Python Code for Portfolio Optimization
Chapter 10 – Portfolios with Alternative Risk Measures

Daniel P. Palomar (2025). Portfolio Optimization: Theory and Application. Cambridge University Press.

Last update: March 29, 2025

Contributors:


Libraries

The following libraries are used in the examples:

# Core numerical computing
import numpy as np
import pandas as pd
from typing import Dict, Tuple, List, Callable
import warnings
warnings.filterwarnings('ignore')
import time

# For financial data
import yfinance as yf       # Loading financial data
import empyrical as emp     # Performance metrics

# Book data (pip install "git+https://github.com/dppalomar/pob.git#subdirectory=python")
from pob_python import SP500_stocks_2015to2020, SP500_index_2015to2020

# Plotting
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
sns.set_theme(style="darkgrid")

# Optimization
import cvxpy as cp                  # interface for convex optimization solvers

Some math definitions for the equations:

$\def\bm#1{\boldsymbol{#1}}$ $\def\textm#1{\textsf{#1}}$ $\def\T{{\mkern-2mu\raise-1mu\mathsf{T}}}}$ $\def\R{\mathbb{R}}$ $\def\E{{\rm I\kern-.2em E}}$ $\def\w{\bm{w}}$ $\def\bmu{\bm{\mu}}}$ $\def\bSigma{\bm{\Sigma}}}$

Warm-up - Markowitz's portfolio

Markowitz's mean-variance portfolio (MVP) with no shorting is formulated as $$ \begin{array}{ll} \underset{\mathbf{w}}{\textsf{maximize}} & \boldsymbol{\mu}^\T\w -\lambda\w^\T\mathbf{\Sigma}\w\\ {\textsf{subject to}} & \mathbf{1}^T\w = 1\\ & \w\ge\mathbf{0}. \end{array} $$

For completeness, we can also consider the Global Minimum Variance Portfolio (GMVP), which doesn't make use of $\boldsymbol{\mu}$: $$\begin{array}{ll} \underset{\w}{\textsf{minimize}} & \w^\T\mathbf{\Sigma}\w\\ {\textsf{subject to}} & \mathbf{1}^\T\w = 1\\ & \w\ge\mathbf{0}. \end{array}$$

Since a closed-form solution does not exist with the constraint $\w\ge\mathbf{0}$, we need to resort to a solver. We can conveniently use the library cvxpy (although the computational cost will be high and the solution not totally robust, if necessary use a QP solver like quadprog):

#
# Define portfolios
#
def design_GMVP(Sigma: np.ndarray) -> np.ndarray:
    N = len(Sigma)
    w = cp.Variable(N)
    prob = cp.Problem(cp.Minimize(cp.quad_form(w, Sigma)),
                      [cp.sum(w) == 1, w >= 0])
    prob.solve()
    w = w.value
    # Force small values to zero
    w[w < 1e-6] = 0
    w = w/sum(w)
    return w


def design_MVP(mu: np.ndarray, Sigma: np.ndarray, lmd: float = 1) -> np.ndarray:
    N = len(Sigma)
    w = cp.Variable(N)
    prob = cp.Problem(cp.Maximize(mu @ w - (lmd/2) * cp.quad_form(w, Sigma)),
                      [cp.sum(w) == 1, w >= 0])
    prob.solve()
    w = w.value
    # Force small values to zero
    w[w < 1e-6] = 0
    w = w/sum(w)
    return w
# Get data
stock_prices = SP500_stocks_2015to2020.loc["2020":"2020-09", ["AAPL", "NFLX", "TSCO", "MGM", "MSFT", "FB", "AMZN", "GOOGL"]]

# Compute returns
X_lin = stock_prices.pct_change().dropna()
X_log = np.log(stock_prices).diff().dropna()
# or: X_log = np.log(1 + X_lin)

# Split data into training and test
T, N = X_lin.shape
T_trn = round(0.70*T)
X_lin_trn = X_lin.iloc[:T_trn]
X_lin_tst = X_lin.iloc[T_trn:]
X_log_trn = X_log.iloc[:T_trn]
X_log_tst = X_log.iloc[T_trn:]

# Estimate mu and Sigma with training data
mu = X_log_trn.mean().values
Sigma = X_log_trn.cov().values
# Calculate portfolios from data
w_GMVP = design_GMVP(Sigma)
w_MVP = design_MVP(mu, Sigma, lmd=10)

# Put together all portfolios
portfolios_df = pd.DataFrame(np.column_stack([w_GMVP, w_MVP]), columns=["GMVP", "Markowitz"], index=stock_prices.columns)

We can now compare the allocations of the portfolios:

portfolios_df
GMVP Markowitz
AAPL 0.000000 0.000000
NFLX 0.000000 0.000000
TSCO 0.325649 0.231824
MGM 0.000000 0.000000
MSFT 0.000000 0.000000
FB 0.000000 0.000000
AMZN 0.621097 0.768176
GOOGL 0.053254 0.000000
fig, ax = plt.subplots(figsize=(12, 4))
portfolios_df.plot.bar(rot=0, width=0.5, title="Portfolio allocation", ax=ax)
<Axes: title={'center': 'Portfolio allocation'}>

Then we can assess the performance (in-sample vs out-of-sample):

# Compute returns of all portfolios
ret_all = X_lin @ portfolios_df
ret_all_trn = ret_all.iloc[:T_trn, ]
ret_all_tst = ret_all.iloc[T_trn:, ]

def print_table_performance_metrics(rets: pd.DataFrame) -> None:
    display(pd.DataFrame({
        'Annualized Return': rets.apply(emp.annual_return).apply(lambda x: f"{x:.2%}"),
        'Annualized Volatility': rets.apply(emp.annual_volatility).apply(lambda x: f"{x:.2%}"),
        'Sharpe Ratio': rets.apply(emp.sharpe_ratio).apply(lambda x: f"{x:.3}"),
        'Maximum Drawdown': rets.apply(emp.max_drawdown).apply(lambda x: f"{x:.3}")
    }))

print("In-sample:")
print_table_performance_metrics(ret_all_trn)

print("Out-of-sample:")
print_table_performance_metrics(ret_all_tst)
In-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 135.80% 37.78% 2.46 -0.256
Markowitz 149.18% 38.21% 2.58 -0.243
Out-of-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 17.50% 30.95% 0.672 -0.136
Markowitz 16.74% 33.68% 0.624 -0.144

We can see that the mean-variance Markowitz portfolio performs even worse than the GMVP in the out-of-sample (the in-sample Sharpe ratio is approximately the same though).

Let us plot the cumulative PnL for the training and test sets:

pnl_trn = emp.cum_returns(ret_all_trn)
fig, ax = plt.subplots(figsize=(12,6))
pnl_trn.plot(title="Cumulative PnL during training set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during training set'}, xlabel='Date'>
pnl_tst = emp.cum_returns(ret_all_tst)
fig, ax = plt.subplots(figsize=(12,6))
pnl_tst.plot(title="Cumulative PnL during test set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during test set'}, xlabel='Date'>

Downside risk portfolios

The Markowitz's porftolio, the variance $\w^\T\bSigma\w$ is a measure of risk, but is not a good measure of risk in practice since it penalizes both the unwanted high losses and the desired low losses (or gains).

Indeed, the mean-variance portfolio framework penalizes up-side and down-side risk equally, whereas most investors don't mind up-side risk.

To overcome the limitations of the variance as risk measure, a number of alternative risk measures have been proposed. We will now consider the Downside Risk (DR):

Let $R$ be a random variable representing the return. The lower partial moments (LPM) is defined as $$\textm{LPM} = \E \left[\left((\tau - R)^+\right)^\alpha\right],$$ where $(\cdot)^+=\max(0, \cdot)$ and we will use $\tau = \E\left[R\right]$ as disaster level. The parameter $\alpha$ allows different levels of risk-aversion:

  • $\alpha=1$ suits a neutral investor: $$\E\left[(\tau - R)^+\right]$$
  • $\alpha=2$ is more risk-averse and yields the semi-variance: $$\textsf{SV} = \E\left[\left((\tau - R)^+\right)^2\right]$$
  • $\alpha=3$ is even more risk-averse: $$\E\left[\left((\tau - R)^+\right)^3\right]$$

Downside Risk portfolio:

We will use sample approximation of the downside risk: $$\begin{aligned} \E\left[\left((\E[R] - R)^+\right)^\alpha\right] & \approx \frac{1}{T}\sum_{t=1}^T\left(\left(\E[R] - R_t\right)^+\right)^\alpha\\ & \approx \frac{1}{T}\sum_{t=1}^T\left(\left(\frac{1}{T}\sum_{\tau=1}^TR_\tau - R_t\right)^+\right)^\alpha. \end{aligned}$$

The mean-downside risk portfolio formulation is the convex (assuming $\alpha \ge 1$) problem $$\begin{array}{ll} \underset{\mathbf{w}}{\textsf{maximize}} & \w^\T\bmu-\lambda \frac{1}{T}\sum_{t=1}^T\left(\left(\w^\T\bmu - \w^\T\mathbf{r}_t\right)^+\right)^\alpha\\ \textsf{subject to} & \mathbf{1}^\T\w = 1\\ & \w\ge\mathbf{0}. \end{array}$$

  • For $\alpha=1$, the problem is an LP: $$\begin{array}{ll} \underset{\mathbf{w}}{\textsf{maximize}} & \w^\T\boldsymbol{\mu}-\lambda \frac{1}{T}\sum_{t=1}^T\left(\w^\T\bmu - \w^\T\mathbf{r}_t\right)^+\\ \textsf{subject to} & \mathbf{1}^\T\w = 1\\ & \w\ge\mathbf{0}. \end{array}$$

  • For $\alpha=2$, the problem is the mean--semi-variance portfolio formulation which is a convex QP problem $$\begin{array}{ll} \underset{\w}{\textsf{maximize}} & \w^\T\bmu-\lambda \frac{1}{T}\sum_{t=1}^T\left(\left(\w^\T\bmu - \w^\T\mathbf{r}_t\right)^+\right)^2\\ \textsf{subject to} & \mathbf{1}^\T\w = 1\\ & \w\ge\mathbf{0}. \end{array}$$

  • For $\alpha=3$, the problem is not an LP or QP, but still convex.

We can now compute the different portfolios $\w$ for different values of $\alpha$ with the cvxpy library (see https://www.cvxpy.org/index.html for list of functions):

def design_portfolioDR(X: pd.DataFrame, lmd: float = 1, alpha: float = 2) -> np.ndarray:
    T, N = X.shape
    mu = X.mean().values
    X_np = X.to_numpy()
    # Design portfolio
    w = cp.Variable(N)
    problem = cp.Problem(cp.Maximize(w @ mu - (lmd/2)*cp.mean(cp.pos(w @ mu - X_np @ w) ** alpha)),
                         [w >= 0, cp.sum(w) == 1])
    problem.solve()
    w = w.value
    # Force small values to zero
    w[w < 1e-6] = 0
    w = w/sum(w)
    return w

w_DR_alpha1 = design_portfolioDR(X_log_trn, alpha=1, lmd=10)
w_DR_alpha2 = design_portfolioDR(X_log_trn, alpha=2, lmd=10)
w_DR_alpha3 = design_portfolioDR(X_log_trn, alpha=3, lmd=10)
# Put together all portfolios
portfolios_df["DR-alpha=1"] = w_DR_alpha1
portfolios_df["DR-alpha=2"] = w_DR_alpha2
portfolios_df["DR-alpha=3"] = w_DR_alpha3
portfolios_df
GMVP Markowitz DR-alpha=1 DR-alpha=2 DR-alpha=3
AAPL 0.000000 0.000000 0.000000 0.000000 0.0
NFLX 0.000000 0.000000 0.000001 0.000000 0.0
TSCO 0.325649 0.231824 0.483524 0.036066 0.0
MGM 0.000000 0.000000 0.000000 0.000000 0.0
MSFT 0.000000 0.000000 0.000000 0.000000 0.0
FB 0.000000 0.000000 0.000000 0.000000 0.0
AMZN 0.621097 0.768176 0.516475 0.963934 1.0
GOOGL 0.053254 0.000000 0.000000 0.000000 0.0
# Plot allocation
fig, ax = plt.subplots(figsize=(12, 4))
portfolios_df.plot.bar(rot=0, width=0.5, title="Portfolio allocation", ax=ax)
<Axes: title={'center': 'Portfolio allocation'}>

Let compare the performance (in-sample vs out-of-sample):

# Compute returns of all portfolios
ret_all = X_lin @ portfolios_df
ret_all_trn = ret_all.iloc[:T_trn, ]
ret_all_tst = ret_all.iloc[T_trn:, ]

print("In-sample:")
print_table_performance_metrics(ret_all_trn)

print("Out-of-sample:")
print_table_performance_metrics(ret_all_tst)
In-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 135.80% 37.78% 2.46 -0.256
Markowitz 149.18% 38.21% 2.58 -0.243
DR-alpha=1 137.74% 38.26% 2.46 -0.266
DR-alpha=2 156.34% 40.30% 2.54 -0.227
DR-alpha=3 157.48% 40.87% 2.52 -0.227
Out-of-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 17.50% 30.95% 0.672 -0.136
Markowitz 16.74% 33.68% 0.624 -0.144
DR-alpha=1 22.21% 29.28% 0.828 -0.125
DR-alpha=2 12.13% 38.03% 0.486 -0.16
DR-alpha=3 11.25% 38.90% 0.463 -0.163

Let us plot the cumulative PnL for the training and test sets:

pnl_trn = emp.cum_returns(ret_all_trn)
fig, ax = plt.subplots(figsize=(12,6))
pnl_trn.plot(title="Cumulative PnL during training set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during training set'}, xlabel='Date'>
pnl_tst = emp.cum_returns(ret_all_tst)
fig, ax = plt.subplots(figsize=(12,6))
pnl_tst.plot(title="Cumulative PnL during test set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during test set'}, xlabel='Date'>

Let's keep the DR portfolio with $\alpha=1$:

# Drop the two worst DR portfolios
portfolios_df.drop(columns=["DR-alpha=2", "DR-alpha=3"], inplace=True)

Tail portfolios

The CVaR can be conveniently obtained as the minimum of an auxiliary convex function: $$\mathsf{CVaR}_{\alpha}\left(\w^{\T}\mathbf{r}\right)=\min_{\zeta}F_{\alpha}\left(\w,\zeta\right)$$ where $$F_{\alpha}(\w,\zeta)=\zeta+\frac{1}{1-\alpha}\E\left[-\w^{\T}\mathbf{r}-\zeta\right]^{+}.$$

We can use a sample average approximation of $F_{\alpha}(\w,\zeta)$: $$F_{\alpha}(\w,\zeta) \approx \zeta+\frac{1}{1-\alpha}\frac{1}{T}\sum_{t=1}^{T}\left[-\w^\T\mathbf{r}_t-\zeta\right]^{+}.$$ We define the dummy variables $z_t$: $$z_t\geq\left[-\w^\T\mathbf{r}_t-\zeta\right]^{+} \Longrightarrow z_t\geq -\w^\T\mathbf{r}_t-\zeta,\,z_t\geq0.$$

The mean-CVaR portfolio formulation can be finally written as the (convex) LP: $$ \begin{array}{ll} \underset{\w, \mathbf{z}, \zeta}{\textsf{maximize}} & \w^\T\bmu - \lambda\left(\zeta+\frac{1}{1-\alpha}\frac{1}{T}\sum_{t=1}^{T}z_{t}\right)\\ \textsf{subject to} & 0\leq z_{t}\geq-\w^{\T}\mathbf{r}_{t}-\zeta,\quad t=1,\dots,T\\ & \mathbf{1}^\T\w=1,\quad \w\ge\mathbf{0}. \end{array} $$

We are now ready to compute the mean-CVaR portfolio with the cvxpy library:

def design_portfolioCVaR(X: pd.DataFrame, lmd: float = 1, alpha=0.95) -> np.ndarray:
    T, N = X.shape
    mu = X.mean().values
    X_np = X.to_numpy()
    # Design portfolio
    w = cp.Variable(N)
    z = cp.Variable(T)
    zeta = cp.Variable(1)
    problem = cp.Problem(cp.Maximize(w @ mu - lmd * (zeta + 1 / (1 - alpha) * cp.mean(z))),
                         [z >= 0, z >= - X_np @ w - zeta, w >= 0, cp.sum(w) == 1])
    problem.solve()
    w = w.value
    # Force small values to zero
    w[w < 1e-6] = 0
    w = w/sum(w)
    return w

w_CVaR095 = design_portfolioCVaR(X_log_trn, alpha=0.95)
w_CVaR097 = design_portfolioCVaR(X_log_trn, alpha=0.97)
# Put together all portfolios
portfolios_df["CVaR-alpha=0.95"] = w_CVaR095
portfolios_df["CVaR-alpha=0.97"] = w_CVaR097
portfolios_df
GMVP Markowitz DR-alpha=1 CVaR-alpha=0.95 CVaR-alpha=0.97
AAPL 0.000000 0.000000 0.000000 0.000000 0.0
NFLX 0.000000 0.000000 0.000001 0.407594 0.0
TSCO 0.325649 0.231824 0.483524 0.000000 0.0
MGM 0.000000 0.000000 0.000000 0.000000 0.0
MSFT 0.000000 0.000000 0.000000 0.000000 0.0
FB 0.000000 0.000000 0.000000 0.000000 0.0
AMZN 0.621097 0.768176 0.516475 0.592406 1.0
GOOGL 0.053254 0.000000 0.000000 0.000000 0.0
# Plot allocation
fig, ax = plt.subplots(figsize=(12, 4))
portfolios_df.plot.bar(rot=0, width=0.5, title="Portfolio allocation", ax=ax)
<Axes: title={'center': 'Portfolio allocation'}>

Let compare the performance (in-sample vs out-of-sample):

# Compute returns of all portfolios
ret_all = X_lin @ portfolios_df
ret_all_trn = ret_all.iloc[:T_trn, ]
ret_all_tst = ret_all.iloc[T_trn:, ]

print("In-sample:")
print_table_performance_metrics(ret_all_trn)

print("Out-of-sample:")
print_table_performance_metrics(ret_all_tst)
In-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 135.80% 37.78% 2.46 -0.256
Markowitz 149.18% 38.21% 2.58 -0.243
DR-alpha=1 137.74% 38.26% 2.46 -0.266
CVaR-alpha=0.95 145.86% 41.30% 2.39 -0.223
CVaR-alpha=0.97 157.48% 40.87% 2.52 -0.227
Out-of-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 17.50% 30.95% 0.672 -0.136
Markowitz 16.74% 33.68% 0.624 -0.144
DR-alpha=1 22.21% 29.28% 0.828 -0.125
CVaR-alpha=0.95 7.65% 37.29% 0.38 -0.157
CVaR-alpha=0.97 11.25% 38.90% 0.463 -0.163
pnl_trn = emp.cum_returns(ret_all_trn)
fig, ax = plt.subplots(figsize=(12,6))
pnl_trn.plot(title="Cumulative PnL during training set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during training set'}, xlabel='Date'>
pnl_tst = emp.cum_returns(ret_all_tst)
fig, ax = plt.subplots(figsize=(12,6))
pnl_tst.plot(title="Cumulative PnL during test set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during test set'}, xlabel='Date'>

Let's keep the CVaR portfolio with $\alpha=0.97$:

portfolios_df.drop(columns=["CVaR-alpha=0.95"], inplace=True)

Drawdown portfolios

Mean - Max-DD portfolio

We can formulate the maximization of the expected return subject to a Max-DD constraint as $$\begin{array}{ll} \underset{\w,s}{\textsf{maximize}} & \w^\T\bmu - \lambda s\\ \textsf{subject to} & \max_{1\le t\le T} \{\max_{1\le\tau\le t}\w^\T\mathbf{r}_{\tau}^{\sf cum} - \w^\T\mathbf{r}_t^{\sf cum}\} \le s\\ & \mathbf{1}^\T\w=1,\quad \w\ge\mathbf{0}, \end{array}$$ which can be more conveniently rewritten as the following LP: $$ \begin{array}{ll} \underset{\w, \{u_t\},s}{\textsf{maximize}} & \w^\T\bmu - \lambda s\\ \textsf{subject to} & \w^\T\mathbf{r}_{t}^{\sf cum} \le u_t \le \w^\T\mathbf{r}_t^{\sf cum} + s, \quad\forall 1\le t\le T\\ & u_{t-1} \le u_t\\ & \mathbf{1}^\T\w=1,\quad \w\ge\mathbf{0}. \end{array} $$

def design_portfolioMaxDD(X: pd.DataFrame, lmd: float = 1) -> np.ndarray:
    T, N = X.shape
    mu = X.mean().values
    X_cum = X.cumsum()
    X_cum_np = X_cum.to_numpy()
    # Design portfolio
    w = cp.Variable(N)
    u = cp.Variable(T)
    s = cp.Variable(1)
    problem = cp.Problem(cp.Maximize(w @ mu - lmd * s),
                         [w >= 0, cp.sum(w) == 1,
                          u <= X_cum_np @ w + s, u >= X_cum_np @ w,
                          u[1:] >= u[:-1]])
    result = problem.solve()
    w = w.value
    # Force small values to zero
    w[w < 1e-6] = 0
    w = w/sum(w)
    return w

w_MaxDD_lmd1e_3 = design_portfolioMaxDD(X_log_trn, lmd=1e-3)
w_MaxDD_lmd1e_1 = design_portfolioMaxDD(X_log_trn, lmd=1e-1)
# Put together all portfolios
portfolios_df["Max-DD-lmd=1e-3"] = w_MaxDD_lmd1e_3
portfolios_df["Max-DD-lmd=1e-1"] = w_MaxDD_lmd1e_1
portfolios_df
GMVP Markowitz DR-alpha=1 CVaR-alpha=0.97 Max-DD-lmd=1e-3 Max-DD-lmd=1e-1
AAPL 0.000000 0.000000 0.000000 0.0 0.0 0.000000
NFLX 0.000000 0.000000 0.000001 0.0 0.0 0.122339
TSCO 0.325649 0.231824 0.483524 0.0 0.0 0.000000
MGM 0.000000 0.000000 0.000000 0.0 0.0 0.000000
MSFT 0.000000 0.000000 0.000000 0.0 0.0 0.000000
FB 0.000000 0.000000 0.000000 0.0 0.0 0.000000
AMZN 0.621097 0.768176 0.516475 1.0 1.0 0.877661
GOOGL 0.053254 0.000000 0.000000 0.0 0.0 0.000000
# Plot allocation
fig, ax = plt.subplots(figsize=(12, 4))
portfolios_df.plot.bar(rot=0, width=0.5, title="Portfolio allocation", ax=ax)
<Axes: title={'center': 'Portfolio allocation'}>

Let compare the performance (in-sample vs out-of-sample):

# Compute returns of all portfolios
ret_all = X_lin @ portfolios_df
ret_all_trn = ret_all.iloc[:T_trn, ]
ret_all_tst = ret_all.iloc[T_trn:, ]

print("In-sample:")
print_table_performance_metrics(ret_all_trn)

print("Out-of-sample:")
print_table_performance_metrics(ret_all_tst)
In-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 135.80% 37.78% 2.46 -0.256
Markowitz 149.18% 38.21% 2.58 -0.243
DR-alpha=1 137.74% 38.26% 2.46 -0.266
CVaR-alpha=0.97 157.48% 40.87% 2.52 -0.227
Max-DD-lmd=1e-3 157.48% 40.87% 2.52 -0.227
Max-DD-lmd=1e-1 154.41% 40.54% 2.51 -0.222
Out-of-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 17.50% 30.95% 0.672 -0.136
Markowitz 16.74% 33.68% 0.624 -0.144
DR-alpha=1 22.21% 29.28% 0.828 -0.125
CVaR-alpha=0.97 11.25% 38.90% 0.463 -0.163
Max-DD-lmd=1e-3 11.25% 38.90% 0.463 -0.163
Max-DD-lmd=1e-1 10.48% 37.59% 0.448 -0.161

We can see that the Max-DD designs indeed have a controlled maximum drawdown at least in-sample; however, out-of-sample it is not mantained. This is probably due to not having enough training samples. Also, the Sharpe ratio doesn't seem to be very good.

Let us plot the cumulative PnL for the training and test sets:

pnl_trn = emp.cum_returns(ret_all_trn)
fig, ax = plt.subplots(figsize=(12,6))
pnl_trn.plot(title="Cumulative PnL during training set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during training set'}, xlabel='Date'>
pnl_tst = emp.cum_returns(ret_all_tst)
fig, ax = plt.subplots(figsize=(12,6))
pnl_tst.plot(title="Cumulative PnL during test set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during test set'}, xlabel='Date'>

Let's keep the Max-DD portfolio with $\alpha=10^{-1}$:

portfolios_df.drop(columns=["Max-DD-lmd=1e-3"], inplace=True)
portfolios_df.columns
Index(['GMVP', 'Markowitz', 'DR-alpha=1', 'CVaR-alpha=0.97',
       'Max-DD-lmd=1e-1'],
      dtype='object')

Mean - Ave-DD portfolio

We can formulate the maximization of the expected return subject to an Ave-DD constraint as the following LP: $$ \begin{array}{ll} \underset{\w, \{u_t\}, s}{\textsf{maximize}} & \w^\T\bmu - \lambda s\\ \textsf{subject to} & \frac{1}{T}\sum_{t=1}^T u_t \le \sum_{t=1}^T\w^\T\mathbf{r}_t^{\sf cum} + s\\ & \w^\T\mathbf{r}_{t}^{\sf cum} \le u_t\\ & u_{t-1} \le u_t\\ & \mathbf{1}^\T\w=1,\quad \w\ge\mathbf{0}. \end{array} $$

def design_portfolioAveDD(X: pd.DataFrame, lmd: float = 1e-1) -> np.ndarray:
    T, N = X.shape
    mu = X.mean().values
    X_cum = X.cumsum()
    X_cum_np = X_cum.to_numpy()
    # Design portfolio
    w = cp.Variable(N)
    u = cp.Variable(T)
    s = cp.Variable(1)
    problem = cp.Problem(cp.Maximize(w @ mu - lmd * s),
                         [w >= 0, cp.sum(w) == 1,
                          cp.mean(u) <= cp.mean(X_cum_np @ w) + s, u >= X_cum_np @ w,
                          u[1:] >= u[:-1]])
    result = problem.solve()
    w = w.value
    # Force small values to zero
    w[w < 1e-6] = 0
    w = w/sum(w)
    return w

w_AveDD_lmd1e_3 = design_portfolioAveDD(X_log_trn, lmd=1e-3)
w_AveDD_lmd1e_1 = design_portfolioAveDD(X_log_trn, lmd=1e-1)
# Put together all portfolios
portfolios_df["Ave-DD-lmd=1e-3"] = w_AveDD_lmd1e_3
portfolios_df["Ave-DD-lmd=1e-1"] = w_AveDD_lmd1e_1
portfolios_df
GMVP Markowitz DR-alpha=1 CVaR-alpha=0.97 Max-DD-lmd=1e-1 Ave-DD-lmd=1e-3 Ave-DD-lmd=1e-1
AAPL 0.000000 0.000000 0.000000 0.0 0.000000 0.0 0.000000
NFLX 0.000000 0.000000 0.000001 0.0 0.122339 0.0 0.505511
TSCO 0.325649 0.231824 0.483524 0.0 0.000000 0.0 0.145774
MGM 0.000000 0.000000 0.000000 0.0 0.000000 0.0 0.000000
MSFT 0.000000 0.000000 0.000000 0.0 0.000000 0.0 0.000000
FB 0.000000 0.000000 0.000000 0.0 0.000000 0.0 0.000000
AMZN 0.621097 0.768176 0.516475 1.0 0.877661 1.0 0.348714
GOOGL 0.053254 0.000000 0.000000 0.0 0.000000 0.0 0.000000
# Plot allocation
fig, ax = plt.subplots(figsize=(12, 4))
portfolios_df.plot.bar(rot=0, width=0.5, title="Portfolio allocation", ax=ax)
<Axes: title={'center': 'Portfolio allocation'}>

Let compare the performance (in-sample vs out-of-sample):

# Compute returns of all portfolios
ret_all = X_lin @ portfolios_df
ret_all_trn = ret_all.iloc[:T_trn, ]
ret_all_tst = ret_all.iloc[T_trn:, ]

print("In-sample:")
print_table_performance_metrics(ret_all_trn)

print("Out-of-sample:")
print_table_performance_metrics(ret_all_tst)
In-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 135.80% 37.78% 2.46 -0.256
Markowitz 149.18% 38.21% 2.58 -0.243
DR-alpha=1 137.74% 38.26% 2.46 -0.266
CVaR-alpha=0.97 157.48% 40.87% 2.52 -0.227
Max-DD-lmd=1e-1 154.41% 40.54% 2.51 -0.222
Ave-DD-lmd=1e-3 157.48% 40.87% 2.52 -0.227
Ave-DD-lmd=1e-1 136.96% 41.04% 2.31 -0.237
Out-of-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 17.50% 30.95% 0.672 -0.136
Markowitz 16.74% 33.68% 0.624 -0.144
DR-alpha=1 22.21% 29.28% 0.828 -0.125
CVaR-alpha=0.97 11.25% 38.90% 0.463 -0.163
Max-DD-lmd=1e-1 10.48% 37.59% 0.448 -0.161
Ave-DD-lmd=1e-3 11.25% 38.90% 0.463 -0.163
Ave-DD-lmd=1e-1 9.37% 35.52% 0.426 -0.144

The Ave-DD designs have a controlled average drawdown. But in terms of Sharpe ratio they are not especially outstanding.

Let us plot the cumulative PnL over time for the training and test sets:

pnl_trn = emp.cum_returns(ret_all_trn)
fig, ax = plt.subplots(figsize=(12,6))
pnl_trn.plot(title="Cumulative PnL during training set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during training set'}, xlabel='Date'>
pnl_tst = emp.cum_returns(ret_all_tst)
fig, ax = plt.subplots(figsize=(12,6))
pnl_tst.plot(title="Cumulative PnL during test set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during test set'}, xlabel='Date'>

Let's keep the Ave-DD portfolio with $\alpha=10^{-1}$:

portfolios_df.drop(columns=["Ave-DD-lmd=1e-3"], inplace=True)
portfolios_df.columns
Index(['GMVP', 'Markowitz', 'DR-alpha=1', 'CVaR-alpha=0.97', 'Max-DD-lmd=1e-1',
       'Ave-DD-lmd=1e-1'],
      dtype='object')

Mean-CDaR portfolio

We now consider the maximization of the mean return subject to a CDaR constraint: $$ \begin{array}{ll} \underset{\w, \zeta, s}{\textsf{maximize}} & \w^\T\bmu - \lambda s\\ \textsf{subject to} & \zeta+\frac{1}{1-\alpha}\frac{1}{T}\sum_{t=1}^{T}\left[ \max_{1\le\tau\le t}\w^\T\mathbf{r}_{\tau}^{\sf cum} - \w^\T\mathbf{r}_t^{\sf cum} - \zeta \right]^+ \le s\\ & \mathbf{1}^\T\w=1,\quad \w\ge\mathbf{0}, \end{array} $$ which can be conveniently reformulated as the following LP: $$ \begin{array}{cl} \underset{\w, \{z_t\}, \zeta, \{u_t\}, s}{\textsf{maximize}} & \w^\T\bmu - \lambda s\\ \textsf{subject to} & \zeta+\frac{1}{1-\alpha}\frac{1}{T}\sum_{t=1}^{T}z_{t} \le s\\ & 0\leq z_{t}\geq u_t - \w^\T\mathbf{r}_t^{\sf cum} - \zeta, \quad t=1,\dots,T\\ & \w^\T\mathbf{r}_{t}^{\sf cum} \le u_t\\ & u_{t-1} \le u_t\\ & \mathbf{1}^\T\w=1,\quad \w\ge\mathbf{0}. \end{array} $$

def design_portfolioCDaR(X: pd.DataFrame, lmd: float = 1e-1, alpha: float = 0.95) -> np.ndarray:
    T, N = X.shape
    mu = X.mean().values
    X_cum = X.cumsum()
    X_cum_np = X_cum.to_numpy()
    # Design portfolio
    w = cp.Variable(N)
    z = cp.Variable(T)
    u = cp.Variable(T)
    zeta = cp.Variable(1)
    s = cp.Variable(1)
    problem = cp.Problem(cp.Maximize(w @ mu - lmd * s),
                         [w >= 0, cp.sum(w) == 1,
                          zeta + (1 / (T * (1 - alpha))) * cp.sum(z) <= s,
                          z >= 0, z >= u - X_cum_np @ w - zeta,
                          u >= X_cum_np @ w,
                          u[1:] >= u[:-1]])
    result = problem.solve()
    w = w.value
    # Force small values to zero
    w[w < 1e-6] = 0
    w = w/sum(w)
    return w

w_CDaR095_lmd1e_3 = design_portfolioCDaR(X_log_trn, alpha=0.95, lmd=1e-3)
w_CDaR095_lmd1e_1 = design_portfolioCDaR(X_log_trn, alpha=0.95, lmd=1e-1)
w_CDaR099_lmd1e_3 = design_portfolioCDaR(X_log_trn, alpha=0.99, lmd=1e-3)
w_CDaR099_lmd1e_1 = design_portfolioCDaR(X_log_trn, alpha=0.99, lmd=1e-1)
# Put together all portfolios
portfolios_df["CDaR095-lmd=1e-3"] = w_CDaR095_lmd1e_3
portfolios_df["CDaR095-lmd=1e-1"] = w_CDaR095_lmd1e_1
portfolios_df["CDaR099-lmd=1e-3"] = w_CDaR099_lmd1e_3
portfolios_df["CDaR099-lmd=1e-1"] = w_CDaR099_lmd1e_1
portfolios_df
GMVP Markowitz DR-alpha=1 CVaR-alpha=0.97 Max-DD-lmd=1e-1 Ave-DD-lmd=1e-1 CDaR095-lmd=1e-3 CDaR095-lmd=1e-1 CDaR099-lmd=1e-3 CDaR099-lmd=1e-1
AAPL 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.0 0.000000 0.0 0.000000
NFLX 0.000000 0.000000 0.000001 0.0 0.122339 0.505511 0.0 0.620817 0.0 0.620817
TSCO 0.325649 0.231824 0.483524 0.0 0.000000 0.145774 0.0 0.000000 0.0 0.000000
MGM 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.0 0.000000 0.0 0.000000
MSFT 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.0 0.000000 0.0 0.000000
FB 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.0 0.000000 0.0 0.000000
AMZN 0.621097 0.768176 0.516475 1.0 0.877661 0.348714 1.0 0.379183 1.0 0.379183
GOOGL 0.053254 0.000000 0.000000 0.0 0.000000 0.000000 0.0 0.000000 0.0 0.000000
# Plot allocation
fig, ax = plt.subplots(figsize=(12, 4))
portfolios_df.plot.bar(rot=0, width=0.5, title="Portfolio allocation", ax=ax)
<Axes: title={'center': 'Portfolio allocation'}>

Let compare the performance (in-sample vs out-of-sample):

# Compute returns of all portfolios
ret_all = X_lin @ portfolios_df
ret_all_trn = ret_all.iloc[:T_trn, ]
ret_all_tst = ret_all.iloc[T_trn:, ]

print("In-sample:")
print_table_performance_metrics(ret_all_trn)

print("Out-of-sample:")
print_table_performance_metrics(ret_all_tst)
In-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 135.80% 37.78% 2.46 -0.256
Markowitz 149.18% 38.21% 2.58 -0.243
DR-alpha=1 137.74% 38.26% 2.46 -0.266
CVaR-alpha=0.97 157.48% 40.87% 2.52 -0.227
Max-DD-lmd=1e-1 154.41% 40.54% 2.51 -0.222
Ave-DD-lmd=1e-1 136.96% 41.04% 2.31 -0.237
CDaR095-lmd=1e-3 157.48% 40.87% 2.52 -0.227
CDaR095-lmd=1e-1 138.31% 43.20% 2.23 -0.224
CDaR099-lmd=1e-3 157.48% 40.87% 2.52 -0.227
CDaR099-lmd=1e-1 138.31% 43.20% 2.23 -0.224
Out-of-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 17.50% 30.95% 0.672 -0.136
Markowitz 16.74% 33.68% 0.624 -0.144
DR-alpha=1 22.21% 29.28% 0.828 -0.125
CVaR-alpha=0.97 11.25% 38.90% 0.463 -0.163
Max-DD-lmd=1e-1 10.48% 37.59% 0.448 -0.161
Ave-DD-lmd=1e-1 9.37% 35.52% 0.426 -0.144
CDaR095-lmd=1e-3 11.25% 38.90% 0.463 -0.163
CDaR095-lmd=1e-1 4.62% 39.59% 0.307 -0.155
CDaR099-lmd=1e-3 11.25% 38.90% 0.463 -0.163
CDaR099-lmd=1e-1 4.62% 39.59% 0.307 -0.155

Let us plot the cumulative PnL over time for the training and test sets:

pnl_trn = emp.cum_returns(ret_all_trn)
fig, ax = plt.subplots(figsize=(12,6))
pnl_trn.plot(title="Cumulative PnL during training set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during training set'}, xlabel='Date'>
pnl_tst = emp.cum_returns(ret_all_tst)
fig, ax = plt.subplots(figsize=(12,6))
pnl_tst.plot(title="Cumulative PnL during test set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during test set'}, xlabel='Date'>

Let's keep the CDaR0 portfolio with $\alpha=0.95$ and $\lambda=10^{-3}$:

portfolios_df.drop(columns=["CDaR095-lmd=1e-1", "CDaR099-lmd=1e-3", "CDaR099-lmd=1e-1"], inplace=True)
portfolios_df.columns
Index(['GMVP', 'Markowitz', 'DR-alpha=1', 'CVaR-alpha=0.97', 'Max-DD-lmd=1e-1',
       'Ave-DD-lmd=1e-1', 'CDaR095-lmd=1e-3'],
      dtype='object')

Final comparison of DR, CVaR, and DD portfolios

We now perform a final comparison of the selected portfolios:

  • GMVP
  • Markowitz's mean variance portfolio
  • DR ($\alpha=1$)
  • CVaR ($\alpha=0.97$)
  • DD:
    • Max-DD ($\alpha=10^{-1}$)
    • Ave-DD ($\alpha=10^{-1}$)
    • CDaR ($\alpha=0.95$ and $\lambda=10^{-3}$).
# Compute returns of all portfolios
ret_all = X_lin @ portfolios_df
ret_all_trn = ret_all.iloc[:T_trn, ]
ret_all_tst = ret_all.iloc[T_trn:, ]

print("Out-of-sample:")
print_table_performance_metrics(ret_all_tst)
Out-of-sample:
Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 17.50% 30.95% 0.672 -0.136
Markowitz 16.74% 33.68% 0.624 -0.144
DR-alpha=1 22.21% 29.28% 0.828 -0.125
CVaR-alpha=0.97 11.25% 38.90% 0.463 -0.163
Max-DD-lmd=1e-1 10.48% 37.59% 0.448 -0.161
Ave-DD-lmd=1e-1 9.37% 35.52% 0.426 -0.144
CDaR095-lmd=1e-3 11.25% 38.90% 0.463 -0.163
pnl_tst = emp.cum_returns(ret_all_tst)
fig, ax = plt.subplots(figsize=(12,6))
pnl_tst.plot(title="Cumulative PnL during test set", ax=ax)
<Axes: title={'center': 'Cumulative PnL during test set'}, xlabel='Date'>

However, this is a single backtest and more exhaustive backtesting should be performed