Python Code for Portfolio Optimization
Chapter 11 – Risk Parity Portfolios

Daniel P. Palomar (2025). Portfolio Optimization: Theory and Application. Cambridge University Press.

Last update: March 27, 2025

Contributors:


Libraries

The following libraries are used in the examples:

# Core numerical computing
import numpy as np
import pandas as pd
from typing import Dict, Tuple, List, Callable
import warnings
warnings.filterwarnings('ignore')
import time
from statistics import median

# For financial data
import yfinance as yf       # Loading financial data
import empyrical as emp     # Performance metrics

# Book data (pip install "git+https://github.com/dppalomar/pob.git#subdirectory=python")
from pob_python import SP500_stocks_2015to2020, SP500_index_2015to2020

# Plotting
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib.gridspec as gridspec
import seaborn as sns
sns.set_theme(style="darkgrid")

# Optimization
import riskparityportfolio as rpp
import cvxpy as cp                  # interface for convex optimization solvers
from qpsolvers import solve_qp
import quadprog
from scipy import optimize, linalg

Some math definitions for the equations:

$\def\bm#1{\boldsymbol{#1}}$ $\def\textm#1{\textsf{#1}}$ $\def\T{{\mkern-2mu\raise-1mu\mathsf{T}}}}$ $\def\R{\mathbb{R}}$ $\def\E{\rm I\kern-.2em E}$ $\def\w{\bm{w}}$ $\def\bmu{\bm{\mu}}}$ $\def\bSigma{\bm{\Sigma}}}$

From dollar to risk diversification

Portfolio allocation and risk allocation for the $1/N$ portfolio and risk parity portfolio (based on the riskparityportfolio package available for installation at PiPy riskparityportfolio, see the riskparityportfolio documentation):

# Get data
stock_prices = SP500_stocks_2015to2020.loc["2020":"2020-09", ["AAPL", "NFLX", "TSCO", "MGM", "MSFT", "FB", "AMZN", "GOOGL"]]
T = stock_prices.shape[0]
T_trn = round(0.70*T)

# Calculate returns
X = np.diff(np.log(stock_prices.iloc[:T_trn].values), axis=0)
Sigma = np.cov(X.T)
N = X.shape[1]
# Portfolios
w_EWP = np.ones(N) / N
w_RPP = rpp.RiskParityPortfolio(covariance=Sigma).weights
# Helper function to compute risk contribution
def risk_contribution(w, Sigma):
    portfolio_risk = np.sqrt(w.T @ Sigma @ w)
    marginal_risk_contribution = Sigma @ w / portfolio_risk
    risk_contribution = w * marginal_risk_contribution
    return risk_contribution

# Helper function to compute relative risk contribution
def relative_risk_contribution(w, Sigma):
    rc = risk_contribution(w, Sigma)
    return rc / np.sum(rc)
# Helper function to plot barplots of portfolio weights and risk contribution
def barplot_w_and_RCC(weights_dict, Sigma):
    fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8))

    # Extract stock names (assuming it's always the first key)
    stocks = weights_dict['stocks']

    # Get all portfolio keys except 'stocks'
    portfolio_keys = [key for key in weights_dict.keys() if key != 'stocks']

    # Extract portfolios and their names
    portfolios = [weights_dict[key] for key in portfolio_keys]
    portfolio_names = portfolio_keys

    x = np.arange(len(stocks))
    width = 0.8 / len(portfolios)  # Adjust width based on number of portfolios

    # Plot weights
    for i, (portfolio, name) in enumerate(zip(portfolios, portfolio_names)):
        position = x + i*width - (len(portfolios)-1)*width/2
        ax1.bar(position, portfolio, width, label=name, edgecolor='black')

    # Plot relative risk contributions
    for i, (portfolio, name) in enumerate(zip(portfolios, portfolio_names)):
        position = x + i*width - (len(portfolios)-1)*width/2
        rrc = relative_risk_contribution(portfolio, Sigma)
        ax2.bar(position, rrc, width, label=name, edgecolor='black')

    # Set labels and titles
    ax1.set_title('Portfolio weights')
    ax1.set_ylabel('Weight')
    ax1.set_xticks(x)
    ax1.set_xticklabels(stocks)
    ax1.legend()

    ax2.set_title('Relative risk contribution')
    ax2.set_ylabel('Risk')
    ax2.set_xticks(x)
    ax2.set_xticklabels(stocks)
    ax2.legend()

    plt.tight_layout()
# Plot weights and risk contributions
barplot_w_and_RCC({
    'stocks': stock_prices.columns,
    '1/N': w_EWP,
    'RPP': w_RPP,
}, Sigma)

Naive diagonal formulation

Portfolio allocation and risk contribution of the $1/N$ portfolio and naive RPP:

# Naive diagonal risk parity portfolio
def naive_risk_parity(Sigma):
    w = 1 / np.sqrt(np.diag(Sigma))
    return w / np.sum(w)

w_naive_RPP = naive_risk_parity(Sigma)
w_naive_RPP_package = rpp.RiskParityPortfolio(Sigma).get_diag_solution()
# Plot weights and risk contributions
barplot_w_and_RCC({
    'stocks': stock_prices.columns,
    '1/N': w_EWP,
    'Naive diagonal RPP': w_naive_RPP,
    'Naive diagonal RPP (package)': w_naive_RPP_package,
}, Sigma)

Vanilla convex formulations

Portfolio allocation and risk contribution of the vanilla convex RPP compared to benchmarks:

# Portfolios
w_EWP = np.ones(N) / N
w_naive_RPP = rpp.RiskParityPortfolio(Sigma).get_diag_solution()
w_convex_RPP = rpp.RiskParityPortfolio(Sigma).weights
# Plot weights and risk contributions
barplot_w_and_RCC({
    'stocks': stock_prices.columns,
    '1/N': w_EWP,
    'Naive diagonal RPP': w_naive_RPP,
    'Vanilla convex RPP': w_convex_RPP,
}, Sigma)

Algorithms

General-purpose nonlinear solver

We can solve the convex problem formulation with SciPy's general-purpose nonlinear solver scipy.optimize (see ):

# Initial point
w = np.ones(N) / N
x0 = w / np.sqrt(w.T @ Sigma @ w)

# Function definition
def fn_convex(x, Sigma):
    N = Sigma.shape[0]
    return 0.5 * x.T @ Sigma @ x - (1/N) * np.sum(np.log(x))

# Optimize with general-purpose solver
result = optimize.minimize(
    fn_convex,
    x0,
    args=(Sigma,),
    method='BFGS'
)
x_general_solver = result.x
w_general_solver_RPP = x_general_solver / np.sum(x_general_solver)

# Sanity check of the solution
b = np.ones(N) / N
residual = Sigma @ x_general_solver - b / x_general_solver
print("Optimality condition residual:", np.linalg.norm(residual))
Optimality condition residual: 1.4157366298264829e-05

Newton's method

Newton's method for Spinu's RPP formulation:

def newton_method_risk_parity(Sigma, num_iter=5):
    N = Sigma.shape[0]
    b = np.ones(N) / N

    # Initial point
    w = np.ones(N) / N
    x = w / np.sqrt(w.T @ Sigma @ w)

    # For tracking progress
    results = []
    results.append({
        'k': 0,
        'cpu_time_k': 0,
        'obj_value': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)),
        'gap': None  # Will be filled later
    })

    for k in range(1, num_iter + 1):
        start_time = time.time()

        # Newton step
        grad = Sigma @ x - b / x
        Hessian = Sigma + np.diag(b / x**2)
        x_new = x - np.linalg.solve(Hessian, grad)

        cpu_time = (time.time() - start_time) * 1000  # in milliseconds
        x = x_new

        results.append({
            'k': k,
            'cpu_time_k': cpu_time,
            'obj_value': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)),
            'gap': None  # Will be filled later
        })

    # Calculate optimal value (assuming the last iteration is close to optimal)
    opt_value = results[-1]['obj_value']

    # Fill in the gaps
    for result in results:
        result['gap'] = result['obj_value'] - opt_value

    return pd.DataFrame(results), x
# Run Newton's method
df_newton, x_newton = newton_method_risk_parity(Sigma)
df_newton['CPU time [ms]'] = df_newton['cpu_time_k'].cumsum()
# Plot convergence
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))

ax1.semilogy(df_newton['k'], df_newton['gap'], 'b-', linewidth=1.5)
ax1.set_xlabel('Iterations')
ax1.set_ylabel('Optimality gap')
ax1.set_title('Optimality gap versus iterations')
ax1.set_xlim(0, df_newton['k'].max())
ax1.set_xticks(range(0, df_newton['k'].max() + 1))

ax2.semilogy(df_newton['CPU time [ms]'], df_newton['gap'], 'b-', linewidth=1.5)
ax2.set_xlabel('CPU time [ms]')
ax2.set_ylabel('Optimality gap')
ax2.set_title('Optimality gap versus CPU time')
ax2.set_xlim(0, 0.25)

plt.tight_layout()

Cyclical coordinate descent algorithm

Cyclical coordinate descent algorithm for Spinu's RPP formulation:

def cyclical_coordinate_descent(Sigma, num_iter=10):
    N = Sigma.shape[0]
    b = np.ones(N) / N

    # Initial point
    w = np.ones(N) / N
    x = w / np.sqrt(w.T @ Sigma @ w)

    # For tracking progress
    results = []
    results.append({
        'k': 0,
        'cpu_time_k': 0,
        'obj_value': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)),
        'gap': None  # Will be filled later
    })

    for k in range(1, num_iter + 1):
        start_time = time.time()

        x_new = x.copy()
        for i in range(N):
            # Update each coordinate
            Sigma_xk_i = np.dot(x_new[:i], Sigma[:i, i]) + np.dot(x_new[i+1:], Sigma[i+1:, i])
            x_new[i] = (-Sigma_xk_i + np.sqrt(Sigma_xk_i**2 + 4 * Sigma[i, i] * b[i])) / (2 * Sigma[i, i])

        cpu_time = (time.time() - start_time) * 1000  # in milliseconds
        x = x_new

        results.append({
            'k': k,
            'cpu_time_k': cpu_time,
            'obj_value': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)),
            'gap': None  # Will be filled later
        })

    # Calculate optimal value (assuming the last iteration is close to optimal)
    opt_value = results[-1]['obj_value']

    # Fill in the gaps
    for result in results:
        result['gap'] = result['obj_value'] - opt_value

    return pd.DataFrame(results), x
# Run cyclical coordinate descent
df_ccd, x_ccd = cyclical_coordinate_descent(Sigma)
df_ccd['CPU time [ms]'] = df_ccd['cpu_time_k'].cumsum()
# Plot convergence
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))

ax1.semilogy(df_ccd['k'], df_ccd['gap'], 'b-', linewidth=1.5)
ax1.set_xlabel('Iterations')
ax1.set_ylabel('Optimality gap')
ax1.set_title('Optimality gap versus iterations')
ax1.set_xlim(0, df_ccd['k'].max())
ax1.set_xticks(range(0, df_ccd['k'].max() + 1))

ax2.semilogy(df_ccd['CPU time [ms]'], df_ccd['gap'], 'b-', linewidth=1.5)
ax2.set_xlabel('CPU time [ms]')
ax2.set_ylabel('Optimality gap')
ax2.set_title('Optimality gap versus CPU time')
ax2.set_xlim(0, 50)

plt.tight_layout()

Numerical comparison

Convergence of Newton, MM, and SCA methods for Spinu's RPP problem, comparing the original version with the improved one (i.e., using the correlation matrix instead of the covariance matrix and using the linear normalization step). See Chapter 11 in book for details. It seems that the best method is the improved SCA.

num_iter = 25
N = Sigma.shape[0]
b = np.ones(N) / N

# Prepare correlation matrix
sigma = np.sqrt(np.diag(Sigma))
C = np.corrcoef(X.T)

# Compute optimal value (using vanilla convex RPP)
w_opt = rpp.RiskParityPortfolio(Sigma).weights
x_opt = w_opt / np.sqrt(w_opt.T @ Sigma @ w_opt)
opt_value = 0.5 * x_opt.T @ Sigma @ x_opt - np.sum(b * np.log(x_opt))

results = []
#
# Newton's method
#
x = np.sqrt(b) / np.sqrt(np.sum(Sigma, axis=1))
results.append({
    'k': 0,
    'cpu_time_k': 0,
    'obj_value': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)),
    'gap': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)) - opt_value,
    'method': 'Newton'
})

for k in range(1, num_iter + 1):
    start_time = time.time()

    # Newton step
    grad = Sigma @ x - b / x
    Hessian = Sigma + np.diag(b / x**2)
    x_new = x - np.linalg.solve(Hessian, grad)

    cpu_time = (time.time() - start_time) * 1000  # in milliseconds
    x = x_new

    results.append({
        'k': k,
        'cpu_time_k': cpu_time,
        'obj_value': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)),
        'gap': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)) - opt_value,
        'method': 'Newton'
    })
#
# Newton's method (improved)
#
x = np.sqrt(b) / np.sqrt(np.sum(C, axis=1))
rowsum_C = np.sum(C, axis=1)
results.append({
    'k': 0,
    'cpu_time_k': 0,
    'obj_value': 0.5 * (x/sigma).T @ Sigma @ (x/sigma) - np.sum(b * np.log(x/sigma)),
    'gap': 0.5 * (x/sigma).T @ Sigma @ (x/sigma) - np.sum(b * np.log(x/sigma)) - opt_value,
    'method': 'Newton - improved'
})

for k in range(1, num_iter + 1):
    start_time = time.time()

    # Newton step with correlation matrix
    grad = C @ x - b / x
    Hessian = C + np.diag(b / x**2)
    x_new = x - np.linalg.solve(Hessian, grad)
    x_new = x_new * np.sqrt(np.sum(b/x_new) / np.sum(rowsum_C * x_new))

    cpu_time = (time.time() - start_time) * 1000  # in milliseconds
    x = x_new

    results.append({
        'k': k,
        'cpu_time_k': cpu_time,
        'obj_value': 0.5 * (x/sigma).T @ Sigma @ (x/sigma) - np.sum(b * np.log(x/sigma)),
        'gap': 0.5 * (x/sigma).T @ Sigma @ (x/sigma) - np.sum(b * np.log(x/sigma)) - opt_value,
        'method': 'Newton - improved'
    })
#
# MM algorithm
#
x = np.sqrt(b) / np.sqrt(np.sum(Sigma, axis=1))
results.append({
    'k': 0,
    'cpu_time_k': 0,
    'obj_value': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)),
    'gap': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)) - opt_value,
    'method': 'MM'
})

lmd_max = np.max(np.linalg.eigvals(Sigma))
Sigma_lmd_max = Sigma - lmd_max * np.eye(N)

for k in range(1, num_iter + 1):
    start_time = time.time()

    # MM update
    Sigma_lmd_max_xk = Sigma_lmd_max @ x
    x_new = (-Sigma_lmd_max_xk + np.sqrt(Sigma_lmd_max_xk**2 + 4 * lmd_max * b)) / (2 * lmd_max)

    cpu_time = (time.time() - start_time) * 1000  # in milliseconds
    x = x_new

    results.append({
        'k': k,
        'cpu_time_k': cpu_time,
        'obj_value': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)),
        'gap': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)) - opt_value,
        'method': 'MM'
    })
#
# MM algorithm (improved)
#
x = np.sqrt(b) / np.sqrt(np.sum(C, axis=1))
rowsum_C = np.sum(C, axis=1)
results.append({
    'k': 0,
    'cpu_time_k': 0,
    'obj_value': 0.5 * (x/sigma).T @ Sigma @ (x/sigma) - np.sum(b * np.log(x/sigma)),
    'gap': 0.5 * (x/sigma).T @ Sigma @ (x/sigma) - np.sum(b * np.log(x/sigma)) - opt_value,
    'method': 'MM - improved'
})

lmd_max = np.max(np.linalg.eigvals(C))
C_lmd_max = C - lmd_max * np.eye(N)

for k in range(1, num_iter + 1):
    start_time = time.time()

    # MM update with correlation matrix
    C_lmd_max_xk = C_lmd_max @ x
    x_new = (-C_lmd_max_xk + np.sqrt(C_lmd_max_xk**2 + 4 * lmd_max * b)) / (2 * lmd_max)
    x_new = x_new * np.sqrt(np.sum(b/x_new) / np.sum(rowsum_C * x_new))

    cpu_time = (time.time() - start_time) * 1000  # in milliseconds
    x = x_new

    results.append({
        'k': k,
        'cpu_time_k': cpu_time,
        'obj_value': 0.5 * (x/sigma).T @ Sigma @ (x/sigma) - np.sum(b * np.log(x/sigma)),
        'gap': 0.5 * (x/sigma).T @ Sigma @ (x/sigma) - np.sum(b * np.log(x/sigma)) - opt_value,
        'method': 'MM - improved'
    })
#
# SCA algorithm
#
x = np.sqrt(b) / np.sqrt(np.sum(Sigma, axis=1))
gamma = 1
eps = 0.1
results.append({
    'k': 0,
    'cpu_time_k': 0,
    'obj_value': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)),
    'gap': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)) - opt_value,
    'method': 'SCA'
})

Sigma_Diag_Sigma = Sigma - np.diag(np.diag(Sigma))

for k in range(1, num_iter + 1):
    start_time = time.time()

    # SCA update
    Sigma_Diag_Sigma_xk = Sigma_Diag_Sigma @ x
    x_hat = (-Sigma_Diag_Sigma_xk + np.sqrt(Sigma_Diag_Sigma_xk**2 + 4 * np.diag(Sigma) * b)) / (2 * np.diag(Sigma))
    x_new = gamma * x_hat + (1 - gamma) * x

    cpu_time = (time.time() - start_time) * 1000  # in milliseconds
    x = x_new
    gamma = gamma * (1 - eps * gamma)

    results.append({
        'k': k,
        'cpu_time_k': cpu_time,
        'obj_value': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)),
        'gap': 0.5 * x.T @ Sigma @ x - np.sum(b * np.log(x)) - opt_value,
        'method': 'SCA'
    })
#
# SCA algorithm (improved)
#
x = np.sqrt(b) / np.sqrt(np.sum(C, axis=1))
rowsum_C = np.sum(C, axis=1)
gamma = 1
eps = 0.1
results.append({
    'k': 0,
    'cpu_time_k': 0,
    'obj_value': 0.5 * (x/sigma).T @ Sigma @ (x/sigma) - np.sum(b * np.log(x/sigma)),
    'gap': 0.5 * (x/sigma).T @ Sigma @ (x/sigma) - np.sum(b * np.log(x/sigma)) - opt_value,
    'method': 'SCA - improved'
})

C_minus_I = C - np.eye(N)

for k in range(1, num_iter + 1):
    start_time = time.time()

    # SCA update with correlation matrix
    C_minus_I_xk = C_minus_I @ x
    x_hat = (-C_minus_I_xk + np.sqrt(C_minus_I_xk**2 + 4 * b)) / 2
    x_hat = x_hat * np.sqrt(np.sum(b/x_hat) / np.sum(rowsum_C * x_hat))
    x_new = gamma * x_hat + (1 - gamma) * x

    cpu_time = (time.time() - start_time) * 1000  # in milliseconds
    x = x_new
    gamma = gamma * (1 - eps * gamma)

    results.append({
        'k': k,
        'cpu_time_k': cpu_time,
        'obj_value': 0.5 * (x/sigma).T @ Sigma @ (x/sigma) - np.sum(b * np.log(x/sigma)),
        'gap': 0.5 * (x/sigma).T @ Sigma @ (x/sigma) - np.sum(b * np.log(x/sigma)) - opt_value,
        'method': 'SCA - improved'
    })
# Convert results to DataFrame
df = pd.DataFrame(results)

# Calculate cumulative CPU time
df['CPU time [ms]'] = df.groupby('method')['cpu_time_k'].cumsum()

# Plot convergence
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 10))

# Plot gap vs iterations
for method in df['method'].unique():
    method_data = df[df['method'] == method]
    ax1.semilogy(method_data['k'], method_data['gap'], linewidth=1.5, label=method)

ax1.set_xlabel('Iterations')
ax1.set_ylabel('Optimality gap')
ax1.set_title('Optimality gap versus iterations')
ax1.set_xlim(0, num_iter)
ax1.set_xticks(range(0, num_iter+1, 5))
ax1.legend()
ax1.grid(True, which="both", ls="--", alpha=0.3)

# Plot gap vs CPU time
for method in df['method'].unique():
    method_data = df[df['method'] == method]
    ax2.semilogy(method_data['CPU time [ms]'], method_data['gap'], linewidth=1.5, label=method)

ax2.set_xlabel('CPU time [ms]')
ax2.set_ylabel('Optimality gap')
ax2.set_title('Optimality gap versus CPU time')
ax2.set_xlim(0, 0.25)
ax2.legend()
ax2.grid(True, which="both", ls="--", alpha=0.3)

plt.tight_layout()
plt.show()

General nonconvex formulations

Portfolio allocation and risk contribution of general nonconvex RPP (with $w_i \leq 0.15$) compared to benchmarks ($1/N$ portfolio, naive diagonal RPP, and vanilla convex RPP):

# Portfolios
w_EWP = np.ones(N) / N
w_naive_RPP = rpp.RiskParityPortfolio(Sigma).get_diag_solution()
w_convex_RPP = rpp.RiskParityPortfolio(Sigma).weights

# General nonconvex formulation with upper bound w < 0.15 via Cw = c and Dw <= d)
ub = 0.14
my_portfolio = rpp.RiskParityPortfolio(Sigma)
my_portfolio.design(Cmat=np.ones((1, N)), cvec=np.array([1.0]),  # sum(w) = 1
                    Dmat=np.vstack([-np.eye(N), np.eye(N)]),
                    dvec=np.concatenate([np.zeros(N), ub*np.ones(N)]))  # -w <= 0 and w < 0.15
w_nonconvex_RPP = my_portfolio.weights
# Plot weights and risk contributions
barplot_w_and_RCC({
    'stocks': stock_prices.columns,
    '1/N': w_EWP,
    'Naive diagonal RPP': w_naive_RPP,
    'Vanilla convex RPP': w_convex_RPP,
    'General nonconvex RPP': w_nonconvex_RPP,
}, Sigma)

Algorithms

Converge comparison for different algorithms to solve the nonconvex RPP formulation: $$ \begin{array}{ll} \underset{\w}{\textm{minimize}} & \begin{aligned}\sum_{i=1}^N \left(\frac{w_i\left(\bSigma\w\right)_i}{\w^\T\bSigma\w} - b_i\right)^2\end{aligned}\\ \textm{subject to} & \w \in \mathcal{W}. \end{array} $$

# Prep data
N = 200
stock_prices = SP500_stocks_2015to2020.iloc[:, :N]
X = np.diff(np.log(stock_prices.values), axis=0)  # Calculate returns from stock prices
Sigma = np.cov(X.T)

b = np.ones(N) / N  # Risk budget
w_ub = 0.008  # RPP with upper bound
w_init = np.ones(N) / N


num_iter = 20
num_times = 10  # to compute the CPU time
#
# General nonlinear solver (using scipy.optimize)
#
def R(w):
    Sigma_w = Sigma @ w
    r = w * Sigma_w
    sum_r = np.sum(r)
    r_sumr_b = r/sum_r - b
    return np.sum(np.square(r_sumr_b))

def R_grad(w):
    Sigma_w = Sigma @ w
    r = w * Sigma_w
    sum_r = np.sum(r)
    r_sumr_b = r/sum_r - b
    v = (2/sum_r) * (r_sumr_b - np.sum(r_sumr_b * r)/sum_r)
    return (Sigma @ (w * v) + Sigma_w * v)

def heq(w, *args):
    """Equality constraint: sum(w) = 1"""
    return np.sum(w) - 1

def heq_jac(w, *args):
    """Jacobian of equality constraint"""
    return np.ones((1, len(w)))

def hin(w, *args):
    """Inequality constraints: w >= 0 and w <= w_ub"""
    return np.concatenate([w, w_ub - w])

def hin_jac(w, *args):
    """Jacobian of inequality constraints"""
    N = len(w)
    return np.vstack([np.eye(N), -np.eye(N)])
# Initialize dataframe for results
w = w_init.copy()
df = pd.DataFrame({
    "k": [0],
    "cpu_time_per_iter": [np.nan],
    "CPU time [ms]": [0],
    "obj_value": [R(w)],
    "method": ["nonlinear solver (scipy)"]
})

# Run optimization for different iterations
for k in range(1, num_iter + 1):
    cpu_times = []

    for _ in range(num_times):
        start_time = time.time()

        # Define constraints for scipy.optimize
        constraints = [
            {'type': 'eq', 'fun': heq, 'jac': heq_jac},
            {'type': 'ineq', 'fun': hin, 'jac': hin_jac}
        ]

        # Run optimization with same initial point and with limited iterations
        res = optimize.minimize(
            R,
            w_init,
            jac=R_grad,
            constraints=constraints,
            method='SLSQP',
            options={'maxiter': k, 'disp': False}
        )

        w = res.x
        end_time = time.time()
        cpu_times.append((end_time - start_time) * 1e6)  # microseconds

    cpu_time = median(cpu_times)

    # Append results to dataframe
    df = pd.concat([df, pd.DataFrame({
        "k": [k],
        "cpu_time_per_iter": [np.nan],
        "CPU time [ms]": [1e3 * cpu_time],  # convert to milliseconds
        "obj_value": [R(w)],
        "method": ["nonlinear solver (scipy)"]
    })], ignore_index=True)
#
# SCA via explicit implementation
#
gamma = 0.9
zeta = 1e-7

# Constraints (A' * b >= b0)
meq = 1
# Create constraint matrices
ones_vec = np.ones((1, N))
neg_eye = -np.eye(N)
pos_eye = np.eye(N)
Amat = np.vstack([ones_vec, neg_eye, pos_eye]).T  # Transpose to match R's t(rbind(...))
bvec = np.concatenate([[1], -np.ones(N) * w_ub, np.zeros(N)])

# Intermediate variables
tau = 0.05 * np.sum(np.diag(Sigma)) / (2*N)
tauI = tau * np.eye(N)

# Define functions for risk concentration
my_portfolio = rpp.RiskParityPortfolio(Sigma)
risk = rpp.RiskContribOverVarianceMinusBudget(my_portfolio)
g = risk.risk_concentration_vector              # gvec
A = risk.jacobian_risk_concentration_vector()   # Amat
# # Numerical check
# g(np.ones(N) / N), A(np.ones(N) / N)
# Initialize
wk = w_init.copy()
df = pd.concat([df, pd.DataFrame({
    "k": [0],
    "cpu_time_per_iter": [0],
    "CPU time [ms]": [np.nan],
    "obj_value": [R(wk)],
    "method": ["SCA"]
})], ignore_index=True)

# Loop
for k in range(1, num_iter + 1):
    cpu_times = []

    for _ in range(num_times):
        start_time = time.time()

        # Auxiliary quantities
        gk = np.asarray(g(wk))
        Jk = np.asarray(A(wk))
        Qk = 2 * Jk.T @ Jk + tauI
        qk = 2 * Jk.T @ gk - Qk @ wk

        # Prepare constraints for QP solver
        # Equality constraint: sum(w) = 1
        A_eq = np.ones((1, N))
        b_eq = np.array([1.0])
        # Inequality constraints: 0 <= w <= w_ub
        G = np.vstack([-np.eye(N), np.eye(N)])  # -w <= 0 and w <= w_ub
        h = np.concatenate([np.zeros(N), np.ones(N) * w_ub])
        # Combine then together
        Cmat = np.vstack([A_eq, -G]).T
        bvec = np.concatenate([b_eq, -h])

        # Solve QP
        #w_hat = solve_qp(P=Qk, q=qk, A=A_eq, b=b_eq, lb=np.zeros(N), ub=np.ones(N) * w_ub, solver="quadprog")
        #w_hat = solve_qp(P=Qk, q=qk, G=G, h=h, A=A_eq, b=b_eq, solver="quadprog")
        w_hat = quadprog.solve_qp(Qk, -qk, C=Cmat, b=bvec, meq=1)[0]
        w_new = wk + gamma * (w_hat - wk)

        end_time = time.time()
        cpu_times.append((end_time - start_time) * 1e6)  # microseconds

    cpu_time_k = median(cpu_times)
    wk = w_new
    gamma = gamma * (1 - zeta*gamma)

    # Append results to dataframe
    df = pd.concat([df, pd.DataFrame({
        "k": [k],
        "cpu_time_per_iter": [1e3 * cpu_time_k],
        "CPU time [ms]": [np.nan],
        "obj_value": [R(wk)],
        "method": ["SCA"]
    })], ignore_index=True)

df.loc[df['method'] == 'SCA', 'CPU time [ms]'] = df.loc[df['method'] == 'SCA', 'cpu_time_per_iter'].cumsum()
# Process dataframe
#df['method'] = pd.Categorical(df['method'], categories=df['method'].unique())

# Add optimality gap using the actual minimum value
min_obj_value = df['obj_value'].min()
df['gap'] = df['obj_value'] - min_obj_value
#
# Plotting
#
fig = plt.figure(figsize=(12, 10))
gs = gridspec.GridSpec(2, 1, height_ratios=[1, 1])

# Plot 1: Gap vs iterations
ax1 = plt.subplot(gs[0])
for method in df['method'].unique():
    method_data = df[df['method'] == method]
    ax1.semilogy(method_data['k'], method_data['gap'], linewidth=1.5, label=method)

ax1.set_xlabel('Iterations')
ax1.set_ylabel('Optimality gap')
ax1.set_title('Optimality gap versus iterations')
ax1.set_xlim(0, num_iter)
ax1.set_xticks(range(0, num_iter+1, 1))
ax1.set_ylim(1e-7, None)
ax1.legend()
ax1.grid(True, which="both", ls="--", alpha=0.3)

# Plot 2: Gap vs CPU time
ax2 = plt.subplot(gs[1])
for method in df['method'].unique():
    method_data = df[df['method'] == method]
    ax2.semilogy(method_data['CPU time [ms]'], method_data['gap'], linewidth=1.5, label=method)

ax2.set_xlabel('CPU time [ms]')
ax2.set_ylabel('Optimality gap')
ax2.set_title('Optimality gap versus CPU time')
ax2.set_ylim(1e-7, None)
ax2.legend()
ax2.grid(True, which="both", ls="--", alpha=0.3)

plt.tight_layout()
plt.show()