Python Code for Portfolio Optimization
Chapter 8 – Portfolio Backtesting

Daniel P. Palomar (2025). Portfolio Optimization: Theory and Application. Cambridge University Press.

Last update: March 18, 2025

Contributors:


Libraries

The following libraries are used in the examples:

# Core numerical computing
import numpy as np
import pandas as pd
from typing import Dict, Tuple, List

# For financial data
import yfinance as yf       # Loading financial data
import empyrical as emp     # Performance metrics

# Book data (pip install "git+https://github.com/dppalomar/pob.git#subdirectory=python")
from pob_python import SP500_stocks_2015to2020, SP500_index_2015to2020

# Plotting
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
sns.set_theme(style="darkgrid")

# Optimization
import cvxpy as cp                  # interface for convex optimization solvers

Some math definitions for the equations:

$\def\bm#1{\boldsymbol{#1}}$ $\def\textm#1{\textsf{#1}}$ $\def\T{{\mkern-2mu\raise-1mu\mathsf{T}}}}$ $\def\R{\mathbb{R}}$ $\def\E{\rm I\kern-.2em E}$ $\def\w{\bm{w}}$ $\def\bmu{\bm{\mu}}}$ $\def\bSigma{\bm{\Sigma}}}$

Market data and portfolios

For illustrative purposes, we simply choose a few stocks from the S&P 500 index during 2015-2020.

stock_prices = SP500_stocks_2015to2020[
                   ["AAPL", "AMZN", "AMD", "GM", "GOOGL", "MGM", "MSFT", "QCOM", "TSCO", "UPS"]
               ].loc["2018":]

# Display first and last rows
print("First few rows of stock prices:")
display(stock_prices.head())
print("\nLast few rows of stock prices:")
display(stock_prices.tail())

# Plot log-prices
plt.figure(figsize=(12, 6))
log_prices = np.log(stock_prices)
for col in log_prices.columns:
    plt.plot(log_prices.index, log_prices[col], linewidth=1, label=col)
plt.title('Log-prices')
plt.legend(title='stocks')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
First few rows of stock prices:
AAPL AMZN AMD GM GOOGL MGM MSFT QCOM TSCO UPS
Date
2018-01-02 41.514 1189.01 10.98 38.0722 1073.21 32.1285 82.5993 59.2277 72.8300 112.662
2018-01-03 41.506 1204.20 11.55 39.0012 1091.52 31.9559 82.9837 59.8999 73.3785 115.158
2018-01-04 41.699 1209.59 12.12 40.2035 1095.76 32.2723 83.7141 59.9817 74.6969 115.906
2018-01-05 42.174 1229.14 11.88 40.0851 1110.29 32.4928 84.7520 60.3814 76.4484 116.261
2018-01-08 42.017 1246.87 12.28 40.2764 1114.21 31.7354 84.8385 60.1997 76.2655 117.673
Last few rows of stock prices:
AAPL AMZN AMD GM GOOGL MGM MSFT QCOM TSCO UPS
Date
2020-09-16 112.13 3078.10 76.66 31.79 1512.09 23.01 205.05 114.56 138.250 159.87
2020-09-17 110.34 3008.73 76.55 31.92 1487.04 22.52 202.91 114.88 138.150 159.75
2020-09-18 106.84 2954.91 74.93 31.50 1451.09 22.02 200.39 110.69 138.110 159.66
2020-09-21 110.08 2960.47 77.94 30.00 1430.14 21.09 202.54 111.92 137.555 161.06
2020-09-22 111.81 3128.99 77.70 29.44 1459.82 21.62 207.42 113.82 141.610 161.89

Also for illustrative purposes, we choose the following three simple portfolios:

  • $1/N$ portfolio: $$ \w = \frac{1}{N}\bm{1}; $$
  • Global minimum variance portfolio (GMVP): $$ \begin{array}{ll} \underset{\w}{\textm{minimize}} & \w^\T\bSigma\w\\ \textm{subject to} & \bm{1}^\T\w=1, \quad \w\ge\bm{0}; \end{array} $$
  • Inverse volatility portfolio (IVP): $$ \w = \frac{\bm{\sigma}^{-1}}{\bm{1}^\T\bm{\sigma}^{-1}}. $$
# Define portfolio functions

def one_over_N(X: pd.DataFrame) -> np.ndarray:
    """Equal weight portfolio (1/N)"""
    N = X.shape[1]
    return np.repeat(1/N, N)

def design_GMVP(Sigma: np.ndarray) -> np.ndarray:
    """Design Global Minimum Variance Portfolio"""
    N = Sigma.shape[0]
    w = cp.Variable(N)
    prob = cp.Problem(cp.Minimize(cp.quad_form(w, Sigma)),
                     [cp.sum(w) == 1, w >= 0])
    prob.solve()
    return w.value

def GMVP(X: pd.DataFrame) -> np.ndarray:
    """Global Minimum Variance Portfolio"""
    # Convert to log returns for covariance estimation
    X_log = np.log(1 + X)
    Sigma = X_log.cov().values
    return design_GMVP(Sigma)

def design_IVP(sigma: np.ndarray) -> np.ndarray:
    """Design Inverse Volatility Portfolio"""
    w = 1/sigma
    w = w/np.sum(w)
    return w

def IVP(X: pd.DataFrame) -> np.ndarray:
    """Inverse Volatility Portfolio"""
    # Convert to log returns for volatility estimation
    X_log = np.log(1 + X)
    sigma = X_log.std()
    return design_IVP(sigma.values)

Vanilla backtesting

Vanilla backtesting refers to simply dividing the available data intro training data (for the portfolio design) and test data (for the portfolio assessment).

Daily rebalancing ignoring transaction costs

If we assume a daily rebalancing (with daily data) and ignore transaction costs, then the backtest is very simple to perform simply by multiplying the matrix of assets' linear returns by the portfolio vector.

# Compute returns
X_lin = stock_prices.pct_change().dropna()
X_log = np.log(stock_prices).diff().dropna()
# or: X_log = np.log(1 + X_lin)

# Split data into training and test
T, N = X_lin.shape
T_trn = round(0.50*T)
X_lin_trn = X_lin.iloc[:T_trn]
X_lin_tst = X_lin.iloc[T_trn:]
X_log_trn = X_log.iloc[:T_trn]
X_log_tst = X_log.iloc[T_trn:]

# Estimate mu and Sigma with training data
mu = X_log_trn.mean().values
Sigma = X_log_trn.cov().values

# Design portfolios
w_one_over_N = np.repeat(1/N, N)
# or: w_one_over_N = one_over_N(X_log_trn)
w_GMVP = design_GMVP(Sigma)
w_IVP = design_IVP(np.sqrt(np.diag(Sigma)))
# Backtest portfolios with test data (assuming daily rebalancing and no transaction cost)
ret_one_over_N = X_lin_tst @ w_one_over_N
ret_GMVP = X_lin_tst @ w_GMVP
ret_IVP = X_lin_tst @ w_IVP

# Compute cumulative returns
wealth_one_over_N = (1 + ret_one_over_N).cumprod() - 1
wealth_GMVP = (1 + ret_GMVP).cumprod() - 1
wealth_IVP = (1 + ret_IVP).cumprod() - 1
# Plot cumulative returns
plt.figure(figsize=(12, 6))
wealth_one_over_N.plot(label='1/N', linewidth=1)
wealth_GMVP.plot(label='GMVP', linewidth=1)
wealth_IVP.plot(label='IVP', linewidth=1)
plt.title('Cumulative returns')
plt.legend(title='Portfolios')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

Helper functions

def backtest(
        portfolio_funcs: Dict[str, callable],
        prices: pd.DataFrame,
        lookback: int,
        rebalance_every: int = 1,
        optimize_every: int = 1,
        cost_bps: float = 0,
        verbose: bool = True
) -> Tuple[pd.DataFrame, Dict[str, pd.DataFrame]]:
    N = prices.shape[1]
    X = prices.pct_change().dropna()

    portf_rets = {}
    ws = {}

    for portfolio_name, portfolio_func in portfolio_funcs.items():
        if verbose:
            print(f"Backtesting portfolio {portfolio_name}...")

        # Initialize variables
        current_w = np.repeat(0, N)
        w = pd.DataFrame(index=X.index, columns=X.columns)
        portf_ret = pd.Series(index=X.index)
        portf_ret.name = portfolio_name

        for t in range(lookback, len(X)):
            # Rebalance portfolio if necessary
            if (t - lookback) % rebalance_every == 0:
                # Reoptimize portfolio if necessary
                if (t - lookback) % optimize_every == 0:
                    new_w = portfolio_func(X.iloc[t-lookback:t])  # Note that the row at time t is not included
                turnover = np.abs(new_w - current_w).sum()
                transaction_cost = turnover * cost_bps / 1e4
                current_w = new_w

            # Store weights
            w.iloc[t] = current_w

            # Calculate portfolio return for this period
            period_return = (X.iloc[t] * current_w).sum()
            portf_ret.iloc[t] = period_return - transaction_cost

            # Update normalized weights based on asset performance
            current_w = current_w * (1 + X.iloc[t])
            current_w = current_w / current_w.sum()

        # Keep a record (remove inital NaNs)
        portf_rets[portfolio_name] = portf_ret[lookback:]
        ws[portfolio_name] = w[lookback:]

    # Combine all portfolio returns into a single DataFrame
    portf_rets_df = pd.DataFrame(portf_rets)

    return portf_rets_df, ws
def calculate_performance_metrics(returns: pd.DataFrame) -> Dict[str, float]:
    risk_free_rate = 0.0  # Risk-free rate (e.g., 0 for simplicity)
    trading_days = 252    # Number of trading days in a year

    # Calculate Annualized Return
    annualized_return = (1 + returns.mean())**trading_days - 1

    # Calculate Annualized Volatility
    annualized_volatility = returns.std() * np.sqrt(trading_days)

    # Calculate Sharpe Ratio
    sharpe_ratio = (returns.mean() - risk_free_rate) / returns.std()
    sharpe_ratio *= np.sqrt(trading_days)  # Annualize Sharpe ratio

    # Calculate Maximum Drawdown
    def calculate_max_drawdown(returns):
        cumulative_returns = (1 + returns).cumprod()
        running_max = cumulative_returns.cummax()
        drawdown = (cumulative_returns - running_max) / running_max
        max_drawdown = drawdown.min()
        return max_drawdown

    max_drawdown = returns.apply(calculate_max_drawdown)

    return {
        'Annualized Return': annualized_return,
        'Annualized Volatility': annualized_volatility,
        'Sharpe Ratio': sharpe_ratio,
        'Maximum Drawdown': max_drawdown
    }

def print_table_performance_metrics(returns: pd.DataFrame):
    performance_table = pd.DataFrame(calculate_performance_metrics(returns))

    # Display the performance table
    performance_table_styled = performance_table.style.format("{:.2f}")
    display(performance_table_styled)
def plot_cum_return(returns: pd.DataFrame) -> None:
    cumulative_returns = (1 + returns).cumprod() - 1
    fig, ax = plt.subplots(figsize=(12, 6))
    cumulative_returns.plot(ax=ax)
    ax.set_title('Cumulative Return')
    ax.set_xlabel(None)
    ax.legend(title="portfolio")
    plt.show()

def plot_drawdown(returns: pd.DataFrame) -> None:
    cumulative_returns = (1 + returns).cumprod()
    running_max = cumulative_returns.cummax()
    drawdowns = (cumulative_returns - running_max) / running_max

    fig, ax = plt.subplots(figsize=(12, 6))
    drawdowns.plot(ax=ax)
    ax.set_title('Drawdown')
    ax.set_xlabel(None)
    ax.legend(title="portfolio")
    plt.show()
def plot_weights_over_time(weights: pd.DataFrame, portfolio_name: str):
    """Plot the evolution of portfolio weights over time as stacked area"""

    # Convert index to datetime if it's not already
    weights.index = pd.to_datetime(weights.index)

    # Convert data to numeric, replacing any non-numeric values with NaN
    weights = weights.apply(pd.to_numeric, errors='coerce')

    # Fill NaN values with 0 (or another appropriate value)
    weights = weights.fillna(0)

    # Create figure
    fig, ax = plt.subplots(figsize=(14, 6))

    # Get dates for x-axis
    dates = weights.index

    # Create bottom offset for stacking
    bottom = np.zeros(len(dates))

    # Use a colormap
    colors = plt.colormaps['tab20'](np.linspace(0, 1, len(weights.columns)))

    # Plot each asset as a segment of the stacked area
    for i, asset in enumerate(weights.columns):
        ax.fill_between(dates, bottom, bottom + weights[asset].values,
                        label=asset, color=colors[i])
        bottom += weights[asset].values

    # Format plot
    ax.set_title(f"Weight allocation over time for portfolio {portfolio_name}")
    ax.set_ylabel("weight")
    ax.set_ylim(0, 1.0)  # Set y-axis from 0 to 1
    ax.legend(title="stocks", bbox_to_anchor=(1.05, 1), loc='upper left')

    # Format x-axis
    ax.xaxis.set_major_locator(mdates.MonthLocator(interval=2))
    ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))
    ax.xaxis.set_minor_locator(mdates.WeekdayLocator())
    plt.xticks(rotation=45)

    plt.tight_layout()
    plt.show()

We can now conveniently reproduce the same backtest using the helper function backtest() defined above:

# This will perform the backtest with daily rebalancing and no transaction costs
bt_ret_daily, bt_w_daily = backtest(
    {
        "1/N": one_over_N,
        "GMVP": GMVP,
        "IVP": IVP
    },
    stock_prices,
    lookback=T_trn,
    rebalance_every=1,
    optimize_every=10000,  # only optimize once at the beginning
    cost_bps=0
)

# Sanity check - compare with manual calculation
print("Checking if results match manual calculation:")
print(f"1/N portfolio: {np.allclose(ret_one_over_N.values, bt_ret_daily['1/N'].values, rtol=1e-5)}")
print(f"GMVP portfolio: {np.allclose(ret_GMVP.values, bt_ret_daily['GMVP'].values, rtol=1e-5)}")
print(f"IVP portfolio: {np.allclose(ret_IVP.values, bt_ret_daily['IVP'].values, rtol=1e-5)}")
Backtesting portfolio 1/N...
Backtesting portfolio GMVP...
Backtesting portfolio IVP...
Checking if results match manual calculation:
1/N portfolio: True
GMVP portfolio: True
IVP portfolio: True
# Plot cumulative returns
plot_cum_return(bt_ret_daily)

# Display performance metrics
print("Performance metrics with daily rebalancing and no transaction costs:")
print_table_performance_metrics(bt_ret_daily)

# Plot drawdowns
plot_drawdown(bt_ret_daily)
Performance metrics with daily rebalancing and no transaction costs:
  Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
1/N 0.51 0.35 1.20 -0.35
GMVP 0.39 0.31 1.06 -0.30
IVP 0.48 0.33 1.17 -0.33

Realistic rebalancing including transaction costs

We can now easily include transaction costs (say, of 60 bps) in the backtest and even reducing the rebalancing period to every week or 5 days (instead of daily) using the helper function backtest() defined above:

# Realistic rebalancing including transaction costs
# Rebalance every 5 days with 60 bps transaction costs

bt_ret_realistic, bt_w_realistic = backtest(
    {
        "1/N": one_over_N,
        "GMVP": GMVP,
        "IVP": IVP
    },
    stock_prices,
    lookback=T_trn,
    rebalance_every=5,
    optimize_every=10000,  # only optimize once at the beginning
    cost_bps=60
)

# Display performance metrics
print("Performance metrics with realistic rebalancing:")
print_table_performance_metrics(bt_ret_realistic)

# Plot cumulative returns
plot_cum_return(bt_ret_realistic)

# Plot drawdowns
plot_drawdown(bt_ret_realistic)
Backtesting portfolio 1/N...
Backtesting portfolio GMVP...
Backtesting portfolio IVP...
Performance metrics with realistic rebalancing:
  Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
1/N 0.41 0.34 1.00 -0.34
GMVP 0.30 0.31 0.86 -0.31
IVP 0.38 0.33 0.97 -0.33

Walk-forward backtesting

Now, rather than keeping the portfolio fixed during all the test data, we can perform a walk-forward backtest by reoptimizing the portfolio every, say, 1 month or 20 days, on a rolling-window basis.

# Walk-forward backtesting
# Reoptimize every 20 days, rebalance every 5 days with transaction costs

bt_ret_wf, bt_w_wf = backtest(
    {
        "1/N": one_over_N,
        "GMVP": GMVP,
        "IVP": IVP
    },
    stock_prices,
    lookback=T_trn,
    rebalance_every=20,
    optimize_every=20,
    cost_bps=60
)
Backtesting portfolio 1/N...
Backtesting portfolio GMVP...
Backtesting portfolio IVP...
# Display performance metrics
print("Performance metrics with realistic rebalancing:")
print_table_performance_metrics(bt_ret_realistic)

# Plot cumulative returns
plot_cum_return(bt_ret_realistic)

# Plot drawdowns
plot_drawdown(bt_ret_realistic)
Performance metrics with realistic rebalancing:
  Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
1/N 0.41 0.34 1.00 -0.34
GMVP 0.30 0.31 0.86 -0.31
IVP 0.38 0.33 0.97 -0.33

Since the portfolios are changing over time, we can plot the evolution of the portfolios over time:

# Plot weights for each portfolio
plot_weights_over_time(bt_w_wf["1/N"], portfolio_name="1/N")
plot_weights_over_time(bt_w_wf["GMVP"], portfolio_name="GMVP")
plot_weights_over_time(bt_w_wf["IVP"], portfolio_name="IVP")

Multiple randomized backtesting

Finally, rather than running a single backtest, we can introduce some randomness in the data and perform, say, 200 randomized backtests.

First, we resample 200 times the original data of $N=10$ stocks over 2017-2020. Each time we select randomly $N=8$ stocks and a random period of two years.

# Function so resample data
def financial_data_resample(
    prices: pd.DataFrame,
    num_datasets: int = 200,
    N_sample: int = 8,
    T_sample: int = 252*2
) -> List[pd.DataFrame]:
    """
    Resample financial data multiple times

    Args:
        prices: DataFrame of stock prices
        num_datasets: Number of resampled datasets to create
        N_sample: Number of stocks to sample in each dataset
        T_sample: Number of time periods to sample in each dataset

    Returns:
        List of resampled price DataFrames
    """
    resampled_datasets = []

    for i in range(num_datasets):
        # Randomly select stocks
        selected_stocks = np.random.choice(prices.columns, size=N_sample, replace=False)

        # Randomly select a starting point
        max_start = len(prices) - T_sample
        if max_start <= 0:
            start_idx = 0
        else:
            start_idx = np.random.randint(0, max_start)

        # Extract the subset
        subset = prices.iloc[start_idx:start_idx+T_sample, :][selected_stocks]
        resampled_datasets.append(subset)

    return resampled_datasets
# Resample data
stock_prices_2017 = SP500_stocks_2015to2020.loc["2017":]
# stock_prices_2017 = SP500_stocks_2015to2020[
#     ["AAPL", "AMZN", "AMD", "GM", "GOOGL", "MGM", "MSFT", "QCOM", "TSCO", "UPS"]
# ].loc["2017":]

stock_prices_resampled = financial_data_resample(
    stock_prices_2017,
    num_datasets=200,
    N_sample=8,
    T_sample=252*2
)
len(stock_prices_resampled)
200
stock_prices_resampled[0].shape
(504, 8)
stock_prices_resampled[0].head()
DLR MGM ZBRA MCHP FB T PEAK MLM
Date
2017-11-07 109.9100 30.0635 109.31 87.0687 180.25 27.9994 23.3855 204.238
2017-11-08 111.2523 31.5925 106.61 88.3732 179.56 28.3127 23.3768 207.311
2017-11-09 110.1172 31.2962 104.43 86.4688 179.30 28.7868 23.4028 207.068
2017-11-10 108.8651 31.4204 104.42 87.1830 178.46 28.9731 23.3941 207.360
2017-11-13 110.5316 31.5925 104.94 86.6688 178.77 28.9308 23.5847 206.601

Then, we perform the multiple backtests (this will take some time):

# Function to run multiple backtests
def run_multiple_backtests(
    portfolio_funcs: Dict[str, callable],
    price_datasets: List[pd.DataFrame],
    lookback: int = 252,
    optimize_every: int = 20,
    rebalance_every: int = 5,
    cost_bps: float = 60
) -> Dict[str, List[pd.DataFrame]]:
    """
    Run backtests on multiple datasets

    Returns:
        Dictionary with portfolio names as keys and lists of return DataFrames as values
    """
    results = {name: [] for name in portfolio_funcs.keys()}

    for i, prices in enumerate(price_datasets):
        if i % 10 == 0:
            print(f"Processing dataset {i+1}/{len(price_datasets)}...")

        # Run backtest on this dataset
        bt_ret, _ = backtest(
            portfolio_funcs,
            prices,
            lookback=lookback,
            optimize_every=optimize_every,
            rebalance_every=rebalance_every,
            cost_bps=cost_bps,
            verbose=False
        )

        # Store results
        for portfolio_name in portfolio_funcs.keys():
            results[portfolio_name].append(bt_ret[portfolio_name])

    return results
multiple_bt_results = run_multiple_backtests(
    {
        "1/N": one_over_N,
        "GMVP": GMVP,
        "IVP": IVP
    },
    stock_prices_resampled,
    lookback=252,
    optimize_every=20,
    rebalance_every=5,
    cost_bps=60
)
Processing dataset 1/200...
Processing dataset 11/200...
Processing dataset 21/200...
Processing dataset 31/200...
Processing dataset 41/200...
Processing dataset 51/200...
Processing dataset 61/200...
Processing dataset 71/200...
Processing dataset 81/200...
Processing dataset 91/200...
Processing dataset 101/200...
Processing dataset 111/200...
Processing dataset 121/200...
Processing dataset 131/200...
Processing dataset 141/200...
Processing dataset 151/200...
Processing dataset 161/200...
Processing dataset 171/200...
Processing dataset 181/200...
Processing dataset 191/200...

Now we can show the results in a table form:

def summarize_multiple_backtests(results: Dict[str, List[pd.Series]]) -> pd.DataFrame:
    """Summarize results from multiple backtests"""
    summary = {}

    for portfolio_name, returns_list in results.items():
        portfolio_metrics = []

        for returns in returns_list:
            metrics = calculate_performance_metrics(pd.DataFrame(returns))
            portfolio_metrics.append(metrics)

        # Calculate mean of metrics across all datasets
        mean_metrics = {}
        for metric in portfolio_metrics[0].keys():
            values = [metrics[metric] for metrics in portfolio_metrics]
            mean_metrics[metric] = np.mean(values)

        summary[portfolio_name] = mean_metrics

    return pd.DataFrame(summary).T

# Generate summary table
summary_table = summarize_multiple_backtests(multiple_bt_results)
display(summary_table.style.format("{:.4f}"))
  Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
1/N 0.0488 0.2328 0.2743 -0.2502
GMVP 0.0138 0.2039 0.2130 -0.2253
IVP 0.0464 0.2214 0.3013 -0.2403

And we can also show the results in the form of barplots:

# Create bar plots for selected metrics
plt.figure(figsize=(12, 6))
summary_table[["Maximum Drawdown", "Annualized Volatility"]].abs().plot(kind='bar')
plt.title("Risk Metrics Comparison")
plt.ylabel("Value")
plt.xticks(rotation=0)
plt.tight_layout()
plt.show()
<Figure size 1200x600 with 0 Axes>