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Abstract

A backtest is a historical simulation of how a strategy would have performed should it
have been run over a past period of time. It is an essential step prior to the actual live
trading with real money. Nevertheless, backtesting is one of the least understood
techniques in the quant toolbox. The reality is that backtesting is full of dangers and
virtually impossible to execute properly. These slides will explore portfolio backtesting, so
that we become aware of all the potential pitfalls (Palomar 2024, chap. 8).
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A typical backtest

Backtest definition:
A historical simulation of a strategy’s performance over a past period.
Commonly seen in academic publications, fund brochures, and practitioner blogs.

Data splitting:
Data is split into in-sample and out-of-sample datasets.
In-sample data is used to estimate parameters (e.g., expected returns, covariance matrix).
Out-of-sample data is used to assess the strategy’s performance.
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A typical backtest
Example of a backtest result in the form of cumulative P&L and drawdown plots:
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A typical backtest

Example of a backtest result in the form of performance measures:

Portfolio Sharpe
ratio

annual
return

annual
volatility

Sortino
ratio

max
drawdown

CVaR
(0.95)

1/N 3.23 117% 36% 5.40 11% 5%
GMRP 2.19 138% 63% 4.09 19% 7%
IVolP 3.35 113% 34% 5.61 11% 4%

Portfolio Optimization Portfolio Backtesting 7 / 87



A typical backtest

Many other performance measures in the form of plots and tables:
Rolling Sharpe ratio plot over time.
Monthly performance measures instead of overall annualized values.

Global Investment Performance Standards (GIPS):
GIPS is a set of standardized, industry-wide ethical principles for presenting investment
performance to clients, regulators, and other stakeholders.
Provides guidance on how to calculate and report investment results to prospective
clients.
Compliance with GIPS standards demonstrates a firm’s commitment to ethical best
practices and strong internal control processes.
Promotes transparency, fair representation, and full disclosure of investment performance.
Facilitates comparison of investment performance across firms and strategies.
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A typical backtest

Limitations and cautions:
Backtest results provide limited information on real performance.
Results are often faulty and misleading due to various biases and issues.
We will explore: the pitfalls of backtesting and best practices for backtesting (Palomar
2024, chap. 8).

Quote (Harvey, Liu, and Zhu 2016):
“Most claimed research findings in financial economics are likely false.”

Quote (López de Prado 2018):
“Most backtests published in journals are flawed, as the result of selection bias on
multiple tests.”
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The seven sins of fund management

In 2005, a practicioner report compiled the “Seven Sins of Fund Management” (Montier
2005) (of which sins #1 and #5 are the most directly related to backtesting):

Sin #1: Forecasting (Pride)
Sin #2: The illusion of knowledge (Gluttony)
Sin #3: Meeting companies (Lust)
Sin #4: Thinking you can out-smart everyone else (Envy)
Sin #5: Short time horizons and overtrading (Avarice)
Sin #6: Believing everything you read (Sloth)
Sin #7: Group based decisions (Wrath)
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The seven sins of quantitative investing

In 2014, a team of quants at Deutsche Bank published a study under the suggestive title
“Seven Sins of Quantitative Investing” (Luo et al. 2014). These seven sins are a few basic
backtesting errors that most journal publications make routinely:

Sin #1: Survivorship bias
Sin #2: Look-ahead bias
Sin #3: Storytelling bias
Sin #4: Overfitting and data snooping bias
Sin #5: Turnover and transaction cost
Sin #6: Outliers
Sin #7: Asymmetric pattern and shorting cost
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The seven sins of quantitative investing: Survivorship bias

Definition:
Survivorship bias occurs when only the surviving or successful entities are considered,
ignoring those that have failed or underperformed.
In investing, it involves backtesting strategies using only companies that are currently in
business and performing well, often listed in major indices.

Impact:
Ignores stocks that have left the investment universe due to bankruptcy, delisting,
acquisition, or underperformance.
Leads to an overestimation of returns and an underestimation of risk.
Provides a misleading and overly optimistic view of the strategy’s performance.

Causes:
Practitioners backtest using only current index constituents (e.g., S&P 500).
Removing stocks with missing data from the universe.
Using databases that exclude delisted or underperforming companies.
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The seven sins of quantitative investing: Survivorship bias

Center for Research in Security Prices (CRSP):
Maintains a comprehensive database of historical stock market data.
Considered highly reliable and accurate, widely used by researchers and professionals.
Helps mitigate survivorship bias by including delisted and underperforming stocks.

Survivorship bias in other areas:
Not limited to financial investments, but a persistent phenomenon across various domains.
Example: Success stories of college dropouts who became billionaires (e.g., Bill Gates,
Mark Zuckerberg) distort perceptions by ignoring the majority of unsuccessful dropouts.

Significance:
Survivorship bias can lead to significant overestimation of returns and underestimation of
risk.
Accounting for survivorship bias is crucial for accurate and reliable backtesting and
investment strategy evaluation.
Failure to address this bias can result in flawed decision-making and suboptimal
investment outcomes.
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The seven sins of quantitative investing: Survivorship bias
Effect of survivorship bias on the S&P 500 stocks:
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The seven sins of quantitative investing: Look-ahead bias

Definition:
Look-ahead bias occurs when information or data that were unknown or unavailable at
the time of backtesting are used in the analysis.
It is a very common bias in backtesting and can lead to overly optimistic results.

Examples:
Using financial statement data with incorrect timestamps or without considering release
dates and distribution delays.
Coding errors, such as training parameters using future information or pre-processing data
with statistics from the entire dataset.
Time alignment errors in backtesting code, e.g., computing portfolio returns using future
asset prices.
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The seven sins of quantitative investing: Look-ahead bias

Time alignment error:
Incorrectly computing portfolio returns as Rportf

t = wT
t r t , where w t uses information up

to time t, and r t assumes positions were executed at t − 1.
This error can lead to seemingly amazing but unrealistic performance.

Mitigation:
Carefully handle timestamps and data release dates, ensuring information is available at
the time of backtesting.
Rigorously check backtesting code for time alignment errors and proper use of
information.
Consider using backtesting frameworks or libraries that handle time alignment and data
availability correctly.
Validate backtesting results against known benchmarks or theoretical expectations.

Addressing look-ahead bias is crucial for obtaining reliable and realistic backtesting
results. Failure to account for this bias can lead to overly optimistic performance
estimates and flawed investment decisions.
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The seven sins of quantitative investing: Look-ahead bias
Effect of look-ahead bias (from a time alignment mistake) trading a single stock:
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The seven sins of quantitative investing: Storytelling bias
Definition:

Storytelling bias occurs when we create a narrative or story to explain a random pattern
or event after it has occurred (ex-post).
It is related to confirmation bias, where we favor information that supports our
pre-existing beliefs and ignore contradictory evidence.

Prevalence:
Storytelling is pervasive in financial news, where “experts” often justify random patterns
after the fact.
Popular science best-selling books often rely on anecdotal stories rather than solid
statistical foundations, as stories appeal more to the general public.

Antidote:
Collecting more historical data to see if the story passes statistical tests or the test of
time.
However, in economics and finance, the limited number of observations hinders the
resolution of storytelling bias.
Compelling stories alone should not drive investment decisions without proper validation.

Portfolio Optimization Portfolio Backtesting 19 / 87



The seven sins of quantitative investing: Storytelling bias

Implications:
Storytelling bias can lead to false conclusions and flawed decision-making in finance and
investing.
It can cause investors to attribute meaning to random patterns or events, leading to
suboptimal investment strategies.
Recognizing and mitigating storytelling bias is crucial for making rational and data-driven
investment decisions.

Illustration:
The next figure demonstrates the effect of storytelling bias by trading a single stock using
a random binary sequence.
Before August 2018, one could be inclined to believe the story that the random sequence
was a good predictor of the stock trend.
However, with more data collected over time, it becomes evident that the apparent
predictive power was merely a fluke.
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The seven sins of quantitative investing: Storytelling bias
Effect of story-telling bias in the form of a random strategy that performs amazingly well
until August 2018, but not afterwards:
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The seven sins of quantitative investing: Overfitting and data snooping

Definition:
Data snooping bias, also known as data mining bias or overfitting, refers to the practice
of extensively searching for patterns or rules in data until a model fits perfectly.
It involves manipulating data or models to find the desired pattern an analyst wants to
show.

Causes:
Fine-tuning model parameters to achieve optimal performance on the available data.
Iteratively adjusting the strategy based on its evaluation on the test data.
Using the test data too many times, effectively making it part of the training data.

Consequences:
Models or strategies that appear promising on the available data but are actually spurious.
Inability to trust published backtest results due to selection bias from multiple tests.
Overfitted models fail to generalize and perform poorly on new, unseen data.
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The seven sins of quantitative investing: Overfitting and data snooping
Mitigation strategies:

Splitting data into separate training and test sets.
Avoiding excessive fine-tuning of parameters and conducting sensitivity analysis.
Evaluating the strategy’s performance on unseen data through live or paper trading.

Importance:
Data snooping bias is considered one of the most difficult biases to address in finance.
Not accounting for this bias can result in flawed investment strategies and major losses.
Rigorous data handling, model validation, and continuous evaluation on new data are
crucial to mitigate this bias.

Illustrative example:
The next figure demonstrates the effect of data snooping bias by trading a single stock
using a machine learning strategy.
The strategy is trained on either the training data alone (correct approach) or the
combined training and test data (overfitting).
The overfitted backtest appears to have predictive power on the out-of-sample data, but
this is misleading and does not reflect the true performance.
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The seven sins of quantitative investing: Overfitting and data snooping
Effect of data snooping or overfitting on a backtest after tweaking the strategy too many
times:
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The seven sins of quantitative investing: Turnover and transaction cost

Turnover:
Turnover refers to the overall amount of orders to be executed when rebalancing a
portfolio from w t to w reb

t .
It is calculated as ∥w reb

t − w t∥1.

Transaction costs:
Transaction costs are often modeled as proportional to the turnover.
If liquidity is insufficient compared to the turnover size, slippage may have a significant
effect.
Simulating transaction costs at the limit order book level can be extremely challenging.

Factors affecting overall transaction cost:
Turnover per rebalancing.
Rebalancing frequency.
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The seven sins of quantitative investing: Turnover and transaction cost

Considerations for rebalancing frequency:
High rebalancing frequency leads to higher overall turnover and transaction costs.
Low rebalancing frequency may cause the portfolio to fail to adapt to changing signals.
Deciding the appropriate rebalancing frequency is a critical step in practice.

Mitigation strategies:
Keep rebalancing frequency to a minimum.
Control the turnover per rebalancing.
Consider the trade-off between transaction costs and the ability to adapt to changing
signals.

Impact of transaction costs:
The next figure illustrates the detrimental effect of transaction costs on the
daily-rebalanced inverse volatility portfolio (IVolP) on the S&P 500 stocks with fees of 60
bps.
The effect of transaction costs accumulates slowly over time.
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The seven sins of quantitative investing: Turnover and transaction cost
Effect of transaction costs on a portfolio (with daily rebalancing and fees of 60 bps):
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The seven sins of quantitative investing: Outliers
Definition:

Outliers are events that do not fit the normal and expected behavior in financial data.
They can occur due to various reasons, such as historical events, lack of liquidity, large
execution orders, or data errors.

Importance:
Outliers cannot be predicted, and one can only try to be robust to them.
Robust estimation methods and robust portfolio techniques are important in practice to
handle outliers.
Accidentally benefiting from a few outliers in backtesting can distort the realistic
assessment of a portfolio’s performance.

Approaches to handling outliers:
1 Outlier control:

Traditional techniques include winsorization (capping data at certain percentiles) and
truncation/trimming/censoring (removing outliers from the data sample).
Data normalization processes are closely related to outlier control.

2 Keeping outliers, but ensuring robustness:
Keep the outliers in the data, but ensure that strategies do not rely solely on them.
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The seven sins of quantitative investing: Outliers

Considerations:
Outliers caused by data errors or specific events are unlikely to be repeated in the future.
Basing a portfolio’s success on a few historical outliers can lead to unrealistic future
performance expectations.
Robust portfolio construction and evaluation techniques should be employed to mitigate
the impact of outliers.

Illustration:
The next figure demonstrates the effect of outlier control in the design phase of a quintile
portfolio with hourly cryptocurrency data.
Outliers larger than 5% (hourly returns) are removed.
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The seven sins of quantitative investing: Outliers
Effect of outliers on a backtest with hourly cryptocurrency data:
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The seven sins of quantitative investing: Asymmetric pattern and shorting
cost

Unrealistic assumptions in backtesting:
Analysts often assume the ability to short any stock at no cost or the same level of cost
as going long.
However, borrowing costs can be prohibitively high for some stocks, or it may be
impossible to locate borrowable shares.

Regulatory and market constraints:
Some countries or exchanges prohibit short selling entirely or limit its extent.
During periods of market stress, such as the 2008 financial crisis, borrowing costs can
skyrocket, and certain stocks may be banned from being shorted.

Impact on long positions:
Short availability constraints not only affect portfolios that short sell but can also impact
long positions due to the “limited arbitrage” argument.
Arbitrageurs may be prevented from immediately forcing prices to fair values.
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The seven sins of quantitative investing: Asymmetric pattern and shorting
cost

Implications:
Ignoring short selling constraints and borrowing costs skews performance estimates.
Strategies relying on short selling are greatly affected.
Considering short availability and costs is vital for accurate evaluation.

Mitigation strategies:
Include realistic borrowing costs and constraints in backtesting.
Create strategies less dependent on short selling or use alternatives.
Monitor and adapt to changes in regulations and market conditions.

Illustration: The next figure shows two long-short quintile portfolios:
1 An unrealistic portfolio perfectly longs the top 20% and shorts the bottom 20%.
2 A realistic portfolio shorts only easy-to-borrow stocks (for illustration).
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The seven sins of quantitative investing: Asymmetric pattern and shorting
cost

Effect of shorting availability in a long-short quintile portfolio:
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The dangers of backtesting

We have learned from the “seven sins of quantitative investing” that backtesting is a
dangerous process.

There are more than these seven types of errors one can make (López de Prado 2018):
“A full book could be written listing all the different errors people make while
backtesting.”

The most common mistake in backtesting involves overfitting or data snooping.

John von Neumann made a humorous quote about the general concept of overfitting:
“With four parameters I can fit an elephant, and with five I can make him wiggle
his trunk.”
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Backtest overfitting
Common mistake:

Overfitting is arguably the most common error in backtesting.
It involves developing a model or strategy that captures random noise instead of a
general pattern.

Definition:
Overfitting occurs when a model is tailored to fit particular noisy observations rather than
the underlying data structure.
In investing, it refers to creating strategies that perform well on historical data by
exploiting random patterns.

Consequences: (D. H. Bailey et al. 2014)
Strategies developed through overfitting are likely to fail in the future as random
historical patterns may not recur.
Performance on in-sample data can be misleading, leading to unfounded confidence in a
strategy’s future success.
Even out-of-sample data performance can be misleading if the data is overused in the
model development process.
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Backtest overfitting
Adjusting parameters:

Researchers often adjust strategy parameters to improve backtest performance.
Repeated adjustments can indirectly transform the test data into training data.
This process can lead to the belief that a portfolio will perform well, only to disappoint
during live trading.

False positives:
A small number of trials can identify strategies with spuriously high backtested
performance, especially for complex strategies.
Not reporting the number of trials involved in identifying a successful backtest can be
misleading.

Difficulty in assessment:
The probability of false positives increases with each new test on the same dataset.
This information is often unknown to the researcher or not disclosed to investors or
referees.
Typically, only successful backtests are shared, skewing perceptions of investment
strategy success.
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Backtest overfitting

Mitigation strategies:
Use a separate and untouched dataset for final validation of the strategy.
Limit the number of trials and parameter adjustments during the development phase.
Disclose the number of trials and methodology used to arrive at the final strategy.
Employ statistical techniques to correct for multiple testing and selection bias.

Understanding and avoiding overfitting is crucial for developing robust investment
strategies. It requires discipline, transparency, and rigorous validation processes to
ensure that backtested performance is indicative of a strategy’s potential in live
trading.
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p-hacking
p-value in hypothesis testing:

In statistics, the p-value assesses the probability of observing the given results under the
null hypothesis.
A small p-value (< 0.01 - 0.05) suggests strong evidence to reject the null hypothesis.
Used across scientific disciplines to support or reject hypotheses.

p-hacking defined:
The practice of performing multiple hypothesis tests and only reporting those with
significant p-values.
Can lead to misleading conclusions by cherry-picking data that appears statistically
significant.
Increases the risk of false positives, presenting unreliable findings as true.

Examples of p-hacking:
Reporting a portfolio’s excellent results over a specific period while omitting weaker
results from a broader timeframe.
Highlighting profitability using a specific stock universe without disclosing that variations
yield poorer performance.
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p-hacking

Consequences of p-hacking:
Often, the number of experiments conducted is not disclosed, misleading readers to
believe results came from a single trial.
Most claimed research findings in financial economics may be false due to p-hacking.

Quotes: (Harvey 2017)
“Empirical research in financial economics relies too much on p-values, which are
poorly understood in the first place.”

“Journals want to publish papers with positive results and this incentivizes re-
searchers to engage in data mining and p-hacking.”
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p-hacking

Criticism of empirical research:
Overreliance on p-values, which are often misunderstood.
Journals’ preference for publishing papers with positive results incentivizes data mining
and p-hacking.

Mitigation strategies:
Transparency in reporting the number of tests conducted and the selection criteria for
reported results.
Adoption of stricter statistical standards, including correction methods for multiple
testing.
Encouraging the publication of negative results to counteract publication bias.
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Backtests are not experiments

Backtests are not experiments:
Experiments can be controlled and repeated in a lab setting to isolate variables.
Backtests simulate historical performance of a strategy and cannot be repeated in the
same way.

Limitations of backtesting:
A backtest does not prove the effectiveness of a strategy.
It cannot guarantee future performance or even replicate past performance if the past
were to occur again.
Randomness and unique historical events mean the past will not exactly repeat itself.

Implications:
Backtesting should be used cautiously and not be seen as conclusive evidence of a
strategy’s success.
Investors and researchers should be aware of the limitations and not rely solely on
backtest results for decision-making.
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The paradox of flawless backtests

Inherent irony: (López de Prado 2018)
Even a backtest that appears flawless can still be fundamentally wrong.
A flawless backtest implies reproducibility, consideration of slippage, transaction costs,
etc., yet its positive outcome may not be reliable.

Expertise and false discovery:
Crafting a flawless backtest requires significant expertise and experience.
An expert likely has conducted numerous backtests, increasing the risk of encountering a
statistical fluke or false discovery due to overfitting.

Overfitting and false discoveries:
The more backtests run on the same dataset, the higher the likelihood of stumbling upon
patterns that are merely coincidental.
This phenomenon is exacerbated by the expertise and proficiency gained in backtesting
over time.
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The paradox of flawless backtests

Implications:
A good performance in a backtest, even if flawlessly executed, does not guarantee future
success.
The process of backtesting, especially when done extensively, inherently increases the risk
of identifying misleading patterns.

Mitigation strategies:
Awareness of the limitations and potential pitfalls of backtesting is crucial.
Employing rigorous statistical methods to correct for multiple testing and selection bias.
Validation of backtest results with out-of-sample data or through live trading to confirm
robustness.

Paradox of flawless backtests: Even expertly conducted backtests can mislead by
mistaking statistical anomalies for genuine patterns. Recognizing backtesting
limitations and employing strategies to mitigate false discoveries is crucial for
developing robust investment strategies.
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Limitations of backtesting insights
Limited insight:

Backtesting often fails to explain why a strategy would have been profitable, similar to
attributing skill to lottery winnings.

Ex-post rationalization:
Like lottery winners crafting narratives of deserving luck, backtesters may construct
stories to justify past success.

The “alpha” illusion:
Claims of discovering numerous “alphas” or “factors” are often akin to highlighting
winning lottery tickets without acknowledging the vast number of attempts.

Omission of failures:
Authors rarely disclose the multitude of simulations and failed attempts behind the few
successful “alphas.”

Implications:
The true value of backtesting is limited by its inability to provide genuine insights into
strategy effectiveness.
Recognizing the inherent limitations and biases in backtesting is crucial for a realistic
assessment of investment strategies.
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Purpose and limitations of backtesting

Identifying underperforming strategies:
Backtesting’s primary utility is in eliminating strategies that show poor historical
performance, rather than guaranteeing future success.

Sanity checks:
Provides a reality check on various aspects such as bet sizing, turnover, cost resilience,
and scenario behavior.

Discarding vs. improving models:
The goal is to discard bad models, not to improve them based on results (overfitting).

Model adjustment warning:
Adjusting a model based on backtesting is discouraged as it risks overfitting and is
considered ineffective.

Strategy development:
Emphasis should be on developing a sound strategy upfront; modifications
post-backtesting are too late and not advised.

Backtesting challenges:
While valuable, conducting effective and reliable backtesting is challenging.
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Recommendations to avoid overfitting in backtesting

From (López de Prado 2018):

Broad model development: Focus on entire asset classes or investment universes
instead of specific securities to lower false discovery chances.
Model averaging: Use model averaging to prevent overfitting and reduce forecasting
error variance.
Complete research before backtesting: Avoid the cycle of tweaking parameters and
repeatedly backtesting.
Track backtest count: Record the number of backtests on a dataset to estimate
overfitting probability and adjust the Sharpe ratio accordingly.
Scenario simulation: Perform stress tests and scenario simulations, ensuring
profitability across various conditions, not just historical paths.
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Recommendations to avoid overfitting in backtesting

From (Arnott, Harvey, and Markowitz 2019):

Foundation and hypothesis: Develop and adhere to hypotheses before testing to
prevent fitting models to data without a theoretical basis.
Documentation and transparency: Document all testing trials and predefine sample
data and transformations to maintain integrity and evaluate statistical significance.
Out-of-sample awareness: Acknowledge the limitations of out-of-sample data due to
prior market knowledge; recognize live trading as the true test.
Cost consideration: Incorporate all trading costs and fees to ensure realistic strategy
evaluation.
Model discipline: Avoid adjusting the model based on backtest results to prevent
overfitting.
Simplicity and regularization: Prioritize model simplicity and employ regularization
techniques to enhance robustness.

Portfolio Optimization Portfolio Backtesting 48 / 87



Mathematical tools to combat overfitting

Probability of overfitting framework: (D. H. Bailey et al. 2017) introduced a
framework to assess the likelihood of backtest overfitting.
Minimum backtest length: (D. H. Bailey et al. 2014) suggested a metric for
determining the necessary backtest length to avoid overfitting.
Probabilistic Sharpe ratio (PSR): (D. H. Bailey and López de Prado 2012) created
the PSR to estimate the probability of a Sharpe ratio outperforming a benchmark.
Deflated Sharpe ratio (DSR): (D. Bailey and López de Prado 2014) developed the
DSR to adjust the Sharpe ratio for multiple testing, especially with non-normal returns.
Online overfitting tools: (D. H. Bailey et al. 2016) provided tools to illustrate the
ease of overfitting and its financial impact.
Multiple randomized backtests: Later we discuss executing multiple randomized
backtests to prevent overfitting (Palomar 2024, chap. 8).
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Backtesting with historical market data

A backtest evaluates the out-of-sample performance of an investment strategy using
past observations.
These observations can be used in a multitude of ways from the simplest method to
more sophisticated versions.
Two approaches to use the past historical observations:

1 Directly to assess the historical performance as if the strategy had been run in the past.
2 Indirectly to simulate scenarios that did not happen in the past, such as stress tests.

We now focus on using the historical data directly to assess the performance. Four
types of backtest methods:

vanilla (one-shot) backtest
walk-forward backtest
k-fold cross-validation backtest
multiple randomized backtest
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Vanilla backtest

Overview:

A vanilla backtest is the simplest form of backtesting.
It involves splitting data into in-sample and out-of-sample sets.
The in-sample data is used for strategy design, while the out-of-sample data is for
evaluation.

Data splitting:

In-sample data is typically divided into training data and cross-validation (CV) data.
Out-of-sample data is also referred to as test data.
Training data is for fitting the model; CV data is for selecting hyper-parameters.
A gap may be left between in-sample and out-of-sample data to simulate execution
delay.
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Vanilla backtest

Data splitting in a vanilla backtest:

  cross-validation
          data

in-sample data

training data

out-of-sample data
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Vanilla backtest

Example process:

Data might be split 70% in-sample (further split into 70% training, 30% CV) and 30%
out-of-sample.
Training data could estimate mean vector µ and covariance matrix Σ.
CV data might choose hyper-parameter λ in a mean-variance portfolio.
After selecting λ, the model is refitted with all in-sample data.
Test data is then used to assess the portfolio’s performance.

Limitations:

1 A single historical path is evaluated, which may not represent different market
conditions.

2 The backtest execution does not reflect real-life portfolio management, where
strategies are updated with new data.
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Vanilla backtest
Vanilla backtest: cumulative P&L and drawdown:
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Vanilla backtest

Vanilla backtest: performance measures:

Portfolio Sharpe
ratio

annual
return

annual
volatility

Sortino
ratio

max
drawdown

CVaR
(0.95)

1/N 1.18 49% 42% 1.63 35% 7%
GMRP 1.62 105% 65% 2.58 34% 9%
IVolP 1.14 46% 41% 1.58 34% 6%
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Walk-forward backtest

Overview:

The walk-forward backtest enhances the vanilla backtest by updating the portfolio
with new data, simulating live trading practices.
It’s a historical simulation reconcilable with paper trading and is widely used in
financial literature.

Methodology:

Rolling-window basis: At time t, uses a lookback window of the past k samples
(t − k, . . . , t − 1) as in-sample data.
Expanding-window variation: Uses all previous data up to time t − 1, allowing the
window to expand over time.
A gap may be left between the last observation and portfolio execution to avoid
look-ahead bias.
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Walk-forward backtest
Data splitting in a rolling-window or walk-forward backtest:

in-sample data out-of-sample data

in-sample data out-of-sample data

in-sample data out-of-sample data

original data

...

in-sample data out-of-sample data
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Walk-forward backtes

Limitations:

1 Evaluates only one historical scenario, raising overfitting concerns.
2 Risk of look-ahead bias due to incorrect use of future information.

Summary:

The walk-forward backtest closely mirrors real trading by periodically updating the
strategy with new data.
Despite its realism and common use in finance, it’s crucial to be aware of its
limitations, including the potential for overfitting and the risk of time alignment errors.
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Walk-forward backtest
Walk-forward backtest: cumulative P&L and drawdown:
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Walk-forward backtest

Walk-forward backtest: performance measures:

Portfolio Sharpe
ratio

annual
return

annual
volatility

Sortino
ratio

max
drawdown

CVaR
(0.95)

1/N 1.10 33% 30% 1.54 35% 5%
GMRP 0.54 27% 50% 0.75 53% 8%
IVolP 1.09 31% 28% 1.52 32% 4%
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k-fold cross-validation backtest
Overview:

The k-fold cross-validation backtest addresses the limitation of evaluating a single
historical path, inherent in vanilla and walk-forward backtests, by testing k alternative
scenarios.
k-fold cross-validation is a widely used technique in machine learning to evaluate the
generalizability of a model across different subsets of data.
It divides data into k subsets for training and testing. However, its application in
finance is problematic due to the unique characteristics of financial data.

Methodology:

Partitioning: The dataset is divided into k subsets.
Cross-validation steps:

1 Training: For each subset i = 1, . . . , k, the model is trained on all subsets except for
subset i .

2 Testing: The model, trained excluding subset i , is then tested on subset i .
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k-fold cross-validation backtest

Data splitting in a k-fold cross-validation backtest (with k = 5):

original data

out-of-sample dataFold 1

Fold 2

Fold 3

Fold 4

Fold 5

out-of-sample data

out-of-sample data

out-of-sample data

out-of-sample data
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k-fold cross-validation backtest

Benefits:

Multiple scenarios: By testing the model on k different scenarios, this method
provides a more robust assessment of its performance.
Reduced overfitting: The approach helps mitigate the risk of overfitting by ensuring
the model is not overly tailored to a specific subset of data.

Issues:

Implicit assumption: The order of data blocks in k-fold cross-validation is assumed
to be irrelevant, suitable for i.i.d. (independent and identically distributed) data.
Financial data reality: Financial returns, while possibly uncorrelated, are not
independent. Phenomena like volatility clustering indicate a temporal structure,
making the i.i.d. assumption invalid.
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k-fold cross-validation backtest
Issues with k-fold cross-validation in finance:

1 Single data path: Still relies on a single historical data path, limiting scenario
diversity.

2 Historical interpretation: Lacks a clear historical interpretation due to the
non-sequential testing of data subsets.

3 Leakage risk: High likelihood of leakage since training data may not strictly precede
test data, compromising the test’s integrity.

Summary:

While k-fold cross-validation is valuable in many machine learning contexts, its
application in financial backtesting is fraught with challenges.
The temporal structure of financial data and the high risk of leakage make it a
potentially dangerous method in practice.
Alternative backtesting approaches that respect the temporal order of financial data
are recommended to avoid these pitfalls.
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Multiple randomized backtests
Overview:

Multiple randomized backtests address the limitations of evaluating a single historical
path, as seen in vanilla and walk-forward backtests, and the leakage issue in k-fold
cross-validation.
This method generates various backtests, each representing a different historical
scenario, while maintaining the chronological order of data to prevent leakage.

Process:
1 Data preparation: Start with extensive historical data across a broad time frame and

asset range.
2 Execution: Repeat k times:

a. Resample dataset by randomly selecting a subset of assets and a contiguous time period.
b. Conduct a walk-forward or rolling-window backtest on this resampled dataset.

3 Analysis: Compile and analyze statistics from the k backtests to assess overall
strategy performance.
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Multiple randomized backtests

Data splitting in multiple randomized backtests:
original data

Resample 1 Resample 2 Resample 3

... ... ...
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Multiple randomized backtests

Advantages:

Diverse historical scenarios: By simulating multiple scenarios, this method offers a
broader evaluation of strategy performance across different market regimes.
Reduced leakage risk: Maintaining the chronological order of data minimizes the
risk of leakage, enhancing the reliability of backtest results.

Summary:

While not guaranteeing future performance, multiple randomized backtests provide a
more comprehensive and accurate assessment of a strategy’s potential, making it a
preferred method for backtesting in finance.
This approach effectively mitigates the main drawbacks of other backtesting methods
by incorporating randomness and respecting data temporality.
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Multiple randomized backtests

Multiple randomized backtest: performance measures:

Portfolio Sharpe
ratio

annual
return

annual
volatility

Sortino
ratio

max
drawdown

CVaR
(0.95)

1/N 1.01 28% 25% 1.42 25% 4%
GMVP 0.72 16% 22% 1.01 24% 3%
IVolP 0.94 24% 23% 1.33 23% 3%
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Multiple randomized backtests
Multiple randomized backtests: barplots of maximum drawdown and annualized volatility:

max drawdown annual volatility

1/N GMVP IVolP 1/N GMVP IVolP
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Multiple randomized backtests
Multiple randomized backtests: boxplots of Sharpe ratio and maximum drawdown:

IVolP

GMVP

1/N

0 1 2

Sharpe ratio

IVolP

GMVP

1/N

0.1 0.2 0.3 0.4

max drawdown
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Outline

1 A typical backtest

2 The seven sins of quantitative investing

3 The dangers of backtesting

4 Backtesting with historical market data

5 Backtesting with synthetic data

6 Summary



Backtesting with synthetic data

Monte Carlo simulations
Generate synthetic yet realistic data to simulate scenarios not present in historical data
Allows backtesting strategies on large number of unseen testing sets
Reduces likelihood of overfitting to a particular dataset

Advantages of synthetic data
Stress test strategies under different market scenarios
Evaluate performance in extreme or rare events
Increase the number of testing sets for more robust backtesting
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Backtesting with synthetic data

Approaches to Monte Carlo simulations
Parametric methods

Postulate and fit a model to the data
Generate synthetic data from the fitted model
Quality depends on model assumptions

Nonparametric methods
Directly resample historical data without modeling
More robust but may destroy temporal structure

Hybrid methods
Combine modeling and resampling for model residuals
Model as much structure as possible
Generate residuals using parametric or nonparametric approach

Portfolio Optimization Portfolio Backtesting 74 / 87



Synthetic data: i.i.d. assumption

Parametric method
Model returns as i.i.d. (independent and identically distributed)
Fit a distribution function (e.g., Gaussian or heavy-tailed)
Generate synthetic data from the fitted distribution

Nonparametric method
Resample original returns with replacement (assuming i.i.d.)

Limitations of i.i.d. assumption
Financial data violates the i.i.d. assumption
Absolute returns exhibit volatility clustering (not captured by i.i.d.)

Issues with i.i.d. methods
Destroy volatility clustering structure present in original data
Parametric method assumes Gaussian distribution (fails to capture heavy tails)
Nonparametric method disperses deep spikes instead of clustering them

Need for incorporating temporal structure
More realistic synthetic data generation requires modeling temporal dependencies
Capture volatility clustering and other stylized facts of financial data
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Synthetic data: i.i.d. assumption
Example of an original sequence and two synthetic sequences generated with i.i.d.
parametric and nonparametric methods:

nonparametric synthetic data

parametric synthetic data

original data
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t

Synthetic return data generation under i.i.d. model
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Synthetic data: Temporal structure
Sophisticated modeling approach

Expected returns modeled based on past values:
µt = f (r t−k , . . . , r t−1)

Returns expressed as forecast plus residual error:
r t = µt + ut

where ut is a zero-mean residual error with covariance matrix Σ.
Advanced model includes covariance model for Σt :

r t = µt + Σ1/2
t ϵt

where ϵt is a standardized zero-mean identity-covariance residual error.
Generating synthetic residuals and returns

Parametric approach
Model residuals with an i.i.d. model
Generate new synthetic residuals

Nonparametric approach
Resample residuals from historical data
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Synthetic data: Temporal structure

Preservation of volatility clustering
Both methods aim to preserve volatility clustering in synthetic data
Parametric method issues

Assumes Gaussian distribution for residuals
Could be improved with a heavy-tailed distribution

Nonparametric method advantages
More robust to modeling errors
Directly resamples original residuals

Conclusion
Hybrid method combines sophisticated modeling of returns and residuals
Allows for more accurate synthetic data generation
Preserves important financial data characteristics like volatility clustering
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Synthetic data: Temporal structure
Example of an original sequence and two synthetic sequences generated by modeling the
volatily clustering and the residuals with parametric and nonparametric methods:

nonparametric synthetic data

parametric synthetic data

original data
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Synthetic return data generation modeling the volatility clustering
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Synthetic data: Stress tests

Purpose of stress tests
Generate realistic synthetic data for different market scenarios
Test investment portfolio resilience against potential future financial situations

Customized market scenarios
Strong bull market
Weak bull market
Side market (range-bound)
Weak bear market
Strong bear market

Historical crisis periods for stress testing
Stock market crash of October 1987
Asian crisis of 1997
Tech bubble burst in 1999-2000
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Synthetic data: Stress tests

Stress testing process
Recreate specific market conditions or periods
Assess strategy performance under these extreme conditions

Significance of stress testing
Provides insights into how strategies might perform during market extremes
Helps in understanding potential risks and tailoring risk management strategies

Illustrations of stress test scenarios
Bull market stress test

Synthetic data generation based on a reference period (e.g., April-August 2020)
Bear market stress test

Synthetic data generation based on a reference period (e.g., September-December 2018)
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Synthetic data: Stress tests
Example of original data corresponding to a bull market and two synthetic generations of
bull markets for stress testing:

stress test data #2

stress test data #1

original data
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Synthetic prices for stress testing corresponding to a bull market
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Synthetic data: Stress tests
Example of original data corresponding to a bear market and two synthetic generations of
bear markets for stress testing:

stress test data #2

stress test data #1

original data
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Synthetic prices for stress testing corresponding to a bear market
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Outline

1 A typical backtest

2 The seven sins of quantitative investing

3 The dangers of backtesting

4 Backtesting with historical market data

5 Backtesting with synthetic data

6 Summary



Summary

Backtesting is crucial for strategy development and evaluation but is often misunderstood
and its risks underestimated. Key considerations include:

Backtest results are questionable due to biases like survivorship, look-ahead,
storytelling, overfitting, transaction costs, outliers, and shorting costs.
Overfitting is the primary reason backtests can be deceptive.
Given these pitfalls, backtest results from publications and marketing materials should
be viewed skeptically.
It’s advisable to perform varied backtests and stress tests to gauge a strategy’s
robustness.

This cautionary note aims to equip the reader with awareness and guidance for future
backtesting endeavors.
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