverse volatility portfolio (IVolP), 154
Kelly criterion portfolio, 172
maximum decorrelation portfolio (MDecP), 156
maximum expected utility portfolio, 174
maximum Sharpe ratio portfolio (MSRP), 169
mean–Ave-DD portfolio, 260
mean–CVaR portfolio, 254
mean–CVaR-DD portfolio, 260
mean–downside risk portfolio, 251
mean–EVaR portfolio, 255
mean–LPM portfolio, 251
mean–Max-DD portfolio, 259
mean–semi-variance portfolio, 251, 253
mean–variance portfolio (MVP), 161
mean–variance–skewness–kurtosis (MVSK)

portfolio, 228
mean–worst-case risk portfolio, 256
most diversified portfolio (MDivP), 155
MVSK portfolio tilting, 230
performance measures, see portfolio performance

measures
polynomial goal programming MVSK portfolio,

230
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portfolio bagging, 365
portfolio rebalancing, 136
portfolio resampling, 365
quintile portfolio, 151, 152
risk measures, see portfolio performance

measures
risk parity portfolio (RPP), 154, 271, 273, 275,

286
robust portfolios, 152, 354, 355, 358
transaction costs, 134

principal component analysis (PCA), see PCA
Python packages

CVXPY, 13
filterpy, 74, 402
PyMC, 92
PyPortfolioOpt, 13
Riskfolio-Lib, 13, 163
riskparity.py, 271
scipy, 298
statsmodels, 81

R packages
CVXR, 13
egcm, 383
fGarch, 90
finbipartite, 115
fingraph, 119, 296
fitHeavyTail, 48
fPortfolio, 13, 163
highOrderPortfolios, 237
KFAS, 74, 402
MARSS, 74, 402
riskParityPortfolio, 271
rugarch, 81, 90
sparseGraph, 110
sparseIndexTracking, 334
spectralGraphTopology, 110, 114
stochvol, 92
TRexSelector, 342
urca, 383

random walk, 37
resampling methods, 361

bagging, 365
bootstrap, 363, 364
jackknife, 363
portfolio bagging, 365
portfolio resampling, 365

return
cumulative return, 133

returns, 18
risk contributions, 269
risk diversification, 268
risk measures

conditional value-at-risk (CVaR), 247–249
downside risk, 246, 249
drawdown, 249
entropic value-at-risk (EVaR), 247
expected shortfall (ES), 247
expected tail loss (ETL), 247

lower partial moment (LPM), 246, 249
semi-deviation, 246
semi-variance, 246
value-at-risk (VaR), 247

risk parity, 268
risk parity portfolio (RPP), 271

general nonconvex formulations, 286
naive diagonal formulation, 273
vanilla convex formulations, 275

robust estimators, 49, 339
robust optimization, 350

stochastic optimization, 352
worst-case robust optimization, 353

robust portfolios, 355, 358
sample covariance matrix, see covariance matrix

estimator, sample covariance matrix
sample estimators, 37
sample mean, see mean estimator, sample mean
seasonality decomposition, 83
sectors, 116
shrinkage estimators, 55

James–Stein’s shrinkage mean estimator, 56
shrinkage covariance matrix estimator, 57

skewness, 22
sparse regression, 323

index tracking, 331
spread, 380, 389, 397
state-space model, see Kalman, state-space model
statistical arbitrage, 378, 405
stochastic volatility (SV), 92

AR(1) state-space model, 93, 96
multivariate, 96
random walk state-space model, 93, 97

stress tests, 212
structural time series models, 83
stylized facts, 17, 34
successive convex approximation (SCA), 279, 289,

see also algorithms
SV, see stochastic volatility (SV)
temporal correlation, 27
transaction costs, 134
Tyler’s estimator, 51
variance modeling, 87
VARMA model, 86
VECM model, 86, 408
volatility clustering, 27, 28
volatility envelope, 88
volatility modeling, 87
volatility smile, 83, 90
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