Python Code for Portfolio Optimization Chapter 8 – Portfolio Backtesting
Daniel P. Palomar (2025). Portfolio Optimization: Theory and Application. Cambridge University Press.
Last update: March 18, 2025
Contributors:
Libraries¶
The following libraries are used in the examples:
# Core numerical computing
import numpy as np
import pandas as pd
from typing import Dict, Tuple, List
# For financial data
import yfinance as yf # Loading financial data
import empyrical as emp # Performance metrics
# Book data (pip install "git+https://github.com/dppalomar/pob.git#subdirectory=python")
from pob_python import SP500_stocks_2015to2020, SP500_index_2015to2020
# Plotting
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
sns.set_theme(style="darkgrid")
# Optimization
import cvxpy as cp # interface for convex optimization solvers
Some math definitions for the equations:
$\def\bm#1{\boldsymbol{#1}}$ $\def\textm#1{\textsf{#1}}$ $\def\T{{\mkern-2mu\raise-1mu\mathsf{T}}}}$ $\def\R{\mathbb{R}}$ $\def\E{\rm I\kern-.2em E}$ $\def\w{\bm{w}}$ $\def\bmu{\bm{\mu}}}$ $\def\bSigma{\bm{\Sigma}}}$
Market data and portfolios¶
For illustrative purposes, we simply choose a few stocks from the S&P 500 index during 2015-2020.
stock_prices = SP500_stocks_2015to2020[
["AAPL", "AMZN", "AMD", "GM", "GOOGL", "MGM", "MSFT", "QCOM", "TSCO", "UPS"]
].loc["2018":]
# Display first and last rows
print("First few rows of stock prices:")
display(stock_prices.head())
print("\nLast few rows of stock prices:")
display(stock_prices.tail())
# Plot log-prices
plt.figure(figsize=(12, 6))
log_prices = np.log(stock_prices)
for col in log_prices.columns:
plt.plot(log_prices.index, log_prices[col], linewidth=1, label=col)
plt.title('Log-prices')
plt.legend(title='stocks')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
First few rows of stock prices:
AAPL | AMZN | AMD | GM | GOOGL | MGM | MSFT | QCOM | TSCO | UPS | |
---|---|---|---|---|---|---|---|---|---|---|
Date | ||||||||||
2018-01-02 | 41.514 | 1189.01 | 10.98 | 38.0722 | 1073.21 | 32.1285 | 82.5993 | 59.2277 | 72.8300 | 112.662 |
2018-01-03 | 41.506 | 1204.20 | 11.55 | 39.0012 | 1091.52 | 31.9559 | 82.9837 | 59.8999 | 73.3785 | 115.158 |
2018-01-04 | 41.699 | 1209.59 | 12.12 | 40.2035 | 1095.76 | 32.2723 | 83.7141 | 59.9817 | 74.6969 | 115.906 |
2018-01-05 | 42.174 | 1229.14 | 11.88 | 40.0851 | 1110.29 | 32.4928 | 84.7520 | 60.3814 | 76.4484 | 116.261 |
2018-01-08 | 42.017 | 1246.87 | 12.28 | 40.2764 | 1114.21 | 31.7354 | 84.8385 | 60.1997 | 76.2655 | 117.673 |
Last few rows of stock prices:
AAPL | AMZN | AMD | GM | GOOGL | MGM | MSFT | QCOM | TSCO | UPS | |
---|---|---|---|---|---|---|---|---|---|---|
Date | ||||||||||
2020-09-16 | 112.13 | 3078.10 | 76.66 | 31.79 | 1512.09 | 23.01 | 205.05 | 114.56 | 138.250 | 159.87 |
2020-09-17 | 110.34 | 3008.73 | 76.55 | 31.92 | 1487.04 | 22.52 | 202.91 | 114.88 | 138.150 | 159.75 |
2020-09-18 | 106.84 | 2954.91 | 74.93 | 31.50 | 1451.09 | 22.02 | 200.39 | 110.69 | 138.110 | 159.66 |
2020-09-21 | 110.08 | 2960.47 | 77.94 | 30.00 | 1430.14 | 21.09 | 202.54 | 111.92 | 137.555 | 161.06 |
2020-09-22 | 111.81 | 3128.99 | 77.70 | 29.44 | 1459.82 | 21.62 | 207.42 | 113.82 | 141.610 | 161.89 |
Also for illustrative purposes, we choose the following three simple portfolios:
- $1/N$ portfolio: $$ \w = \frac{1}{N}\bm{1}; $$
- Global minimum variance portfolio (GMVP): $$ \begin{array}{ll} \underset{\w}{\textm{minimize}} & \w^\T\bSigma\w\\ \textm{subject to} & \bm{1}^\T\w=1, \quad \w\ge\bm{0}; \end{array} $$
- Inverse volatility portfolio (IVP): $$ \w = \frac{\bm{\sigma}^{-1}}{\bm{1}^\T\bm{\sigma}^{-1}}. $$
# Define portfolio functions
def one_over_N(X: pd.DataFrame) -> np.ndarray:
"""Equal weight portfolio (1/N)"""
N = X.shape[1]
return np.repeat(1/N, N)
def design_GMVP(Sigma: np.ndarray) -> np.ndarray:
"""Design Global Minimum Variance Portfolio"""
N = Sigma.shape[0]
w = cp.Variable(N)
prob = cp.Problem(cp.Minimize(cp.quad_form(w, Sigma)),
[cp.sum(w) == 1, w >= 0])
prob.solve()
return w.value
def GMVP(X: pd.DataFrame) -> np.ndarray:
"""Global Minimum Variance Portfolio"""
# Convert to log returns for covariance estimation
X_log = np.log(1 + X)
Sigma = X_log.cov().values
return design_GMVP(Sigma)
def design_IVP(sigma: np.ndarray) -> np.ndarray:
"""Design Inverse Volatility Portfolio"""
w = 1/sigma
w = w/np.sum(w)
return w
def IVP(X: pd.DataFrame) -> np.ndarray:
"""Inverse Volatility Portfolio"""
# Convert to log returns for volatility estimation
X_log = np.log(1 + X)
sigma = X_log.std()
return design_IVP(sigma.values)
Vanilla backtesting¶
Vanilla backtesting refers to simply dividing the available data intro training data (for the portfolio design) and test data (for the portfolio assessment).
Daily rebalancing ignoring transaction costs¶
If we assume a daily rebalancing (with daily data) and ignore transaction costs, then the backtest is very simple to perform simply by multiplying the matrix of assets' linear returns by the portfolio vector.
# Compute returns
X_lin = stock_prices.pct_change().dropna()
X_log = np.log(stock_prices).diff().dropna()
# or: X_log = np.log(1 + X_lin)
# Split data into training and test
T, N = X_lin.shape
T_trn = round(0.50*T)
X_lin_trn = X_lin.iloc[:T_trn]
X_lin_tst = X_lin.iloc[T_trn:]
X_log_trn = X_log.iloc[:T_trn]
X_log_tst = X_log.iloc[T_trn:]
# Estimate mu and Sigma with training data
mu = X_log_trn.mean().values
Sigma = X_log_trn.cov().values
# Design portfolios
w_one_over_N = np.repeat(1/N, N)
# or: w_one_over_N = one_over_N(X_log_trn)
w_GMVP = design_GMVP(Sigma)
w_IVP = design_IVP(np.sqrt(np.diag(Sigma)))
# Backtest portfolios with test data (assuming daily rebalancing and no transaction cost)
ret_one_over_N = X_lin_tst @ w_one_over_N
ret_GMVP = X_lin_tst @ w_GMVP
ret_IVP = X_lin_tst @ w_IVP
# Compute cumulative returns
wealth_one_over_N = (1 + ret_one_over_N).cumprod() - 1
wealth_GMVP = (1 + ret_GMVP).cumprod() - 1
wealth_IVP = (1 + ret_IVP).cumprod() - 1
# Plot cumulative returns
plt.figure(figsize=(12, 6))
wealth_one_over_N.plot(label='1/N', linewidth=1)
wealth_GMVP.plot(label='GMVP', linewidth=1)
wealth_IVP.plot(label='IVP', linewidth=1)
plt.title('Cumulative returns')
plt.legend(title='Portfolios')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
Helper functions¶
def backtest(
portfolio_funcs: Dict[str, callable],
prices: pd.DataFrame,
lookback: int,
rebalance_every: int = 1,
optimize_every: int = 1,
cost_bps: float = 0,
verbose: bool = True
) -> Tuple[pd.DataFrame, Dict[str, pd.DataFrame]]:
N = prices.shape[1]
X = prices.pct_change().dropna()
portf_rets = {}
ws = {}
for portfolio_name, portfolio_func in portfolio_funcs.items():
if verbose:
print(f"Backtesting portfolio {portfolio_name}...")
# Initialize variables
current_w = np.repeat(0, N)
w = pd.DataFrame(index=X.index, columns=X.columns)
portf_ret = pd.Series(index=X.index)
portf_ret.name = portfolio_name
for t in range(lookback, len(X)):
# Rebalance portfolio if necessary
if (t - lookback) % rebalance_every == 0:
# Reoptimize portfolio if necessary
if (t - lookback) % optimize_every == 0:
new_w = portfolio_func(X.iloc[t-lookback:t]) # Note that the row at time t is not included
turnover = np.abs(new_w - current_w).sum()
transaction_cost = turnover * cost_bps / 1e4
current_w = new_w
# Store weights
w.iloc[t] = current_w
# Calculate portfolio return for this period
period_return = (X.iloc[t] * current_w).sum()
portf_ret.iloc[t] = period_return - transaction_cost
# Update normalized weights based on asset performance
current_w = current_w * (1 + X.iloc[t])
current_w = current_w / current_w.sum()
# Keep a record (remove inital NaNs)
portf_rets[portfolio_name] = portf_ret[lookback:]
ws[portfolio_name] = w[lookback:]
# Combine all portfolio returns into a single DataFrame
portf_rets_df = pd.DataFrame(portf_rets)
return portf_rets_df, ws
def calculate_performance_metrics(returns: pd.DataFrame) -> Dict[str, float]:
risk_free_rate = 0.0 # Risk-free rate (e.g., 0 for simplicity)
trading_days = 252 # Number of trading days in a year
# Calculate Annualized Return
annualized_return = (1 + returns.mean())**trading_days - 1
# Calculate Annualized Volatility
annualized_volatility = returns.std() * np.sqrt(trading_days)
# Calculate Sharpe Ratio
sharpe_ratio = (returns.mean() - risk_free_rate) / returns.std()
sharpe_ratio *= np.sqrt(trading_days) # Annualize Sharpe ratio
# Calculate Maximum Drawdown
def calculate_max_drawdown(returns):
cumulative_returns = (1 + returns).cumprod()
running_max = cumulative_returns.cummax()
drawdown = (cumulative_returns - running_max) / running_max
max_drawdown = drawdown.min()
return max_drawdown
max_drawdown = returns.apply(calculate_max_drawdown)
return {
'Annualized Return': annualized_return,
'Annualized Volatility': annualized_volatility,
'Sharpe Ratio': sharpe_ratio,
'Maximum Drawdown': max_drawdown
}
def print_table_performance_metrics(returns: pd.DataFrame):
performance_table = pd.DataFrame(calculate_performance_metrics(returns))
# Display the performance table
performance_table_styled = performance_table.style.format("{:.2f}")
display(performance_table_styled)
def plot_cum_return(returns: pd.DataFrame) -> None:
cumulative_returns = (1 + returns).cumprod() - 1
fig, ax = plt.subplots(figsize=(12, 6))
cumulative_returns.plot(ax=ax)
ax.set_title('Cumulative Return')
ax.set_xlabel(None)
ax.legend(title="portfolio")
plt.show()
def plot_drawdown(returns: pd.DataFrame) -> None:
cumulative_returns = (1 + returns).cumprod()
running_max = cumulative_returns.cummax()
drawdowns = (cumulative_returns - running_max) / running_max
fig, ax = plt.subplots(figsize=(12, 6))
drawdowns.plot(ax=ax)
ax.set_title('Drawdown')
ax.set_xlabel(None)
ax.legend(title="portfolio")
plt.show()
def plot_weights_over_time(weights: pd.DataFrame, portfolio_name: str):
"""Plot the evolution of portfolio weights over time as stacked area"""
# Convert index to datetime if it's not already
weights.index = pd.to_datetime(weights.index)
# Convert data to numeric, replacing any non-numeric values with NaN
weights = weights.apply(pd.to_numeric, errors='coerce')
# Fill NaN values with 0 (or another appropriate value)
weights = weights.fillna(0)
# Create figure
fig, ax = plt.subplots(figsize=(14, 6))
# Get dates for x-axis
dates = weights.index
# Create bottom offset for stacking
bottom = np.zeros(len(dates))
# Use a colormap
colors = plt.colormaps['tab20'](np.linspace(0, 1, len(weights.columns)))
# Plot each asset as a segment of the stacked area
for i, asset in enumerate(weights.columns):
ax.fill_between(dates, bottom, bottom + weights[asset].values,
label=asset, color=colors[i])
bottom += weights[asset].values
# Format plot
ax.set_title(f"Weight allocation over time for portfolio {portfolio_name}")
ax.set_ylabel("weight")
ax.set_ylim(0, 1.0) # Set y-axis from 0 to 1
ax.legend(title="stocks", bbox_to_anchor=(1.05, 1), loc='upper left')
# Format x-axis
ax.xaxis.set_major_locator(mdates.MonthLocator(interval=2))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))
ax.xaxis.set_minor_locator(mdates.WeekdayLocator())
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
We can now conveniently reproduce the same backtest using the helper function backtest()
defined above:
# This will perform the backtest with daily rebalancing and no transaction costs
bt_ret_daily, bt_w_daily = backtest(
{
"1/N": one_over_N,
"GMVP": GMVP,
"IVP": IVP
},
stock_prices,
lookback=T_trn,
rebalance_every=1,
optimize_every=10000, # only optimize once at the beginning
cost_bps=0
)
# Sanity check - compare with manual calculation
print("Checking if results match manual calculation:")
print(f"1/N portfolio: {np.allclose(ret_one_over_N.values, bt_ret_daily['1/N'].values, rtol=1e-5)}")
print(f"GMVP portfolio: {np.allclose(ret_GMVP.values, bt_ret_daily['GMVP'].values, rtol=1e-5)}")
print(f"IVP portfolio: {np.allclose(ret_IVP.values, bt_ret_daily['IVP'].values, rtol=1e-5)}")
Backtesting portfolio 1/N... Backtesting portfolio GMVP... Backtesting portfolio IVP... Checking if results match manual calculation: 1/N portfolio: True GMVP portfolio: True IVP portfolio: True
# Plot cumulative returns
plot_cum_return(bt_ret_daily)
# Display performance metrics
print("Performance metrics with daily rebalancing and no transaction costs:")
print_table_performance_metrics(bt_ret_daily)
# Plot drawdowns
plot_drawdown(bt_ret_daily)
Performance metrics with daily rebalancing and no transaction costs:
Annualized Return | Annualized Volatility | Sharpe Ratio | Maximum Drawdown | |
---|---|---|---|---|
1/N | 0.51 | 0.35 | 1.20 | -0.35 |
GMVP | 0.39 | 0.31 | 1.06 | -0.30 |
IVP | 0.48 | 0.33 | 1.17 | -0.33 |
Realistic rebalancing including transaction costs¶
We can now easily include transaction costs (say, of 60 bps) in the backtest and even reducing the rebalancing period to every week or 5 days (instead of daily) using the helper function backtest()
defined above:
# Realistic rebalancing including transaction costs
# Rebalance every 5 days with 60 bps transaction costs
bt_ret_realistic, bt_w_realistic = backtest(
{
"1/N": one_over_N,
"GMVP": GMVP,
"IVP": IVP
},
stock_prices,
lookback=T_trn,
rebalance_every=5,
optimize_every=10000, # only optimize once at the beginning
cost_bps=60
)
# Display performance metrics
print("Performance metrics with realistic rebalancing:")
print_table_performance_metrics(bt_ret_realistic)
# Plot cumulative returns
plot_cum_return(bt_ret_realistic)
# Plot drawdowns
plot_drawdown(bt_ret_realistic)
Backtesting portfolio 1/N... Backtesting portfolio GMVP... Backtesting portfolio IVP... Performance metrics with realistic rebalancing:
Annualized Return | Annualized Volatility | Sharpe Ratio | Maximum Drawdown | |
---|---|---|---|---|
1/N | 0.41 | 0.34 | 1.00 | -0.34 |
GMVP | 0.30 | 0.31 | 0.86 | -0.31 |
IVP | 0.38 | 0.33 | 0.97 | -0.33 |
Walk-forward backtesting¶
Now, rather than keeping the portfolio fixed during all the test data, we can perform a walk-forward backtest by reoptimizing the portfolio every, say, 1 month or 20 days, on a rolling-window basis.
# Walk-forward backtesting
# Reoptimize every 20 days, rebalance every 5 days with transaction costs
bt_ret_wf, bt_w_wf = backtest(
{
"1/N": one_over_N,
"GMVP": GMVP,
"IVP": IVP
},
stock_prices,
lookback=T_trn,
rebalance_every=20,
optimize_every=20,
cost_bps=60
)
Backtesting portfolio 1/N... Backtesting portfolio GMVP... Backtesting portfolio IVP...
# Display performance metrics
print("Performance metrics with realistic rebalancing:")
print_table_performance_metrics(bt_ret_realistic)
# Plot cumulative returns
plot_cum_return(bt_ret_realistic)
# Plot drawdowns
plot_drawdown(bt_ret_realistic)
Performance metrics with realistic rebalancing:
Annualized Return | Annualized Volatility | Sharpe Ratio | Maximum Drawdown | |
---|---|---|---|---|
1/N | 0.41 | 0.34 | 1.00 | -0.34 |
GMVP | 0.30 | 0.31 | 0.86 | -0.31 |
IVP | 0.38 | 0.33 | 0.97 | -0.33 |
Since the portfolios are changing over time, we can plot the evolution of the portfolios over time:
# Plot weights for each portfolio
plot_weights_over_time(bt_w_wf["1/N"], portfolio_name="1/N")
plot_weights_over_time(bt_w_wf["GMVP"], portfolio_name="GMVP")
plot_weights_over_time(bt_w_wf["IVP"], portfolio_name="IVP")
Multiple randomized backtesting¶
Finally, rather than running a single backtest, we can introduce some randomness in the data and perform, say, 200 randomized backtests.
First, we resample 200 times the original data of $N=10$ stocks over 2017-2020. Each time we select randomly $N=8$ stocks and a random period of two years.
# Function so resample data
def financial_data_resample(
prices: pd.DataFrame,
num_datasets: int = 200,
N_sample: int = 8,
T_sample: int = 252*2
) -> List[pd.DataFrame]:
"""
Resample financial data multiple times
Args:
prices: DataFrame of stock prices
num_datasets: Number of resampled datasets to create
N_sample: Number of stocks to sample in each dataset
T_sample: Number of time periods to sample in each dataset
Returns:
List of resampled price DataFrames
"""
resampled_datasets = []
for i in range(num_datasets):
# Randomly select stocks
selected_stocks = np.random.choice(prices.columns, size=N_sample, replace=False)
# Randomly select a starting point
max_start = len(prices) - T_sample
if max_start <= 0:
start_idx = 0
else:
start_idx = np.random.randint(0, max_start)
# Extract the subset
subset = prices.iloc[start_idx:start_idx+T_sample, :][selected_stocks]
resampled_datasets.append(subset)
return resampled_datasets
# Resample data
stock_prices_2017 = SP500_stocks_2015to2020.loc["2017":]
# stock_prices_2017 = SP500_stocks_2015to2020[
# ["AAPL", "AMZN", "AMD", "GM", "GOOGL", "MGM", "MSFT", "QCOM", "TSCO", "UPS"]
# ].loc["2017":]
stock_prices_resampled = financial_data_resample(
stock_prices_2017,
num_datasets=200,
N_sample=8,
T_sample=252*2
)
len(stock_prices_resampled)
200
stock_prices_resampled[0].shape
(504, 8)
stock_prices_resampled[0].head()
DLR | MGM | ZBRA | MCHP | FB | T | PEAK | MLM | |
---|---|---|---|---|---|---|---|---|
Date | ||||||||
2017-11-07 | 109.9100 | 30.0635 | 109.31 | 87.0687 | 180.25 | 27.9994 | 23.3855 | 204.238 |
2017-11-08 | 111.2523 | 31.5925 | 106.61 | 88.3732 | 179.56 | 28.3127 | 23.3768 | 207.311 |
2017-11-09 | 110.1172 | 31.2962 | 104.43 | 86.4688 | 179.30 | 28.7868 | 23.4028 | 207.068 |
2017-11-10 | 108.8651 | 31.4204 | 104.42 | 87.1830 | 178.46 | 28.9731 | 23.3941 | 207.360 |
2017-11-13 | 110.5316 | 31.5925 | 104.94 | 86.6688 | 178.77 | 28.9308 | 23.5847 | 206.601 |
Then, we perform the multiple backtests (this will take some time):
# Function to run multiple backtests
def run_multiple_backtests(
portfolio_funcs: Dict[str, callable],
price_datasets: List[pd.DataFrame],
lookback: int = 252,
optimize_every: int = 20,
rebalance_every: int = 5,
cost_bps: float = 60
) -> Dict[str, List[pd.DataFrame]]:
"""
Run backtests on multiple datasets
Returns:
Dictionary with portfolio names as keys and lists of return DataFrames as values
"""
results = {name: [] for name in portfolio_funcs.keys()}
for i, prices in enumerate(price_datasets):
if i % 10 == 0:
print(f"Processing dataset {i+1}/{len(price_datasets)}...")
# Run backtest on this dataset
bt_ret, _ = backtest(
portfolio_funcs,
prices,
lookback=lookback,
optimize_every=optimize_every,
rebalance_every=rebalance_every,
cost_bps=cost_bps,
verbose=False
)
# Store results
for portfolio_name in portfolio_funcs.keys():
results[portfolio_name].append(bt_ret[portfolio_name])
return results
multiple_bt_results = run_multiple_backtests(
{
"1/N": one_over_N,
"GMVP": GMVP,
"IVP": IVP
},
stock_prices_resampled,
lookback=252,
optimize_every=20,
rebalance_every=5,
cost_bps=60
)
Processing dataset 1/200... Processing dataset 11/200... Processing dataset 21/200... Processing dataset 31/200... Processing dataset 41/200... Processing dataset 51/200... Processing dataset 61/200... Processing dataset 71/200... Processing dataset 81/200... Processing dataset 91/200... Processing dataset 101/200... Processing dataset 111/200... Processing dataset 121/200... Processing dataset 131/200... Processing dataset 141/200... Processing dataset 151/200... Processing dataset 161/200... Processing dataset 171/200... Processing dataset 181/200... Processing dataset 191/200...
Now we can show the results in a table form:
def summarize_multiple_backtests(results: Dict[str, List[pd.Series]]) -> pd.DataFrame:
"""Summarize results from multiple backtests"""
summary = {}
for portfolio_name, returns_list in results.items():
portfolio_metrics = []
for returns in returns_list:
metrics = calculate_performance_metrics(pd.DataFrame(returns))
portfolio_metrics.append(metrics)
# Calculate mean of metrics across all datasets
mean_metrics = {}
for metric in portfolio_metrics[0].keys():
values = [metrics[metric] for metrics in portfolio_metrics]
mean_metrics[metric] = np.mean(values)
summary[portfolio_name] = mean_metrics
return pd.DataFrame(summary).T
# Generate summary table
summary_table = summarize_multiple_backtests(multiple_bt_results)
display(summary_table.style.format("{:.4f}"))
Annualized Return | Annualized Volatility | Sharpe Ratio | Maximum Drawdown | |
---|---|---|---|---|
1/N | 0.0488 | 0.2328 | 0.2743 | -0.2502 |
GMVP | 0.0138 | 0.2039 | 0.2130 | -0.2253 |
IVP | 0.0464 | 0.2214 | 0.3013 | -0.2403 |
And we can also show the results in the form of barplots:
# Create bar plots for selected metrics
plt.figure(figsize=(12, 6))
summary_table[["Maximum Drawdown", "Annualized Volatility"]].abs().plot(kind='bar')
plt.title("Risk Metrics Comparison")
plt.ylabel("Value")
plt.xticks(rotation=0)
plt.tight_layout()
plt.show()
<Figure size 1200x600 with 0 Axes>