Python Code for Portfolio Optimization Chapter 7 – Modern Portfolio Theory

Daniel P. Palomar (2025). Portfolio Optimization: Theory and Application. Cambridge University Press.

Last update: March 3, 2025

Contributors:


PackagesΒΆ

The following packages are used in the examples:

# Core numerical computing
import numpy as np
import pandas as pd
from typing import Dict, Tuple

# For financial data
import yfinance as yf       # Loading financial data
import empyrical as emp     # Performance metrics

# Book data (pip install "git+https://github.com/dppalomar/pob.git#subdirectory=python")
from pob_python import SP500_stocks_2015to2020, SP500_index_2015to2020

# Plotting
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
sns.set_theme(style="darkgrid")

# Optimization
import cvxpy as cp                  # interface for convex optimization solvers
from scipy.optimize import minimize, LinearConstraint   # for optimization
from scipy.linalg import cholesky

Some math definitions for the equations:

$\def\bm#1{\boldsymbol{#1}}$ $\def\textm#1{\textsf{#1}}$ $\def\T{{\mkern-2mu\raise-1mu\mathsf{T}}}}$ $\def\R{\mathbb{R}}$ $\def\E{\rm I\kern-.2em E}$ $\def\w{\bm{w}}$ $\def\bmu{\bm{\mu}}}$ $\def\bSigma{\bm{\Sigma}}}$

Helper functionsΒΆ

def backtest(
        portfolio_funcs: Dict[str, callable],
        prices: pd.DataFrame,
        lookback: int,
        rebalance_every: int = 1,
        cost_bps: float = 0
) -> Tuple[pd.DataFrame, Dict[str, pd.DataFrame]]:
    N = prices.shape[1]
    X = prices.pct_change().dropna()

    portf_rets = {}
    ws = {}

    for portfolio_name, portfolio_func in portfolio_funcs.items():
        print(f"Backtesting portfolio {portfolio_name}...")

        # Initialize variables
        current_w = np.repeat(0, N)
        w = pd.DataFrame(index=X.index, columns=X.columns)
        portf_ret = pd.Series(index=X.index)
        portf_ret.name = portfolio_name

        for t in range(lookback, len(X)):
            # Rebalance portfolio if necessary
            if (t - lookback) % rebalance_every == 0:
                new_w = portfolio_func(X.iloc[t-lookback:t])  # Note that the row at time t is not included
                turnover = np.abs(new_w - current_w).sum()
                transaction_cost = turnover * cost_bps / 1e4
                current_w = new_w

            # Store weights
            w.iloc[t] = current_w

            # Calculate portfolio return for this period
            period_return = (X.iloc[t] * current_w).sum()
            portf_ret.iloc[t] = period_return - transaction_cost

            # Update normalized weights based on asset performance
            current_w = current_w * (1 + X.iloc[t])
            current_w = current_w / current_w.sum()

        # Keep a record (remove inital NaNs)
        portf_rets[portfolio_name] = portf_ret[lookback:]
        ws[portfolio_name] = w[lookback:]

    # Combine all portfolio returns into a single DataFrame
    portf_rets_df = pd.DataFrame(portf_rets)

    return portf_rets_df, ws
def print_table_performance_metrics(returns: pd.DataFrame):
    risk_free_rate = 0.0  # Risk-free rate (e.g., 0 for simplicity)
    trading_days = 252    # Number of trading days in a year

    # Calculate Annualized Return
    annualized_return = (1 + returns.mean())**trading_days - 1

    # Calculate Annualized Volatility
    annualized_volatility = returns.std() * np.sqrt(trading_days)

    # Calculate Sharpe Ratio
    sharpe_ratio = (returns.mean() - risk_free_rate) / returns.std()
    sharpe_ratio *= np.sqrt(trading_days)  # Annualize Sharpe ratio

    # Calculate Maximum Drawdown
    def calculate_max_drawdown(returns):
        cumulative_returns = (1 + returns).cumprod()
        running_max = cumulative_returns.cummax()
        drawdown = (cumulative_returns - running_max) / running_max
        max_drawdown = drawdown.min()
        return max_drawdown

    max_drawdown = returns.apply(calculate_max_drawdown)

    # Combine all metrics into a single DataFrame
    performance_table = pd.DataFrame({
        'Annualized Return': annualized_return,
        'Annualized Volatility': annualized_volatility,
        'Sharpe Ratio': sharpe_ratio,
        'Maximum Drawdown': max_drawdown
    })

    # Display the performance table
    performance_table_styled = performance_table.style.format("{:.2f}")
    display(performance_table_styled)
def plot_cum_return(returns: pd.DataFrame) -> None:
    cumulative_returns = (1 + returns).cumprod() - 1
    fig, ax = plt.subplots(figsize=(12, 6))
    cumulative_returns.plot(ax=ax)
    ax.set_title('Cumulative Return')
    ax.set_xlabel(None)
    ax.legend(title="portfolio")
    plt.show()
def plot_drawdown(returns: pd.DataFrame) -> None:
    cumulative_returns = (1 + returns).cumprod()
    running_max = cumulative_returns.cummax()
    drawdowns = (cumulative_returns - running_max) / running_max

    fig, ax = plt.subplots(figsize=(12, 6))
    drawdowns.plot(ax=ax)
    ax.set_title('Drawdown')
    ax.set_xlabel(None)
    ax.legend(title="portfolio")
    plt.show()
def plot_initial_allocations(bt_w: Dict[str, pd.DataFrame]) -> None:
    # Extract the first row of each portfolio's weights and prepare for plotting
    first_rows = {
        portfolio_name: weights.iloc[0]  # Get the first row of each DataFrame
        for portfolio_name, weights in bt_w.items()
    }

    # Convert the dictionary of first rows into a DataFrame
    first_rows_df = pd.DataFrame(first_rows).T.reset_index()  # Transpose and reset index
    first_rows_df.columns = ['portfolio'] + list(first_rows_df.columns[1:])

    # Barplot of weight allocation
    melted_df = first_rows_df.melt(id_vars='portfolio', var_name='stocks', value_name='weights')

    fig, ax = plt.subplots(figsize=(12, 4))
    sns.barplot(x='stocks', y='weights', hue='portfolio', ax=ax, data=melted_df)
    ax.set_title("Weight Allocation for Heuristic Portfolios")
    plt.xticks(rotation=45)
    plt.show()

Mean-variance portfolio (MVP)ΒΆ

Vanilla MVPΒΆ

We explore the mean-variance portfolio (MVP), $$ \begin{array}{ll} \underset{\w}{\textm{maximize}} & \w^\T\bmu - \frac{\lambda}{2}\w^\T\bSigma\w\\ \textm{subject to} & \bm{1}^\T\w=1, \quad \w\ge\bm{0}, \end{array} $$ with different values of the hyper-parameter $\lambda$.

# Get data
stock_prices = SP500_stocks_2015to2020[
                   ["AAPL", "AMZN", "AMD", "GM", "GOOGL", "MGM", "MSFT", "QCOM", "TSCO", "UPS"]
               ].loc["2019":]
T = stock_prices.shape[0]
T_trn = round(0.70*T)

stock_prices.head()
AAPL AMZN AMD GM GOOGL MGM MSFT QCOM TSCO UPS
Date
2019-01-02 38.629 1539.13 18.83 31.8934 1054.68 24.5435 98.8602 54.2052 80.3520 91.445
2019-01-03 34.781 1500.28 17.05 30.5755 1025.47 24.0660 95.2233 52.5998 78.8374 88.849
2019-01-04 36.266 1575.39 19.00 31.5995 1078.07 25.1086 99.6521 53.4497 80.4594 91.944
2019-01-07 36.185 1629.51 20.57 32.5760 1075.92 25.8296 99.7792 53.2986 81.6418 91.633
2019-01-08 36.875 1656.58 20.75 33.0026 1085.37 26.5116 100.5027 52.8359 81.5930 91.643
#
# Define portfolios
#
def EWP(X: pd.DataFrame) -> np.ndarray:
    N = X.shape[1]
    return np.repeat(1/N, N)

def design_MVP(mu: np.ndarray, Sigma: np.ndarray, lmd: float = 1) -> np.ndarray:
    N = len(Sigma)
    w = cp.Variable(N)
    prob = cp.Problem(cp.Maximize(mu @ w - (lmd/2) * cp.quad_form(w, Sigma)),
                      [cp.sum(w) == 1, w >= 0])
    prob.solve()
    return w.value

def MVP_lmd1(X_lin: pd.DataFrame) -> np.ndarray:
    X_log = np.log(1 + X_lin)
    mu = X_log.mean().values
    Sigma = X_log.cov().values
    return design_MVP(mu, Sigma, lmd=1)

def MVP_lmd4(X_lin: pd.DataFrame) -> np.ndarray:
    X_log = np.log(1 + X_lin)
    mu = X_log.mean().values
    Sigma = X_log.cov().values
    return design_MVP(mu, Sigma, lmd=4)

def MVP_lmd16(X_lin: pd.DataFrame) -> np.ndarray:
    X_log = np.log(1 + X_lin)
    mu = X_log.mean().values
    Sigma = X_log.cov().values
    return design_MVP(mu, Sigma, lmd=16)

def MVP_lmd64(X_lin: pd.DataFrame) -> np.ndarray:
    X_log = np.log(1 + X_lin)
    mu = X_log.mean().values
    Sigma = X_log.cov().values
    return design_MVP(mu, Sigma, lmd=64)
# Run backtest
bt_ret, bt_w = backtest(
    {
        "1/N": EWP,
        "MVP (lmd = 1)": MVP_lmd1,
        "MVP (lmd = 4)": MVP_lmd4,
        "MVP (lmd = 16)": MVP_lmd16,
        "MVP (lmd = 64)": MVP_lmd64,
    },
    stock_prices, lookback=T_trn, rebalance_every=30)
Backtesting portfolio 1/N...
Backtesting portfolio MVP (lmd = 1)...
Backtesting portfolio MVP (lmd = 4)...
Backtesting portfolio MVP (lmd = 16)...
Backtesting portfolio MVP (lmd = 64)...
plot_initial_allocations(bt_w)
No description has been provided for this image
plot_cum_return(bt_ret)
No description has been provided for this image
plot_drawdown(bt_ret)
No description has been provided for this image
print_table_performance_metrics(bt_ret)
Β  Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
1/N 2.74 0.36 3.66 -0.11
MVP (lmd = 1) 3.16 0.59 2.43 -0.19
MVP (lmd = 4) 2.22 0.42 2.78 -0.19
MVP (lmd = 16) 1.91 0.32 3.38 -0.13
MVP (lmd = 64) 2.13 0.30 3.87 -0.11

MVP with diversification heuristicsΒΆ

We now consider the MVP with two diversification heuristics:

  • upper bound: $\w\leq0.25\times\bm{1}$; and
  • diversification constraint: $\|\w\|_2^2 \leq 2/N$.
#
# Define portfolios
#
def GMVP(X_lin: pd.DataFrame) -> np.ndarray:
    # Estimate parameters
    X_log = np.log(1 + X_lin)
    Sigma = X_log.cov().values
    # Optimize portfolio
    N = len(Sigma)
    w = cp.Variable(N)
    prob = cp.Problem(cp.Minimize(cp.quad_form(w, Sigma)),
                      [cp.sum(w) == 1, w >= 0])
    prob.solve()
    return w.value

def MVP_vanilla(X_lin: pd.DataFrame) -> np.ndarray:
    # Estimate parameters
    X_log = np.log(1 + X_lin)
    mu = X_log.mean().values
    Sigma = X_log.cov().values
    # Optimize portfolio
    lmd = 1
    N = len(Sigma)
    w = cp.Variable(N)
    prob = cp.Problem(cp.Maximize(mu.T @ w - (lmd/2) * cp.quad_form(w, Sigma)),
                      [cp.sum(w) == 1, w >= 0])
    prob.solve()
    return w.value

def MVP_ub(X_lin: pd.DataFrame) -> np.ndarray:
    # Estimate parameters
    X_log = np.log(1 + X_lin)
    mu = X_log.mean().values
    Sigma = X_log.cov().values
    # Optimize portfolio
    N = len(Sigma)
    lmd = 1
    ub = 0.25
    w = cp.Variable(N)
    prob = cp.Problem(cp.Maximize(mu.T @ w - (lmd/2) * cp.quad_form(w, Sigma)),
                      [cp.sum(w) == 1, w >= 0, w <= ub])
    prob.solve()
    return w.value

def MVP_diversification(X_lin: pd.DataFrame) -> np.ndarray:
    # Estimate parameters
    X_log = np.log(1 + X_lin)
    mu = X_log.mean().values
    Sigma = X_log.cov().values
    # Optimize portfolio
    N = len(Sigma)
    lmd = 1
    D = 2/N
    w = cp.Variable(N)
    prob = cp.Problem(cp.Maximize(mu.T @ w - (lmd/2) * cp.quad_form(w, Sigma)),
                      [cp.sum(w) == 1, w >= 0, cp.sum_squares(w) <= D])
    prob.solve()
    return w.value
# Run backtest
bt_ret, bt_w = backtest(
    {
        "1/N": EWP,
        "GMVP": GMVP,
        "MVP": MVP_vanilla,
        "MVP with upper bound": MVP_ub,
        "MVP with diversific. const.": MVP_diversification,
    },
    stock_prices, lookback=T_trn, rebalance_every=30)
Backtesting portfolio 1/N...
Backtesting portfolio GMVP...
Backtesting portfolio MVP...
Backtesting portfolio MVP with upper bound...
Backtesting portfolio MVP with diversific. const....
plot_initial_allocations(bt_w)
No description has been provided for this image
plot_cum_return(bt_ret)
No description has been provided for this image
plot_drawdown(bt_ret)
No description has been provided for this image
print_table_performance_metrics(bt_ret)
Β  Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
1/N 2.74 0.36 3.66 -0.11
GMVP 2.17 0.29 3.95 -0.11
MVP 3.16 0.59 2.43 -0.19
MVP with upper bound 2.11 0.38 3.01 -0.16
MVP with diversific. const. 2.11 0.39 2.92 -0.16

Maximum Sharpe ratio portfolio (MSRP)ΒΆ

Recall the maximum Sharpe ratio portfolio (MSRP) formulation: $$ \begin{array}{ll} \underset{\w}{\textm{maximize}} & \dfrac{\w^\T\bmu - r_\textm{f}}{\sqrt{\w^\T\bSigma\w}}\\ \textm{subject to} & \begin{array}{l} \bm{1}^\T\w=1, \quad \w\ge\bm{0}.\end{array} \end{array} $$

We will solve it numerically via different methods:

  • general-purpose nonlinear solver
  • bisection method
  • Dinkelbach method
  • Schaible transform

First, let's obtain the mean vector $\bmu$ and covariance matrix $\bSigma$ from the market data:

stock_prices = SP500_stocks_2015to2020[
                   ["AAPL", "AMZN", "AMD", "GM", "GOOGL", "MGM", "MSFT", "QCOM", "TSCO", "UPS"]
               ].loc["2019":]
X_lin = stock_prices.pct_change().dropna()
X_log = np.log(1 + X_lin)
T, N = X_lin.shape
mu = X_log.mean().values
Sigma = X_log.cov().values

MSRP via general-purpose nonlinear solverΒΆ

We will solve this problem with the general-purpose nonlinear solver scipy.optimize.minimize in Python:

# Define the nonconvex objective function
def fn_SR(w):
    return (w @ mu) / np.sqrt(w @ Sigma @ w)

def neg_fn_SR(w):
    return -fn_SR(w)

# Initial point
N = len(mu)
w0 = np.ones(N) / N

# Equality constraint: sum(w) = 1
def constraint_eq(w):
    return np.sum(w) - 1

# Optimization
res = minimize(neg_fn_SR, w0, method='SLSQP',
               bounds=[(0, None) for _ in range(N)],  # w >= 0
               constraints={'type': 'eq', 'fun': constraint_eq})

w_nonlinear_solver = res.x

print(res)
 message: Optimization terminated successfully
 success: True
  status: 0
     fun: -0.10712133866980736
       x: [ 5.622e-01  1.628e-01  1.909e-01  0.000e+00  9.508e-17
            0.000e+00  1.821e-17  0.000e+00  7.543e-02  8.767e-03]
     nit: 14
     jac: [-9.831e-05  2.212e-04  2.336e-04  8.025e-02  4.231e-02
            1.223e-01  1.348e-02  1.547e-02 -2.779e-04 -4.957e-04]
    nfev: 154
    njev: 14

MSRP via bisection methodΒΆ

We are going to solve the nonconvex problem $$ \begin{array}{ll} \underset{\w,t}{\textm{maximize}} & t\\ \textm{subject to} & t \leq \dfrac{\w^\T\bmu}{\sqrt{\w^\T\bSigma\w}}\\ & \bm{1}^\T\w=1, \quad \w\geq\bm{0}. \end{array} $$ via bisection on $t$ with the following (convex) SOCP problem for a given $t$: $$ \begin{array}{ll} \underset{\;}{\textm{find}} & \w\\ \textm{subject to} & t \left\Vert \bSigma^{1/2}\w\right\Vert_{2}\leq\w^\T\bmu\\ & \bm{1}^\T\w=1, \quad \w\geq\bm{0}. \end{array} $$

# Square-root of matrix Sigma
Sigma_12 = cholesky(Sigma)
print(np.max(np.abs(Sigma_12.T @ Sigma_12 - Sigma)))  # sanity check
4.336808689942018e-19
# Create function for MVP (each iteration of bisection)
import warnings

def SOCP_bisection(t):
    w = cp.Variable(N)
    prob = cp.Problem(cp.Maximize(0),
                      constraints=[t * cp.norm(Sigma_12 @ w, 2) <= mu.T @ w,
                                   sum(w) == 1,
                                   w >= 0])
    # Solve the problem (ignore annoying warnings):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        prob.solve()
    return {"status": prob.status, "w": w.value}
# Now run the bisection algorithm
t_lb = 0   # for sure the problem is feasible in this case
t_ub = 10  # a tighter upper bound could be chosen (10 is a conservative choice)
while t_ub - t_lb > 1e-3:
    t = (t_ub + t_lb) / 2  # midpoint
    print(f"Current interval = ({t_lb:.3f}, {t_ub:.3f}) Trying midpoint t = {t:.4f}")
    if 'infeasible' in SOCP_bisection(t)["status"]:
        t_ub = t
    else:
        t_lb = t

w_bisection = SOCP_bisection(t_lb)["w"]
Current interval = (0.000, 10.000) Trying midpoint t = 5.0000
Current interval = (0.000, 5.000) Trying midpoint t = 2.5000
Current interval = (0.000, 2.500) Trying midpoint t = 1.2500
Current interval = (0.000, 1.250) Trying midpoint t = 0.6250
Current interval = (0.000, 0.625) Trying midpoint t = 0.3125
Current interval = (0.000, 0.312) Trying midpoint t = 0.1562
Current interval = (0.000, 0.156) Trying midpoint t = 0.0781
Current interval = (0.078, 0.156) Trying midpoint t = 0.1172
Current interval = (0.078, 0.117) Trying midpoint t = 0.0977
Current interval = (0.098, 0.117) Trying midpoint t = 0.1074
Current interval = (0.098, 0.107) Trying midpoint t = 0.1025
Current interval = (0.103, 0.107) Trying midpoint t = 0.1050
Current interval = (0.105, 0.107) Trying midpoint t = 0.1062
Current interval = (0.106, 0.107) Trying midpoint t = 0.1068
# Comparison between two solutions
w_df = pd.DataFrame({
    'nonlinear_solver': w_nonlinear_solver,
    'bisection': w_bisection,
})
print(w_df.round(3))
   nonlinear_solver  bisection
0             0.562      0.537
1             0.163      0.152
2             0.191      0.185
3             0.000      0.000
4             0.000      0.001
5             0.000      0.000
6             0.000      0.003
7             0.000      0.002
8             0.075      0.081
9             0.009      0.039
# Sharpe ratio of two solutions
sharpe_ratios_df = pd.DataFrame({
    'Method': ['nonlinear_solver', 'bisection'],
    'Sharpe Ratio': [fn_SR(w_nonlinear_solver), fn_SR(w_bisection)]
})
print(sharpe_ratios_df.round(3))
             Method  Sharpe Ratio
0  nonlinear_solver         0.107
1         bisection         0.107

MSRP via Dinkelbach methodΒΆ

We are going to solve the nonconvex problem $$ \begin{array}{ll} \underset{\w}{\textm{maximize}} & \dfrac{\w^\T\bmu}{\sqrt{\w^\T\bSigma\w}}\\ \textm{subject to} & \begin{array}{l} \bm{1}^\T\w=1, \quad \w\ge\bm{0}.\end{array} \end{array} $$ by iteratively solving the (convex) SOCP problem for a given $y^{(k)}$: $$ \begin{array}{ll} \underset{\w}{\textm{maximize}} & \w^\T\bmu - y^{(k)} \left\Vert \bSigma^{1/2}\w\right\Vert_{2}\\ \textm{subject to} & \begin{array}{l} \bm{1}^\T\w=1, \quad \w\ge\bm{0}.\end{array} \end{array} $$ where $$y^{(k)} = \frac{\mathbf{w}^{(k)\T}\bmu}{\sqrt{\w^{(k)\T}\bSigma\w^{(k)}}}.$$

# Create function for MVP (each iteration of Dinkelbach)
def SOCP_Dinkelbach(y):
    w = cp.Variable(Sigma.shape[0])
    prob = cp.Problem(cp.Maximize(mu.T @ w - y * cp.norm(Sigma_12 @ w, 2)),
                      constraints=[cp.sum(w) == 1,
                                   w >= 0])
    prob.solve()
    return w.value

# Initial point (has to satisfy w_k.T @ mu >= 0)
i_max = np.argmax(mu)
w_k = np.zeros(N)
w_k[i_max] = 1

# Now the iterative Dinkelbach algorithm
k = 1
while k == 1 or np.max(np.abs(w_k - w_prev)) > 1e-6:
    w_prev = w_k
    y_k = (w_k.T @ mu) / np.sqrt(w_k.T @ Sigma @ w_k)
    w_k = SOCP_Dinkelbach(y_k)
    k += 1

w_Dinkelbach = w_k
print(f"Number of iterations: {k-1}")
Number of iterations: 5
# Comparison among three solutions
w_df = pd.DataFrame({
    'nonlinear_solver': w_nonlinear_solver,
    'bisection': w_bisection,
    'Dinkelbach': w_Dinkelbach
})
print(w_df.round(3))
   nonlinear_solver  bisection  Dinkelbach
0             0.562      0.537       0.561
1             0.163      0.152       0.156
2             0.191      0.185       0.188
3             0.000      0.000       0.000
4             0.000      0.001       0.000
5             0.000      0.000       0.000
6             0.000      0.003       0.000
7             0.000      0.002       0.000
8             0.075      0.081       0.079
9             0.009      0.039       0.015
# Sharpe ratio of three solutions
sharpe_ratios_df = pd.DataFrame({
    'Method': ['nonlinear_solver', 'bisection', 'Dinkelbach'],
    'Sharpe Ratio': [fn_SR(w_nonlinear_solver), fn_SR(w_bisection), fn_SR(w_Dinkelbach)]
})
print(sharpe_ratios_df.round(3))
             Method  Sharpe Ratio
0  nonlinear_solver         0.107
1         bisection         0.107
2        Dinkelbach         0.107

MSRP via Schaible transformΒΆ

The maximum Sharpe ratio portfolio (MSRP) is the nonconvex problem $$ \begin{array}{ll} \underset{\w}{\textm{maximize}} & \dfrac{\w^\T\bmu}{\sqrt{\w^\T\bSigma\w}}\\ \textm{subject to} & \begin{array}{l} \bm{1}^\T\w=1, \quad \w\ge\bm{0}.\end{array} \end{array} $$ that can be rewritten in convex form as $$ \begin{array}{ll} \underset{\w}{\textm{minimize}} & \tilde{\w}^\T\bSigma\tilde{\w}\\ \textm{subject to} & \tilde{\w}^\T\bmu = 1\\ & \tilde{\w}\ge\bm{0} \end{array} $$ and then $\w = \tilde{\w}/(\bm{1}^\T\tilde{\w})$.

This is a quadratic problem (QP) and we can conveniently use CVXR (although one is advised to use a specific QP solver like quadprog for speed and stability):

# create function for MSRP in convex form
def MSRP_convex(mu, Sigma):
    w_ = cp.Variable(Sigma.shape[0])
    prob = cp.Problem(cp.Minimize(cp.quad_form(w_, Sigma)),
                      constraints=[w_ >= 0, mu.T @ w_ == 1])
    prob.solve()
    w = w_.value / np.sum(w_.value)
    return w

# This function can now be used as
w_MSRP = MSRP_convex(mu, Sigma)
# Comparison among solutions
comparison = pd.DataFrame({
    'w_nonlinear_solver': w_nonlinear_solver,
    'w_bisection': w_bisection,
    'w_Dinkelbach': w_Dinkelbach,
    'w_MSRP': w_MSRP
})
print(comparison.round(3))
   w_nonlinear_solver  w_bisection  w_Dinkelbach  w_MSRP
0               0.562        0.537         0.561   0.561
1               0.163        0.152         0.156   0.156
2               0.191        0.185         0.188   0.188
3               0.000        0.000         0.000  -0.000
4               0.000        0.001         0.000   0.000
5               0.000        0.000         0.000   0.000
6               0.000        0.003         0.000  -0.000
7               0.000        0.002         0.000  -0.000
8               0.075        0.081         0.079   0.079
9               0.009        0.039         0.015   0.015
# Sharpe ratio of different solutions
sharpe_ratios_df = pd.DataFrame({
    'Method': ['nonlinear_solver', 'bisection', 'Dinkelbach', 'Schaible'],
    'Sharpe Ratio': [fn_SR(w_nonlinear_solver), fn_SR(w_bisection), fn_SR(w_Dinkelbach), fn_SR(w_MSRP)]
})
print(sharpe_ratios_df.round(3))
             Method  Sharpe Ratio
0  nonlinear_solver         0.107
1         bisection         0.107
2        Dinkelbach         0.107
3          Schaible         0.107

Conclusion: All methods produce the optimal solution.

Numerical experimentsΒΆ

We now compare the following portfolios:

  • global minimum variance portfolio (GMVP):
$$ \begin{array}{ll} \underset{\w}{\textm{minimize}} & \w^\T\bSigma\w\\ \textm{subject to} & \bm{1}^\T\w=1, \quad \w\ge\bm{0}; \end{array} $$
  • mean-variance portfolio (MVP):
$$ \begin{array}{ll} \underset{\w}{\textm{maximize}} & \w^\T\bmu - \frac{\lambda}{2}\w^\T\bSigma\w\\ \textm{subject to} & \bm{1}^\T\w=1, \quad \w\ge\bm{0}; \end{array} $$
  • maximum Sharpe ratio portfolio (MSRP):
$$ \begin{array}{ll} \underset{\w}{\textm{maximize}} & \dfrac{\w^\T\bmu - r_\textm{f}}{\sqrt{\w^\T\bSigma\w}}\\ \textm{subject to} & \begin{array}{l} \bm{1}^\T\w=1, \quad \w\ge\bm{0}.\end{array} \end{array} $$
# Get data
stock_prices = SP500_stocks_2015to2020[
                   ["AAPL", "AMZN", "AMD", "GM", "GOOGL", "MGM", "MSFT", "QCOM", "TSCO", "UPS"]
               ].loc["2019":]
T = stock_prices.shape[0]
T_trn = round(0.70*T)
#
# Define portfolios
#
def GMVP(X_lin: pd.DataFrame) -> np.ndarray:
    # Estimate parameters
    X_log = np.log(1 + X_lin)
    Sigma = X_log.cov().values
    # Optimize portfolio
    N = len(Sigma)
    w = cp.Variable(N)
    prob = cp.Problem(cp.Minimize(cp.quad_form(w, Sigma)),
                      [cp.sum(w) == 1, w >= 0])
    prob.solve()
    return w.value

def MVP(X_lin: pd.DataFrame) -> np.ndarray:
    # Estimate parameters
    X_log = np.log(1 + X_lin)
    mu = X_log.mean().values
    Sigma = X_log.cov().values
    # Optimize portfolio
    lmd = 1
    N = len(Sigma)
    w = cp.Variable(N)
    prob = cp.Problem(cp.Maximize(mu.T @ w - (lmd/2) * cp.quad_form(w, Sigma)),
                      [cp.sum(w) == 1, w >= 0])
    prob.solve()
    return w.value

def MSRP(X_lin: pd.DataFrame) -> np.ndarray:
    # Estimate parameters
    X_log = np.log(1 + X_lin)
    mu = X_log.mean().values
    Sigma = X_log.cov().values
    # Optimize portfolio
    w = MSRP_convex(mu, Sigma)
    return w
# Run backtest
bt_ret, bt_w = backtest(
    {
        "GMVP": GMVP,
        "MVP": MVP,
        "MSRP": MSRP,
    },
    stock_prices, lookback=T_trn, rebalance_every=30)
Backtesting portfolio GMVP...
Backtesting portfolio MVP...
Backtesting portfolio MSRP...
plot_initial_allocations(bt_w)
No description has been provided for this image
plot_cum_return(bt_ret)
No description has been provided for this image
plot_drawdown(bt_ret)
No description has been provided for this image
print_table_performance_metrics(bt_ret)
Β  Annualized Return Annualized Volatility Sharpe Ratio Maximum Drawdown
GMVP 2.17 0.29 3.95 -0.11
MVP 3.16 0.59 2.43 -0.19
MSRP 2.24 0.42 2.81 -0.18

Universal algorithm for portfolio optimizationΒΆ

MSRPΒΆ

We consider two methods for the resolution of the MSRP:

  • Via the Schaible transform, i.e., solving
$$ \begin{array}{ll} \underset{\bm{y}}{\textm{minimize}} & \bm{y}^\T\bSigma\bm{y}\\ \textm{subject to} & \bm{y}^\T\left(\bmu - r_\textm{f}\bm{1}\right) = 1\\ & \bm{y}\ge\bm{0}, \end{array} $$

with $\w = \bm{y}/\left(\bm{1}^\T\bm{y}\right)$.

  • Via the universal iterative SQP-MVP algorithm, i.e., we iteratively obtain $\w^{k+1}$, for $k=0,1,\dots,$, by solving
$$ \begin{array}{ll} \underset{\w}{\textm{maximize}} & \w^\T\bmu - \dfrac{\lambda^k}{2}\w^\T\bSigma\w\\ \textm{subject to} & \bm{1}^\T\w=1, \quad \w\ge\bm{0}, \end{array} $$

with $$ \lambda^k = \dfrac{(\w^k)^\T\bmu - r_\textm{f}}{(\w^k)^\T\bSigma\w^k}. $$

# Prepare data
stock_prices = SP500_stocks_2015to2020[
                   ["AAPL", "AMZN", "AMD", "GM", "GOOGL", "MGM", "MSFT", "QCOM", "TSCO", "UPS"]
               ].loc["2019":]
X_lin = stock_prices.pct_change().dropna()
X_log = np.log(1 + X_lin)
T, N = X_lin.shape
mu = X_log.mean().values
Sigma = X_log.cov().values
# Using Schaible transform + CVX to get the optimal value
w_ = cp.Variable(N)
prob = cp.Problem(cp.Minimize(cp.quad_form(w_, Sigma)),
                  constraints=[w_ >= 0, mu.T @ w_ == 1])
prob.solve()
w_cvx = w_.value / np.sum(w_.value)
obj_cvx = (w_cvx.T @ mu) / np.sqrt(w_cvx.T @ Sigma @ w_cvx)
# Using the SQP-MVP algorithm
w = np.ones(N) / N
obj_sqp = [(w.T @ mu) / np.sqrt(w.T @ Sigma @ w)]
k = 0
for k in range(21):
    lmd_k = (w.T @ mu) / (w.T @ Sigma @ w)
    w_prev = w
    w = cp.Variable(N)
    prob = cp.Problem(cp.Maximize(mu.T @ w - (lmd_k/2) * cp.quad_form(w, Sigma)),
                      constraints=[cp.sum(w) == 1, w >= 0])
    prob.solve()
    w = w.value
    obj_sqp.append((w.T @ mu) / np.sqrt(w.T @ Sigma @ w))
    if np.max(np.abs(w - w_prev)) < 1e-4:
        break
# Plot
df = pd.DataFrame({
    "k": range(len(obj_sqp)),
    "SQP iterative method": obj_sqp
})

plt.figure(figsize=(10, 6))
plt.axhline(y=obj_cvx, color='r', linestyle='-', linewidth=1.5)
plt.plot(df["k"], df["SQP iterative method"], color='b', linewidth=1.5, marker='o', markersize=2.5)
plt.title("Convergence")
plt.ylabel("objective value")
plt.xlabel("iteration")
plt.legend(["optimal value", "SQP iterative method"])
plt.grid(True)
plt.show()
No description has been provided for this image

Mean-volatility portfolioΒΆ

We now consider two methods for the resolution of the mean-volatility portfolio:

  • Via an SOCP solver, i.e., solving
$$ \begin{array}{ll} \underset{\w}{\textm{maximize}} & \w^\T\bmu - \kappa\sqrt{\w^\T\bSigma\w}\\ \textm{subject to} & \bm{1}^\T\w=1, \quad \w\ge\bm{0}, \end{array} $$
  • Via the universal iterative SQP-MVP algorithm, i.e., we iteratively obtain $\w^{k+1}$, for $k=0,1,\dots,$, by solving
$$ \begin{array}{ll} \underset{\w}{\textm{maximize}} & \w^\T\bmu - \dfrac{\lambda^k}{2}\w^\T\bSigma\w\\ \textm{subject to} & \bm{1}^\T\w=1, \quad \w\ge\bm{0}, \end{array} $$

with $$ \lambda^k = \kappa/\sqrt{(\w^k)^\T\bSigma\w^k}. $$

kappa = 1.0

# Using CVX to get the optimal value
Sigma_12 = cholesky(Sigma)
w = cp.Variable(N)
prob = cp.Problem(cp.Maximize(mu.T @ w - kappa * cp.norm(Sigma_12 @ w, 2)),
                  constraints=[cp.sum(w) == 1, w >= 0])
result = prob.solve()
w_cvx = w.value
obj_cvx = mu.T @ w_cvx - kappa * np.sqrt(w_cvx.T @ Sigma @ w_cvx)
# Using the SQP-MVP algorithm
w = np.ones(N) / N
obj_sqp = [w.T @ mu - np.sqrt(w.T @ Sigma @ w)]
for k in range(21):
    lmd_k = kappa / np.sqrt(w.T @ Sigma @ w)
    w_prev = w
    w = cp.Variable(N)
    prob = cp.Problem(cp.Maximize(mu.T @ w - (lmd_k/2) * cp.quad_form(w, Sigma)),
                      constraints=[cp.sum(w) == 1, w >= 0])
    prob.solve()
    w = w.value
    obj_sqp.append(w.T @ mu - kappa * np.sqrt(w.T @ Sigma @ w))
    if np.max(np.abs(w - w_prev)) < 1e-4:
        break
# Plot
df = pd.DataFrame({
    "k": range(len(obj_sqp)),
    "SQP iterative method": obj_sqp
})

plt.figure(figsize=(10, 6))
plt.axhline(y=obj_cvx, color='r', linestyle='-', linewidth=1.5)
plt.plot(df["k"], df["SQP iterative method"], color='b', linewidth=1.5, marker='o', markersize=2.5)
plt.title("Convergence")
plt.ylabel("objective value")
plt.xlabel("iteration")
plt.legend(["optimal value", "SQP iterative method"])
plt.grid(True)
plt.show()
No description has been provided for this image