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Abstract

Markowitz’s mean-variance portfolio optimizes the trade-off between expected return and
risk, measured by variance, which, despite being intuitive, is a simplistic measure that
penalizes both unwanted losses and desired gains while ignoring the shape of the returns’
distribution function. Rather than focusing on the middle part of the distribution, as
volatility does, the tail of the distribution characterizes the big losses. These slides explore
various alternative and more sophisticated risk measures proposed over the past seven
decades, such as downside risk, semivariance, value-at-risk, conditional value-at-risk,
expected shortfall, and drawdown, and, more importantly, how to incorporate these
measures into the portfolio formulation in a manageable way (Palomar 2024, chap. 10).
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Introduction

Markowitz’s mean-variance portfolio:
Balances expected return and risk (variance).
Optimization problem:

maximize
w

wTµ − λ
2 wTΣw

subject to w ∈ W

where
λ: risk-aversion hyper-parameter
W: constraint set, e.g., W = {w | 1Tw = 1, w ≥ 0}.

Limitations of variance as a risk measure:
Variance (wTΣw) or volatility (

√
wTΣw) may not predict out-of-sample performance

well.
Markowitz highlighted these limitations as early as 1959 (Markowitz 1959).

Alternative risk measures:
Academics and practitioners have sought other risk measures beyond variance.
Coherent risk measures are a notable category, introduced for their desirable properties.
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Exploring alternative risk measures

These slides explores various alternative risk measures, including:
Downside risk
Semivariance
Semi-deviation
Value-at-Risk (VaR)
Conditional Value-at-Risk (CVaR)
Expected Shortfall (ES)
Drawdown

The focus is on incorporating these measures into portfolio formulation.
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Alternative risk measures

Portfolio return as a random variable:
Portfolio return R:

R = wTr

r : vector of random returns for N assets.
Return R characterized by its probability distribution function (pdf).

Condensing information from the pdf:
pdf information typically reduced to key numbers: mean (expected return) and standard
deviation (risk).
Choice of risk measure has been researched since the 1950s.

Alternative risk measures:
Search for risk measures with desirable properties.
Popular risk measures that reduce the pdf to a number: semivariance/semi-deviation,
VaR, and CVaR.
Drawdown is a special case as it is not invariant to the order of returns.
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Alternative risk measures

Illustration of return distribution and measures of risk:

return

pdf

VaR

0

CVaR

variance / volatility

semivariance / semi-deviation
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Downside risk

Investor attitudes towards losses and gains:
Investors perceive downside losses differently from upside gains.
Markowitz suggested semivariance as a more appropriate risk measure than variance.

Downside risk:
Refers to measures quantifying losses below a certain threshold.
Considered more meaningful than symmetric measures like variance or volatility.
Effectiveness depends on the asymmetry of return distributions.

Semivariance and semi-deviation:
Semivariance (SV):

SV = IE
[(

(µ − R)+)2
]

Only accounts for returns below the mean.
Semi-deviation: Square root of semivariance.
Sortino ratio: Expected return to semi-deviation ratio, analogous to Sharpe ratio.
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Downside risk

Lower partial moment (LPM): Generalizes semivariance:

LPMα = IE
[(

(τ − R)+)α]
where

τ : disaster level (minimum acceptable return).
α: reflects investor’s attitude towards falling short of τ

α > 1 naturally fits a risk-averse investor
α = 1 corresponds to a neutral investor
0 < α < 1 is suitable for risk-seeking behavior.

By adjusting α and τ , various downside measures can be derived, including semivariance.

Mean-risk trade-off visualization:
Traditional portfolio theory plots mean vs. volatility.
Similarly, mean vs. risk (LPM1/α

α ) can be plotted for downside risk measures.
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Tail measures: VaR, CVaR, and EVaR

Tail measures overview:
Focus on the tail of the distribution representing significant losses.
Defined in terms of loss ξ = −wTr .
Contrast with variance/volatility and semivariance/semi-deviation which measure
dispersion.

Value-at-risk (VaR):
Maximum loss at a specified confidence level.
Defined as:

VaRα = inf {ξ0 : Pr [ξ ≤ ξ0] ≥ α}

Nonconvex.

Conditional value-at-risk (CVaR):
Average of losses exceeding VaR.
Defined as:

CVaRα = IE [ξ | ξ ≥ VaRα]
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Tail measures: VaR, CVaR, and EVaR∗

Entropic value-at-risk (EVaR):
Tightest upper bound from Chernoff inequality for VaR.
Defined as:

EVaRα = inf
z>0

{
z−1 log

(
1

1 − α
IE [exp(zξ)]

)}

Connections among tail measures:
Monotonicity:

VaRα ≤ CVaRα ≤ EVaRα

“Average VaR” expression:

CVaRα = 1
1 − α

∫ 1

α

VaRu du

Limiting behavior: VaR, CVaR, and EVaR converge to the maximal value of pdf support
as α → 1.
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Tail measures: VaR, CVaR, and EVaR

Tail measures under the Gaussian distribution:

VaRα = µ + σ Φ−1(α)

CVaRα = µ + σ
ϕ
(
Φ−1(α)

)
1 − α

EVaRα = µ + σ
√

−2log(1 − α),

where:
µ and σ are the mean and standard deviation,
Φ denotes the standard normal distribution function,
ϕ its density function, and
Φ−1(α) the α-quantile of Φ.

Minimizing these tail measures under the Gaussian distribution amounts to simply
minimizing the standard deviation σ or,equivalently, the variance σ2.
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Tail measures: VaR, CVaR, and EVaR
Illustration of loss distribution and tail measures (VaR, CVaR, and EVaR) (as well as the
maximal value) in the context of the pdf of the loss:

VaR

0

CVaR EVaR

probability
1 - α

maximal value

pdf

loss
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Convex characterization of CVaR

CVaR computation requires the VaR:

CVaRα = 1
1 − α

IE [ξ × I{ξ ≥ VaRα}] = VaRα + 1
1 − α

IE
[
(ξ − VaRα)+]

Variational form of CVaR:

CVaRα = inf
τ

{
τ + 1

1 − α
IE
[
(ξ − τ)+]}

No prior VaR requires: optimal τ equals VaR.
Portfolio optimization context:

CVaRα(w) = inf
τ

Fα(w , τ)

where Fα(w , τ) is a convex auxiliary function:

Fα(w , τ) = τ + 1
1 − α

IE
[
(−wTr − τ)+

]
.
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From downside risk to CVaR∗

CVaR and downside risk relationship:
CVaR is related to downside risk (LPM) with α = 1:

LPM1 = IE [(τ − R) × I{R ≤ τ}] = IE [(ξ − (−τ)) × I{ξ ≥ −τ}]
Loss ξ = −R.

Disaster level and VaR:
Setting disaster level τ = −VaRα:

LPM1 = IE [(ξ − VaRα) × I{ξ ≥ VaRα}] = (1 − α)IE [(ξ − VaRα) | ξ ≥ VaRα]

Comparison with CVaR:
CVaR definition:

CVaRα = IE [ξ | ξ ≥ VaRα]
LPM1 measures expected excess loss above VaRα after shifting to the origin.
CVaR measures expected loss above VaRα.

Key difference:
VaR level is determined within the CVaR calculation.
Downside risk requires a predefined disaster level.
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Drawdown

Drawdown concept:
Measures investor’s “suffering” from monitoring cumulative return or wealth.
Focuses solely on downside events, ignoring upside movements.
Loss measured relative to past maximum, reflecting human psychology.

High watermark (HWM):
Historical peak of value X (t) up to time t:

HWM(t) = max
1≤τ≤t

X (τ).

Drawdown definitions:
Absolute drawdown:

D(t) = HWM(t) − X (t);

Normalized drawdown:
D̄(t) = HWM(t) − X (t)

HWM(t) .
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Drawdown
Illustration of net asset value (NAV) curve of S&P 500 and corresponding normalized
drawdown:
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Drawdown: Path-dependency

Drawdown as a path-dependent measure:
Drawdown is sensitive to the sequence of returns.
Contrasts with other risk measures that are indifferent to return order.

Impact of return order:
Next figure illustrates the effect of return order on drawdown.
Best case scenario: drawdown peaks at approximately 12.5%.
Worst case scenario: drawdown approaches 100%.
Original sequence drawdown was 34%.
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Drawdown: Path-dependency

Effect of ordering of returns in the cumulative return and drawdown:
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Drawdown: Single-number summarization
To condense the drawdown curve into a single metric, various methods can be used:

Maximum drawdown (Max-DD):
Represents the largest single drop from peak to trough over the period:

Max-DD = max
1≤t≤T

D(t)

Average drawdown (Ave-DD):
Calculates the mean of all drawdowns over the period:

Ave-DD = 1
T

∑
1≤t≤T

D(t)

CVaR of drawdown (CVaR-DD) or conditional drawdown at risk (CDaR):
Measures the expected drawdown in the worst α% of cases:

CDaRα = IE [D(t) | D(t) ≥ VaRα]

VaRα is the value at risk of drawdown D(t) at confidence level α.
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Downside risk portfolios

Objective with downside risk:

maximize
w

wTµ − λ IE
[(

(τ − wTr)+
)α]

subject to w ∈ W.

Approximating expectation with sample mean:

IE
[(

(τ − wTr)+
)α]

≈ 1
T

T∑
t=1

(
(τ − wTr t)+

)α
.

Similar to the variance approximation:

IE
[(

wT(r − µ)
)2
]

≈ 1
T

T∑
t=1

[(
wT(r − µ)

)2
]

= wTΣ̂w ,

where Σ̂ is the sample covariance matrix.
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Mean-downside risk portfolio formulation

Final mean-downside risk formulation: includes all return observations

maximize
w

wTµ − λ 1
T
∑T

t=1

(
(τ − wTr t)+

)α

subject to w ∈ W

Optimization without nondifferentiable operator (·)+:

maximize
w ,{st}

wTµ − λ 1
T
∑T

t=1 sα
t

subject to 0 ≤ st ≥ τ − wTr t , t = 1, . . . , T
w ∈ W.

Convex problem for common choices of α:
Linear program for α = 1.
Quadratic program for α = 2 (semivariance portfolio).
General convex program for α = 3.
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Semivariance portfolios
Variance and covariance matrix:

Variance expressed via covariance matrix Σ:

IE
[(

wT(r − µ)
)2] = wTΣw

Covariance matrix definition:
Σ = IE

[
(r − µ) (r − µ)T

]
Semivariance approximation:

Seeking a similar expression for semivariance:

IE
[(

(τ − wTr)+)2] ≈ wTMw

No exact exogenous matrix M (independent of w) for semivariance.
Markowitz’s semivariance matrix:

Exact semivariance matrix proposed by Markowitz:
M(w) = IE

[
(τ1 − r)(τ1 − r)T × I{τ > wTr}

]
Matrix is endogenous, depending on portfolio w , and not suitable for optimization.
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Semivariance Portfolios

Heuristic approximations:
Proposed approximation:

M = IE
[
(τ1 − r)+ ((τ1 − r)+)T]

Other practical approaches have been explored.

Mean-semivariance formulation:
By setting α = 2 in mean–downside risk formulation:

maximize
w

wTµ − λ
2 wTMw

subject to w ∈ W

Offers a convenient approximation similar to mean–variance formulation.
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Numerical experiments

Objective:
Compare downside risk portfolios for different values of α (1, 2, and 3) based on the
mean–downside risk formulation.
Exclude expected return from optimization to solely focus on risk measure impact.
Use the Global Minimum Variance Portfolio (GMVP) as a benchmark.

Setup:
Analyze portfolios for α = 1 (linear program), α = 2 (quadratic program, with and
without approximation), and α = 3 (general convex program).
Evaluate over 200 realizations of 50 randomly selected stocks from the S&P 500 during
2015-2020.
Reoptimize portfolios monthly with a one-year lookback period.

Metrics for comparison:
Sharpe ratio: Measures risk-adjusted return.
Maximum drawdown: Indicates the largest single drop from peak to trough during the
observation period.
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Numerical experiments
Backtest performance of different downside risk portfolios:

GMVP
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Naive attempt to CVaR portfolio

Recall that
CVaRα = IE [ξ | ξ ≥ VaRα] .

In practice, given T observations:
We can first order them in decreasing order:

ξ[1] ≥ ξ[2] ≥ ξ[3] ≥ · · · ≥ ξ[T ]

where ξ[i] denotes the i-th largest value.
Then, we can compute the empirical CVaR as the sample mean of the first αT samples:

CVaRα ≈ 1
αT

αT∑
i=1

ξ[i].

However, in terms of portfolio optimization, the loss depends on the portfolio w as
ξt = −wTr t and then the order of the loss values will change with w!!:

(−wTr)[1] ≥ (−wTr)[2] ≥ · · · ≥ (−wTr)[T ].
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Formulation for the CVaR portfolio

Mean-CVaR formulation: Replaces variance with CVaR as risk measure:

maximize
w

wTµ − λ CVaRα(w)
subject to w ∈ W

Convex representation of CVaR:

CVaRα(w) = inf
τ

{
τ + 1

1 − α
IE
[
(−wTr − τ)+

]}
.

Convex mean-CVaR formulation: Incorporates auxiliary variable τ into optimization:

maximize
w ,τ

wTµ − λ
(
τ + 1

1−α IE
[
(−wTr − τ)+

])
subject to w ∈ W
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Formulation for the CVaR portfolio
Approximation with sample mean:

Approximates expectation with sample mean:

IE
[
(−wTr − τ)+] ≈ 1

T

T∑
t=1

(−wTr t − τ)+.

Final formulation with auxiliary variables:
Introduces T auxiliary variables u for linear programming:

maximize
w,τ,u

wTµ − λ
(

τ + 1
1−α

1
T
∑T

t=1 ut

)
subject to 0 ≤ ut ≥ −wTr t − τ, t = 1, . . . , T

w ∈ W

Challenges with CVaR estimation:
Tail events occur with low probability, leading to few samples characterizing the tail.
Numerical instability may arise, especially with high dimensions or insufficient samples.
Alternative methods include parametric distribution assumptions, worst-case CVaR
characterizations, and extreme value theory applications.
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Formulation for the EVaR portfolio∗

Mean-EVaR formulation:
Replaces variance with EVaR as a risk measure:

maximize
w

wTµ − λ EVaRα(w)
subject to w ∈ W

Convex representation of EVaR:
Utilizes a change of variable for EVaR formulation:

maximize
w,t>0

wTµ − λ
(

t log
(

1
1−α IE

[
exp(−t−1wTr)

]))
subject to w ∈ W
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Formulation for the EVaR portfolio∗

Sample mean approximation:
Approximates expectation with sample mean:

maximize
w,t>0

wTµ − λ
(

t log
(∑T

t′=1
[
exp(−t−1wTr t′)

])
− t log ((1 − α)T )

)
subject to w ∈ W

Solving the problem: This problem can be solved in practice in a variety of ways:
via a general-purpose solver (since the problem is convex, it will find an optimal solution);
via a tailored interior-point method for convex problems (Ahmadi-Javid and Fallah-Tafti
2019);
via a convex modeling framework that can recognize the convexity of the log-sum-exp
function and then performing bisection over t;
via a convex modeling framework that can recognize both the convexity of the
log-sum-exp function and the convexity-preserving property of the perspective operator;
via a convex reformulation in terms of the exponential cone Kexp (Chares 2007), which
some solvers and modeling frameworks can recognize (Cajas 2021)
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Formulation for the worst-case portfolio

Worst-case risk focus:
As α → 1, VaR, CVaR, and EVaR converge to the maximal loss value.
Emphasizes the worst possible return or loss scenario.

Worst-case risk formulation:
Maximizes expected return while penalizing the worst loss:

maximize
w

wTµ − λ max1≤t≤T {−wTr t}
subject to w ∈ W

Linear program formulation without maximum operator:
Introduces auxiliary variable τ to avoid nondifferentiable maximum:

maximize
w,τ

wTµ − λ τ

subject to τ ≥ −wTr t , t = 1, . . . , T
w ∈ W.
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Formulation for the worst-case portfolio

Solving the roblem:
The problem is a linear program, assuming W is defined via linear constraints.
Can be efficiently solved using a linear programming solver.

Key insights:
The worst-case portfolio formulation provides a direct approach to managing extreme risk
by focusing on the most adverse return scenario.
This approach is particularly useful for highly risk-averse investors or in markets where
extreme losses can have significant impacts.
The linear programming formulation ensures that the optimization problem can be solved
efficiently, making it practical for real-world portfolio management.
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Numerical experiments

Objective:
Compare CVaR, EVaR, and worst-case portfolios based on their respective convex
formulations.
Exclude expected return from optimization to isolate the impact of risk measures.
Use the Global Minimum Variance Portfolio (GMVP) as a benchmark for comparison.

Considerations:
Risk measures are non-parametric, relying on observed returns rather than a covariance
matrix.
Tail events are infrequent, potentially leading to poor characterization of true tail risk.
Worst-case portfolio is determined by a single data point, while CVaR and EVaR may
suffer from limited tail observations, especially with higher α values.
EVaR may offer a more stable characterization by utilizing all observations.

Alternative methods:
Parametric models or extreme value theory may provide more stable risk characterizations.
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Numerical experiments
Setup for comparison:

200 realizations of 50 randomly selected stocks from the S&P 500 during 2015-2020.
Reoptimize portfolios monthly with a one-year lookback period.

Metrics for comparison:
Sharpe ratio: Measures risk-adjusted return.
Maximum drawdown: Indicates the largest single drop from peak to trough during the
observation period.

Visualization:
Boxplots in next figure display the distribution of Sharpe ratios and maximum drawdowns
for CVaR, EVaR, and worst-case portfolios.
This visual comparison helps to understand the trade-offs between risk and return for
each risk measure.

Preliminary observations:
EVaR portfolios may produce better results than CVaR portfolios, as they consider all
observations rather than just the tail.
However, drawing definitive conclusions from this numerical experiment is challenging due
to the inherent limitations in tail risk characterization.
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Numerical experiments
Backtest performance of CVaR and EVaR portfolios for dimension N = 5:
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Numerical experiments
Backtest performance of CVaR and EVaR portfolios for dimension N = 50:
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Drawdown portfolios

Portfolio return and cumulative return:
Portfolio return at time t: Rt = wTr t .
Cumulative return: Rcum

t = wTr cum
t .

Cumulative returns of assets: r cum
t =

∑t
τ=1 rτ .

Linear or log-returns can be used, corresponding to uncompounded or compounded
returns, respectively.

Absolute drawdown:
Defined as the difference between the maximum cumulative return up to time t and the
cumulative return at time t:

Dt(w) = max
1≤τ≤t

wTr cum
τ − wTr cum

t .

Constraint for limiting absolute drawdown to α (Dt(w) ≤ α):

wTr cum
t ≥ max

1≤τ≤t
wTr cum

τ − α.
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Drawdown portfolios
Normalized drawdown:

Ratio of the absolute drawdown to the maximum portfolio value up to time t:

D̄t(w) =
max

1≤τ≤t
wTr cum

τ − wTr cum
t

1 + max
1≤τ≤t

wTr cum
τ

.

Constraint for limiting normalized drawdown to α (D̄t(w) ≤ α):
wTr cum

t ≥ (1 − α) max
1≤τ≤t

wTr cum
τ − α.

Key points:
Drawdown portfolios are developed via statistical models or data-driven methods to
minimize drawdowns.
Absolute drawdown measures raw loss, while normalized drawdown assesses loss relative
to peak portfolio value.
Drawdown constraints can be integrated into optimization to manage downside risk.
Emphasizing drawdowns in portfolio strategies is crucial for mitigating significant losses
and controlling risk.
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Formulation for the Max-DD portfolio

Mean-Max-DD formulation:
Replaces variance with maximum drawdown (Max-DD) as risk measure:

maximize
w

wTµ − λ Max-DD(w)
subject to w ∈ W

Substituting Max-DD:
Max-DD is the maximum of drawdowns over time:

maximize
w

wTµ − λ max
1≤t≤T

{
max

1≤τ≤t
wTr cum

τ − wTr cum
t

}
subject to w ∈ W

Convexity of the problem:
The problem is convex if W is convex, as the maximum of convex functions is convex.
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Formulation for the Max-DD portfolio
To get rid of the maximum operators, we first introduce the auxiliary variable s:

maximize
w ,s

wTµ − λ s
subject to s ≥ max

1≤τ≤t
wTr cum

τ − wTr cum
t , t = 1, . . . , T

w ∈ W

Then, we further introduce the auxiliary variables ut :
maximize

w ,u,s
wTµ − λ s

subject to s ≥ ut − wTr cum
t , t = 1, . . . , T

ut ≥ wTr cum
τ , τ = 1, . . . , t, t = 1, . . . , T

w ∈ W

Finally, it is possible to simplify the double-index constraints ut ≥ wTr cum
τ into:

ut ≥ wTr cum
t

ut−1 ≤ ut
, t = 1, . . . , T .
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Formulation for the Max-DD portfolio

Epigraph formulation with auxiliary variables:
Introduces variables s and u to linearize the problem:

maximize
w,u,s

wTµ − λ s
subject to wTr cum

t ≤ ut ≤ s + wTr cum
t , t = 1, . . . , T

ut−1 ≤ ut
w ∈ W

Sensitivity of Max-DD:
Max-DD is highly sensitive, determined by a single data point.
Small changes in portfolio weights or period can lead to different Max-DD values.
This sensitivity makes Max-DD a less reliable risk measure.

Alternatives to Max-DD:
Average drawdown or conditional drawdown-at-risk can provide more stability.
For Gaussian-like distributions, mean-variance framework may suffice.
For skewed or heavy-tailed distributions, high-order portfolios are recommended.
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Formulation for the Ave-DD portfolio
Mean-Ave-DD formulation:

Replaces variance with average drawdown (Ave-DD) as risk measure:

maximize
w

wTµ − λ 1
T
∑T

t=1

(
max

1≤τ≤t
wTr cum

τ − wTr cum
t

)
subject to w ∈ W,

Convexity of the problem:
The problem is convex if W is convex, leveraging the convexity of maximum functions.

Epigraph formulation with auxiliary variables:
Introduces variables s and u to linearize the problem:

maximize
w,u,s

wTµ − λ s

subject to 1
T
∑T

t=1 ut ≤ 1
T
∑T

t=1 wTr cum
t + s

wTr cum
t ≤ ut , t = 1, . . . , T

ut−1 ≤ ut
w ∈ W,

which is a linear program (assuming W is described by linear constraints).
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Formulation for the CVaR-DD portfolio

CVaR-DD representation:
CVaR-DD (Conditional Drawdown at Risk) is defined variably as:

CVaR-DD(w) = inf
τ

{
τ + 1

1 − α

1
T

T∑
t=1

(Dt(w) − τ)+
}

.

Mean-CVaR-DD formulation:
Incorporates CVaR-DD as a risk measure in portfolio optimization:

maximize
w,τ

wTµ − λ

(
τ + 1

1−α
1
T
∑T

t=1

(
max

1≤τ≤t
wTr cum

τ − wTr cum
t − τ

)+
)

subject to w ∈ W,
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Formulation for the CVaR-DD portfolio

Convexity and linear program formulation:
The problem is convex if W is convex.
Introduces auxiliary variables s, z, and u to linearize the problem:

maximize
w,τ,s,z,u

wTµ − λ s

subject to s ≥ τ + 1
1−α

1
T
∑T

t=1 zt
0 ≤ zt ≥ ut − wTr cum

t − τ, t = 1, . . . , T
wTr cum

t ≤ ut
ut−1 ≤ ut
w ∈ W,

Drawdown EVaR formulation:
Similar to the EVaR portfolio, a drawdown EVaR can be formulated by replacing loss
terms with drawdown measures in the EVaR formulation.
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Numerical experiments

Portfolio types compared:
Maximum Drawdown (Max-DD) Portfolio
Average Drawdown (Ave-DD) Portfolio
Drawdown Conditional Value-at-Risk (CVaR-DD) Portfolio
Global Minimum Variance Portfolio (GMVP) as a benchmark

Optimization focus:
Risk measures are prioritized by setting λ → ∞, excluding expected return from
optimization.

Caution on drawdown measures:
Drawdown-based measures, especially Max-DD and CVaR-DD, rely on few samples due
to the low probability of worst drawdowns.
Max-DD is determined by a single sample, while CVaR-DD uses extremely few samples,
raising concerns about the reliability of these risk measures.
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Numerical experiments

Empirical analysis setup:
200 realizations of portfolios from 50 randomly selected S&P 500 stocks during
2015-2020.
Portfolios are reoptimized monthly with a one-year lookback period.

Metrics for evaluation:
Sharpe ratio: Assesses risk-adjusted returns.
Maximum drawdown: Measures the largest decline from peak to trough.

Preliminary observations:
Boxplots in the figure compare the Sharpe ratio and maximum drawdown across portfolio
types.
Initial results suggest drawdown portfolios do not consistently outperform the GMVP
benchmark.
Comprehensive empirical testing is needed for definitive conclusions.
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Numerical experiments
Backtest performance of drawdown portfolios:

Min. CVaR−DD 99%

Min. CVaR−DD 95%

Min. CVaR−DD 90%

Min. Ave−DD

Min. Max−DD

GMVP

0 1 2

Sharpe ratio

Min. CVaR−DD 99%

Min. CVaR−DD 95%

Min. CVaR−DD 90%

Min. Ave−DD

Min. Max−DD

GMVP

0.0 0.1 0.2 0.3

max drawdown
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Numerical experiments: Key insights

Drawdown-based portfolio challenges:
The reliance on few extreme samples for drawdown measures introduces significant
variability and potential instability in portfolio performance.

GMVP as a stable benchmark:
Despite the sophisticated risk management intended by drawdown-based portfolios, the
simple GMVP often provides a competitive, if not superior, baseline.

Need for further research:
The initial findings highlight the importance of extensive empirical analysis to fully
understand the benefits and limitations of drawdown-based portfolio strategies.
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Summary

Variance (or volatility) is a simple risk measure used in Markowitz’s 1952 mean-variance
modern portfolio theory framework, but since then, more sophisticated measures have been
proposed, leading to some notable portfolio formulations:

Downside risk portfolios: The risk focuses on downside losses, formulated in convex
form (parameterized by α), with α = 1 as a linear program, α = 2 as a semivariance
portfolio (quadratic program), and α = 3 as a more risk-averse convex program.
Tail portfolios: The risk is measured by the tail of the loss distribution, formulated in
convex form, including CVaR portfolios (linear program), EVaR portfolios (exponential
cone), and worst-case portfolio (linear program).
Drawdown portfolios: The risk is based on drawdown, formulated as linear programs,
including maximum drawdown portfolio (single worst drawdown), average drawdown
portfolio (average of all drawdowns), and drawdown CVaR portfolio (average of the
tail of drawdowns).
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