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Abstract

Recent advancements in convex optimization theory have led to applications in
engineering, finance, and machine learning, while also driving mathematical progress and
efficient algorithm development. Key references include (Bertsekas 1999; Nemirovski
2001; Bertsekas, Nedić, and Ozdaglar 2003; S. P. Boyd and Vandenberghe 2004;
Nesterov 2018), with classic works by (Luenberger 1969; Rockafellar 1970) and
engineering applications in (Palomar and Eldar 2009). Rockafellar’s 1993 survey
(Rockafellar 1993) emphasized that the key distinction in optimization is between
convexity and nonconvexity. Convex problems can be solved optimally either in closed
form or numerically with efficient algorithms (S. P. Boyd and Vandenberghe 2004). Most
practical problems are not initially convex, requiring practitioners to uncover hidden
convexity. Transforming a problem into a convex form allows for efficient numerical
solutions and the incorporation of additional convex constraints. These slides provide a
concise introduction to convex optimization theory, based on (S. P. Boyd and
Vandenberghe 2004), and readers are encouraged to consult this comprehensive source
and (Palomar 2024, Appendix A) for more details.
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Optimization problems

Mathematical optimization problem:
Can be written in the following standard form: (S. P. Boyd and Vandenberghe 2004,
chap. 1)

minimize
x

f0(x)
subject to fi(x) ≤ 0,

hi(x) = 0,
i = 1, . . . ,m
i = 1, . . . , p,

Components:
Optimization variable: x = (x1, . . . , xn) ∈ Rn

Objective function: f0 : Rn −→ R
Inequality constraint functions: fi : Rn −→ R, i = 1, . . . ,m
Equality constraint functions: hi : Rn −→ R, i = 1, . . . , p

Unconstrained problem:
If there are no constraints, the problem is called unconstrained.

Goal:
Find an optimal solution x⋆ that minimizes f0 while satisfying all the constraints.
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Examples

Applications of convex optimization:
Circuit design
Filter design
Communication systems (e.g., transceiver design, multi-antenna beamforming design,
maximum likelihood detection)
Radar systems
Communication networks (e.g., power control in wireless networks, congestion control in
the Internet)
Financial engineering (e.g., portfolio design, index tracking)
Model fitting (e.g., in financial data or recommender systems)
Image processing (e.g., deblurring, compressive sensing, blind separation, inpainting)
Robust designs under uncertainty
Sparse regression
Low-rank matrix discovery
Machine learning
Graph learning from data
Biomedical applications (e.g., DNA sequencing, anti-viral vaccine design)
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Examples

Basic elements of an optimization problem:
Variables: Differ from other fixed parameters.
Constraints: Conditions that must be satisfied.
Objective: The function to be minimized or maximized.

Example: Device sizing for electronic circuits
Variables: Widths and lengths of devices.
Constraints: Manufacturing limits, timing requirements, or maximum area.
Objective: Power consumption.

Example: Portfolio design
Variables: Amounts invested in different assets.
Constraints: Budget, maximum investments per asset, or minimum return.
Objective: Overall risk or return variance.
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Definitions: Domain and constraints

Domain of the optimization problem:
Defined as the set of points for which the objective and all constraint functions are
defined:

D =
m⋂

i=0
dom fi ∩

p⋂
i=1

dom hi

Interpreted as a set of implicit constraints x ∈ D.
Contrasts with explicit constraints fi(x) ≤ 0 and hi(x) = 0.

Unconstrained problem:
No explicit constraints.
Example:

minimize
x

log
(

a − bTx
)

Implicit constraint: a > bTx
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Definitions: Feasibility
Feasibility:

A point x ∈ D is feasible if it satisfies all the constraints: fi(x) ≤ 0 and hi(x) = 0.
A point is infeasible if it does not satisfy all the constraints.
The problem is feasible if there exists at least one feasible point.
The problem is infeasible if no feasible points exist.

Optimal value:
Defined as:

p⋆ = inf {f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

If the problem is feasible, the optimal value may be achieved at an optimal solution x⋆,
i.e., f0(x⋆) = p⋆.
The problem may be unbounded below, i.e., p⋆ = −∞.
If the problem is infeasible, it is commonly denoted by p⋆ = +∞.

Optimal points:
A feasible point x is optimal if f0(x) = p⋆.
There may be more than one optimal point; the set of optimal points is denoted by Xopt.
A feasible point x is locally optimal if it is optimal within a local neighborhood.
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Definitions: Feasibility

Example: Unconstrained optimization problems with scalar variable x ∈ R:
f0 (x) = 1/x , dom f0 = R++: p⋆ = 0, but no optimal point since the optimal value
cannot be achieved.
f0(x) = −log x , dom f0 = R++: Function is unbounded below, p⋆ = −∞.
f0 (x) = x3 − 3x : Nonconvex function with p⋆ = −∞ and a local optimum at x = 1.

Active/reduncant constraints:
If x is feasible and fi(x) = 0, the ith inequality constraint fi(x) ≤ 0 is active at x.
If fi(x) < 0, the constraint fi(x) ≤ 0 is inactive.
Equality constraints are active at all feasible points.
A constraint is redundant if deleting it does not change the feasible set.
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Definitions: Feasibility problem

Feasibility problem:
Goal is to find a feasible point, not necessarily to minimize or maximize any objective.
Formulated as:

find
x

x
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

Feasibility problem as a special case of a general optimization problem:
Can be regarded as:

minimize
x

0
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

Optimal value:
p⋆ = 0 if the constraints are feasible.
p⋆ = ∞ if the constraints are infeasible.
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Solving optimization problems

General optimization problems:
Typically very difficult to solve.
May require long computation times for optimal solutions or result in sub-optimal
solutions in reasonable times.
Exceptions include least squares problems, linear programming problems, and convex
optimization problems.
General nonconvex problems (nonlinear problems) are particularly challenging.

Least-squares (LS) problems:
Originated with Gauss in 1795.
Formulated as:

minimize
x

∥Ax − b∥2
2 .

Closed-form solution: x⋆ =
(

ATA
)−1

ATb.
Reliable and efficient algorithms exist.
Considered trivial due to ease of identification and solution.
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Solving optimization problems

Linear programming (LP):
Formulated as:

minimize
x

cTx
subject to aT

i x ≤ bi , i = 1, . . . ,m.
No closed-form solutions in general.
Reliable and efficient algorithms and software available.
Not as easy to recognize as LS, but standard tricks can convert various problems into LPs.

Convex optimization problems:
Inequality-constrained convex problem:

minimize
x

f0(x)
subject to fi(x) ≤ bi , i = 1, . . . ,m,

All functions are convex.
No closed-form solutions in general.
Reliable and efficient algorithms and software available.
Often difficult to recognize; many tricks for transforming problems into convex form.
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Solving optimization problems

Nonconvex optimization:
Generally very difficult to solve.
Requires either long computation times or compromises on optimality.
Two main strategies:

Local optimization: Fast algorithms, but no guarantee of global optimality (depends on
initial point).
Global optimization: Worst-case complexity increases exponentially with problem size, but
it ensures discovery of a global solution.

Computational complexity:
Measured in number of operations required to obtain a solution.
Complexity is a function of the number of variables n.
Polynomial complexity is acceptable in practice.
Exponential complexity is not acceptable as it quickly explodes with n.
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Historical snapshop of optimization

History of optimization theory (convex analysis):
Extensively developed during 1900-1970.
Computational aspects and applications came later.

Key developments in computational methods:
Simplex method (1947):

Developed by Dantzig for linear programming (LP).
Very efficient in practice but has exponential worst-case complexity.

Ellipsoid method (1970s):
Proposed with provable polynomial worst-case complexity.
Can be very slow in practice.

Interior-point method (1984):
Proposed by Karmarkar for LPs.
Polynomial-time complexity, efficient in both theory and practice.
Extended to quadratic programming and linear complementarity problems.
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Historical snapshop of optimization

Advancements in the 1990s:
Interior-point methods for convex problems (1994):

Developed by Nesterov and Nemirovskii.
Self-concordant function theory facilitated expansion of log-barrier function-based
algorithms.
Applied to a wider array of convex problems, including semidefinite programming and
second-order cone programming.

Practical applications:
Linear programming:

Widely used since the 1950s for modeling real-life problems, such as allocation issues.
Convex problems:

Little interest in modeling real-life problems as convex problems until the mid-1990s.
Surge in activity related to modeling applications as convex problems following the
development of interior-point methods for convex problems.
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Illustrative example: Lamp illumination problem
Lamp illumination problem:

Goal: Achieve desired illumination Ides on all patches by controlling lamp powers.
Intensity at patch k:

Ik =
m∑

j=1
akjpj

Coefficients: akj = cos θkj/r2
kj , where θkj and rkj are the angle and distance between

lamp j and patch k.
Relaxed problem:

Achieve Ik ≈ Ides.
Formulation: Minimize the largest of the errors measured in a logarithmic scale (because
the eyes perceive intensity on a log-scale):

minimize
I1,...,In,p1,...,pm

maxk |logIk − logIdes|

subject to 0 ≤ pj ≤ pmax,
Ik =

∑m
j=1 akjpj ,

j = 1, . . . ,m
k = 1, . . . , n.

This problem appears complex, and we will explore various possible approaches.
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Illustrative example: Lamp illumination problem

Resolution options:
1 Heuristic guess:

Use uniform power pj = p and try different values of p.
2 Least-squares (LS) formulation:

minimize
I1,...,In,p1,...,pm

∑n
k=1 (Ik − Ides)2

subject to Ik =
∑m

j=1 akjpj , k = 1, . . . , n,

Clip pj if pj > pmax or pj < 0 to make it feasible.
3 Linear programming (LP) formulation:

minimize
I1,...,In,p1,...,pm

maxk |Ik − Ides|

subject to 0 ≤ pj ≤ pmax,
Ik =

∑m
j=1 akjpj ,

j = 1, . . . ,m
k = 1, . . . , n.

Can be transformed into an LP with simple manipulations.
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Illustrative example: Lamp illumination problem
4 Convex optimization formulation:

minimize
I1,...,In,p1,...,pm

maxk h (Ik/Ides)

subject to 0 ≤ pj ≤ pmax,
Ik =

∑m
j=1 akjpj ,

j = 1, . . . ,m
k = 1, . . . , n.

where h (u) = max {u, 1/u}.

Additional constraints:
Convex constraint example: “No more than half of total power is in any 10 lamps.”

Can be written in convex form, keeping the problem solvable.
Combinatorial constraint example: “No more than half of the lamps are on.”

Appears simple but is a combinatorial constraint, making the problem exponentially
complex.

Moral:
Untrained intuition may not always work.
Proper background and intuition are needed to discern between difficult and easy
problems.
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Definitions

Line passing through two points:
Equation: θx + (1 − θ)y , where θ ∈ R.
If 0 ≤ θ ≤ 1, it describes the line segment between x and y .

Convex set:
A set C ∈ Rn is convex if the line segment between any two points in C lies in C.
Formally, for any x, y ∈ C and 0 ≤ θ ≤ 1:

θx + (1 − θ) y ∈ C.

For detailed information, refer to (S. P. Boyd and Vandenberghe 2004, chap. 2).
Convex combination:

A convex combination of points x1, . . . , xk is of the form θ1x1 + θ2x2 + · · · + θkxk , where
θ1 + · · · + θk = 1 and θi ≥ 0, i = 1, . . . , k.
A set is convex if and only if it contains every convex combination of its points.

Convex Optimization Theory 21 / 136



Definitions

Convex hull:
The convex hull of a set C is the set of all convex combinations of points in C.
The convex hull of C is always convex.
It is the smallest convex set that contains C.

Cone:
A set C is a cone if for every x ∈ C and θ ≥ 0, we have θx ∈ C.

Convex cone:
A set C is a convex cone if it is convex and a cone.
Formally, for any x1, x2 ∈ C and θ1, θ2 ≥ 0:

θ1x1 + θ2x2 ∈ C.
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Elementary convex sets

Hyperplanes and halfspaces:
Hyperplane:

Set of the form: {
x | aTx = b

}
,

where a ∈ Rn, b ∈ R.
Geometric interpretation: Set of points orthogonal to vector a with an offset.

Halfspace:
A hyperplane divides Rn into two halfspaces.
(Closed) halfspace: {

x | aTx ≤ b
}

.
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Elementary convex sets

Polyhedra:
Solution set of a finite number of linear equalities and inequalities:

P = {x | Ax ≤ b, Cx = d} ,

where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, d ∈ Rp.
Examples:

Unit simplex: {
x | x ≥ 0, 1Tx ≤ 1

}
.

Probability simplex: {
x | x ≥ 0, 1Tx = 1

}
.
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Elementary convex sets

Balls and ellipsoids:
Euclidean ball:

Center xc and radius r :

B(xc , r) =
{

x | ∥x − xc∥2 ≤ r
}

=
{

x | (x − xc)T(x − xc) ≤ r 2} ,

where ∥·∥2 is the Euclidean norm.
Another representation:

B(xc , r) =
{

xc + ru | ∥u∥2 ≤ 1
}

.

Ellipsoid:
Defined as:

E(xc , P) =
{

x | (x − xc)TP−1(x − xc) ≤ 1
}

=
{

xc + Au | ∥u∥2 ≤ 1
}

,

with P = PT ∈ Rn×n ≻ 0 (symmetric and positive definite), and A is the square-root
matrix P1/2.
A ball is an ellipsoid with P = r 2I.
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Elementary convex sets

Norm balls and norm cones:
Norm ball:

For any norm ∥·∥ on Rn:
B(xc , r) = {x | ∥x − xc∥ ≤ r} .

Norm cone:
Convex set:

C =
{

(x, t) ∈ Rn+1 | ∥x∥ ≤ t
}

.

Second-order cone (ice-cream cone):

C =
{

(x, t) ∈ Rn+1 | ∥x∥2 ≤ t
}

,

where the norm is the Euclidean norm ∥·∥2.
Positive semidefinite cone:

Set of symmetric positive semidefinite matrices:

Sn
+ =

{
X ∈ Rn×n | X = XT ⪰ 0

}
This set is a convex cone.
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Operations that preserve convexity

Establishing convexity:
Direct use of the definition of convexity can be cumbersome.
A more practical approach is to show that the set can be obtained from simple convex
sets (e.g., hyperplanes, halfspaces, balls, ellipsoids, cones) by operations that preserve
convexity.

Intersection:
Convexity is preserved under intersection.
If S1 and S2 are convex, then S1 ∩ S2 is convex.
This property extends to the intersection of multiple sets, even an infinite number of sets.
Example:

A polyhedron is the intersection of halfspaces and hyperplanes, hence convex.
A more sophisticated example:

S = {x ∈ Rn | |px (t)| ≤ 1 for |t| ≤ π/3} ,

where px(t) = x1 cos(t) + x2 cos(2t) + · · · + xn cos(nt).
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Operations that preserve convexity

Affine composition:
A function is affine if it has the form f (x) = Ax + b, where A ∈ Rm×n and b ∈ Rm.
If S ⊆ Rn is convex and f : Rn −→ R is an affine function, then the image of S under f ,

f (S) = {f (x) | x ∈ S} ,

is convex.
Examples:

Scaling and translation.
Projection of a convex set onto some of its coordinates:

{x1 ∈ Rm | (x1, x2) ∈ S for some x2 ∈ Rn}

is convex.
Affine composition of the norm cone:{

x ∈ Rn | ∥Ax + b∥ ≤ cTx + d
}

.
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Operations that preserve convexity

Perspective function:
The perspective function scales or normalizes vectors so the last component is one, and
then drops the last component.
Formally, the perspective function P : Rn+1 −→ Rn, with domain dom P = Rn × R++ is
defined as:

P(x, t) = x/t.

Property:
Images and inverse images of convex sets under perspective functions are convex.
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Definitions

Convex function:
A function f : Rn → R is convex if:

The domain, dom f , is a convex set.
For all x, y ∈ dom f and 0 ≤ θ ≤ 1, the following holds:

f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y).

Geometric interpretation:
The line segment (chord) between (x, f (x)) and (y , f (y)) lies above the graph of f .

Strictly convex function:
If strict inequality holds in the convex function definition whenever x ̸= y and 0 < θ < 1.

Concave function:
If −f is convex.

For detailed information, refer to (S. P. Boyd and Vandenberghe 2004, chap. 3).
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Elementary convex and concave functions

Affine function:
For an affine function, equality always holds in the convex function definition.
All affine (and therefore also linear) functions are both convex and concave.
Conversely, any function that is both convex and concave is affine.

Functions on R:
Exponential:

eax is convex on R for any a ∈ R.
Powers:

x a is convex on R++ when a ≥ 1 or a ≤ 0 (e.g., x2).
x a is concave for 0 ≤ a ≤ 1.

Powers of absolute value:
|x |p is convex on R for p ≥ 1 (e.g., |x |).

Logarithm:
log x is concave on R++.

Negative entropy:
x log x is convex on R++.
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Elementary convex and concave functions

Functions on Rn:
Quadratic function:

f (x) = xTPx + 2qTx + r is convex on Rn if and only if P ⪰ 0.
Norms:

Every norm ∥x∥ is convex on Rn (e.g., ∥x∥∞, ∥x∥1, and ∥x∥2).
Max function:

f (x) = max{x1, . . . , xn} is convex on Rn.
Quadratic over linear function:

f (x , y) = x2/y is convex on R × R++.
Geometric mean:

f (x) =
(∏n

i=1 xi
)1/n is concave on Rn

++.
Log-sum-exp function:

f (x) = log (ex1 + · · · + exn ) is convex on Rn.
Can be used to approximate the function f (x) = max{x1, . . . , xn}.
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Elementary convex and concave functions

Functions on Rn×n:
Log-determinant:

The function f (X) = logdet(X) is concave on Sn
++ =

{
X ∈ Rn×n | X ≻ 0

}
.

Maximum eigenvalue:
The function

f (X) = λmax(X) ≜ sup
y ̸=0

yTXy
yTy

is convex on Sn.
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Epigraph
Convexity in sets and functions:

The term “convex” is used to describe both sets and functions, referring to distinct
properties.
These properties can be linked, as demonstrated below.

Graph of a function:
Defined for a function f : Rn → R as the set:{

(x, f (x)) ∈ Rn+1 | x ∈ dom f
}

This set is a subset of Rn+1.
Epigraph of a function:

Defined for a function f : Rn → R as the set:
epi f =

{
(x, t) ∈ Rn+1 | x ∈ dom f , f (x) ≤ t

}
Conceptualized as pouring a bucket of water over the function and filling it up indefinitely.

Link between convex sets and convex functions:
A function is convex if and only if its epigraph is a convex set:

f is convex ⇐⇒ epi f is convex
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Characterization of convex functions: Restriction to a line
Convex function property:

A function f : Rn → R is convex if and only if it is convex when restricted to any line
intersecting its domain.
Formally, f is convex if the function g : R → R defined as

g(t) = f (x + tv)

is convex on its domain dom g = {t | x + tv ∈ dom f }, for any x ∈ dom f and v ∈ Rn.
Utility of this property:

Allows checking convexity by restricting the function to a line.
Simplifies the process, making it easier to analyze and even plot for exploratory purposes.

Example: concavity of the log-determinant function f (X) = logdet(X) can be
reduced to the concavity of the log function:

g(t) = logdet(X + tV ) = logdet(X) + logdet
(
I + tX−1/2V X−1/2

)
= logdet(X) +

n∑
i=1

log(1 + tλi)
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Characterization of convex functions: First-order condition

Gradient of a differentiable function:
For a differentiable function f , the gradient is given by:

∇f (x) =
[

∂f (x)
∂x1

· · · ∂f (x)
∂xn

]T
∈ Rn

The gradient exists at each point in dom f , which is open.
First-order Taylor approximation:

Near x, the first-order Taylor approximation of f is:

f (y) ≈ f (x) + ∇f (x)T(y − x)

Convexity condition for differentiable functions:
Suppose f is differentiable. Then f is convex if and only if dom f is convex and:

f (y) ≥ f (x) + ∇f (x)T(y − x)

holds for all x, y ∈ dom f .
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Characterization of convex functions: First-order condition

Geometric interpretation:
The inequality states that for a convex function, the first-order Taylor approximation is a
global underestimator of the function.
Conversely, if the first-order Taylor approximation is always a global underestimator, then
the function is convex.

Implications of the inequality:
From local information about a convex function (its value and derivative at a point), we
can derive global information (a global underestimator).
This property justifies the connection between local optimality and global optimality in
convex optimization problems.
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Characterization of convex functions: Second-order condition

Hessian of a twice differentiable function:
For a twice differentiable function f , the Hessian is given by:

∇2f (x) =
(
∂2f (x)
∂xi∂xj

)
ij

∈ Rn×n

The Hessian exists at each point in dom f , which is open.
Second-order Taylor approximation:

Near x, the second-order Taylor approximation of f is:

f (y) ≈ f (x) + ∇f (x)T(y − x) + 1
2 (y − x)T∇2f (x)(y − x)

Convexity condition for twice differentiable functions:
Suppose f is twice differentiable. Then f is convex if and only if dom f is convex and its
Hessian is positive semidefinite:

∇2f (x) ⪰ 0
for all x ∈ dom f .
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Characterization of convex functions: Second-order condition

Special case for functions on R:
For a function on R, this reduces to the condition f ′′(x) ≥ 0 (and dom f convex, i.e., an
interval).
This means that the derivative is nondecreasing.

Geometric interpretation:
The condition ∇2f (x) ⪰ 0 can be interpreted as the requirement that the graph of the
function have positive (upward) curvature at x.

Concavity condition:
Similarly, f is concave if and only if dom f is convex and:

∇2f (x) ⪯ 0

for all x ∈ dom f .
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Characterization of convex functions

Methods to characterize convexity:
Applying the definition directly:

Check if f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y) for all x, y ∈ dom f and θ ∈ [0, 1].
Restricting the function to a line:

Verify if g(t) = f (x + tv) is convex for any x ∈ dom f and v ∈ Rn.
Using the first-order condition:

Ensure f (y) ≥ f (x) + ∇f (x)T(y − x) for all x, y ∈ dom f .
Employing the second-order condition:

Confirm ∇2f (x) ⪰ 0 for all x ∈ dom f .
Operations that preserve convexity:

A practical approach to establish convexity is to derive the function from basic convex or
concave functions through operations that preserve convexity, as explored next.
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Operations that preserve convexity
Nonnegative weighted sum:

If f1 and f2 are both convex functions, then so is their sum f1 + f2.
Scaling a function f with a nonnegative number α ≥ 0 preserves convexity.
Combining nonnegative scaling and addition, a nonnegative weighted sum of convex
functions, with weights w1, . . . ,wm ≥ 0,

f = w1f1 + · · · + wmfm,
is convex.

Composition with an affine mapping:
Suppose h : Rm → R, A ∈ Rm×n, and b ∈ Rm. Define f : Rn → R as the composition of
h with the affine mapping Ax + b:

f (x) = h(Ax + b),
with dom f = {x | Ax + b ∈ dom h}.
If h is convex, so is f ; if h is concave, so is f .
Examples:

f (x) = ∥y − Ax∥ is convex.
f (X) = logdet

(
I + HXHT)

is concave.
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Operations that preserve convexity

Pointwise maximum and supremum:
If f1 and f2 are convex functions, then their pointwise maximum f , defined as

f (x) = max {f1(x), f2(x)} ,

with dom f = dom f1 ∩ dom f2, is also convex.
This property extends to more than two functions. If f1, . . . , fm are convex, then their
pointwise maximum

f (x) = max {f1(x), . . . , fm(x)}

is also convex.
Example:

The sum of the r largest components of x ∈ Rn, f (x) = x[1] + x[2] + · · · + x[r ], where x[i] is
the ith largest component of x, is convex because it can be written as the pointwise
maximum

f (x) = max {xi1 + xi2 + · · · + xir | 1 ≤ i1 < i2 < · · · < ir ≤ n} .
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Operations that preserve convexity

Pointwise maximum and supremum:
The pointwise maximum property extends to the pointwise supremum over an infinite set
of convex functions. If for each y ∈ Y, f (x, y) is convex in x, then the pointwise
supremum g , defined as

g(x) = supy∈Y f (x, y),

is convex in x.
Examples:

Distance to farthest point in a set C:

f (x) = supy∈C ∥x − y∥ .

Maximum eigenvalue function of a symmetric matrix:

λmax(X) = sup
y ̸=0

yTXy
yTy .
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Operations that preserve convexity
Composition with arbitrary functions:

Suppose h : Rm → R and g : Rn → Rm. Their composition f = h ◦ g : Rn → R is defined
as

f (x) = h(g(x))
with dom f = {x ∈ dom g | g(x) ∈ dom h}.
For scalar composition (m = 1):

f is convex if: {
h is convex nondecreasing and g is convex
h is convex nonincreasing and g is concave

f is concave if: {
h is concave nondecreasing and g is concave
h is concave nonincreasing and g is convex

Examples:
If g is convex, then exp g(x) is convex.
If g is concave and positive, then log(g(x)) is concave.
If g is concave and positive, then 1/g(x) is convex.
If g is convex and nonnegative, then g(x)p is convex for p ≥ 1.
If g is convex, then −log(−g(x)) is convex on {x | g(x) < 0}.
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Operations that preserve convexity

Partial minimization:
If f (x, y) is convex in (x, y) and C is a convex set, then the function

g(x) = inf
y∈C

f (x, y)

is convex in x.
Example:

Distance to a set C:
f (x) = infy∈C ∥x − y∥ .

Perspective:
Suppose f : Rn → R, then the perspective of f is the function g : Rn+1 → R defined as

g(x, t) = tf (x/t),

with domain dom g =
{

(x, t) ∈ Rn+1 | x/t ∈ dom f , t > 0
}

.
The perspective operation preserves convexity.
Examples:

Since f (x) = xTx is convex, its perspective g(x, t) = xTx/t is convex for t > 0.
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Quasiconvex functions

α-sublevel set:
Defined for a function f : Rn → R as:

Sα = {x ∈ dom f | f (x) ≤ α} .

Sublevel sets of a convex function are convex for any value of α.
The converse is not true: a function can have all its sublevel sets convex but not be a
convex function.

Example: f (x) = −ex is not convex on R (it is strictly concave) but all its sublevel sets are
convex.

Quasiconvex and quasiconcave functions:
A function f : Rn → R is called quasiconvex if its domain and all its sublevel sets Sα, for
all α, are convex.
A function f is quasiconcave if −f is quasiconvex.
A function that is both quasiconvex and quasiconcave is called quasilinear.
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Quasiconvex functions

Examples of quasiconvex and quasiconcave functions:
For a function on R to be quasiconvex, each sublevel set must be an interval.
Examples:√

|x | is quasiconvex on R.
ceil (x) = inf {z ∈ Z | z ≥ x} is quasilinear.
log x is quasilinear on R++.
f (x1, x2) = x1x2 is quasiconcave on R2

++.
The linear-fractional function

f (x) = aTx + b
cTx + d , dom f =

{
x | cTx + d > 0

}
is quasilinear.
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Quasiconvex functions

Representation of sublevel sets:
Sublevel sets of a quasiconvex function f (which are convex) can be represented via
inequalities of convex functions:

f (x) ≤ t ⇐⇒ ϕt(x) ≤ 0,

where ϕt(x) is a family of convex functions in x (indexed by t).
Example of convex over concave function:

Consider a function f (x) = p(x)
q(x) , where p(x) ≥ 0 and q(x) > 0. The function f (x) is not

convex but it is quasiconvex:

f (x) ≤ t ⇐⇒ p(x) − tq(x) ≤ 0,

so we can take the convex function ϕt(x) = p(x) − tq(x) for t ≥ 0.
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Convex optimization problems

Definition: If the objective and inequality constraint functions of an optimization
problem are convex and the equality constraint functions are linear (or affine), the
problem is a convex optimization problem or convex program.
Standard form of a convex optimization problem:

A convex optimization problem can be written in standard form as:

minimize
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

where f0, f1, . . . , fm are convex and the p equality constraints are affine with A ∈ Rp×n

and b ∈ Rp.
For detailed information, refer to (S. P. Boyd and Vandenberghe 2004, chap. 4).
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Convex optimization problems

Advantages of convex optimization problems:
Convex problems have a rich body of theory and algorithms with desirable convergence
properties.
Any locally optimal point in a convex optimization problem is also globally optimal.

Challenges with nonconvex problems:
Most problems are not convex when naturally formulated.
Reformulating a nonconvex problem in convex form may be possible, but it is an art and
there is no systematic way to do it.
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Optimality characterization

First-order characterization of convexity:
For a differentiable function f0, the first-order condition for convexity is:

f0(y) ≥ f0(x) + ∇f0(x)T(y − x)

for all x, y ∈ dom f0.
Minimum principle:

A feasible point x is optimal if and only if:

∇f0(x)T(y − x) ≥ 0 for all y ∈ X ,

where X denotes the feasible set.
Geometrically, this means that the gradient ∇f0(x) defines a supporting hyperplane.

KKT optimality conditions:
The minimum principle may be difficult to manage in practical cases.
A more convenient characterization of optimality, when the feasible set X is given in
terms of constraint functions, is the KKT optimality conditions.
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Optimality characterization: Examples
Unconstrained minimization problem:

For an unconstrained problem (i.e., m = p = 0 with feasible set X = Rn), the condition
reduces to:

∇f0(x) = 0
for x to be optimal.

Minimization over the nonnegative orthant:
Consider the problem:

minimize
x

f0(x)
subject to x ≥ 0.

The optimality condition becomes:

x ≥ 0, ∇f0(x)T(y − x) ≥ 0 for all y ≥ 0.

The term ∇f0(x)Ty is unbounded below on y ≥ 0, unless ∇f0(x) ≥ 0.
The condition reduces to −∇f0(x)Tx ≥ 0, which further becomes ∇f0(x)Tx = 0, due to
x ≥ 0 and ∇f0(x) ≥ 0. More compactly:

x ≥ 0, ∇f0(x) ≥ 0, (∇f0(x))i xi = 0, i = 1, . . . , n.
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Equivalent reformulations

Equivalence of problems:
Two problems are considered equivalent if a solution to one can be easily converted into a
solution for the other, and vice versa.
A stricter form of equivalence requires a mapping between the two problems for every
feasible point, not just for the optimal solutions.

Hidden convexity:
Most problems are not convex when naturally formulated.
In some cases, hidden convexity can be unveiled by properly reformulating the problem.
There is no systematic way to reformulate a problem in convex form; it is an art.
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Equivalent reformulations

Example: Change of variable
Consider the problem:

minimize
x

1
1+x2

subject to x2 ≥ 1,

which is nonconvex (both the cost function and the constraint are nonconvex).
It can be rewritten in convex form after the change of variable y = x2:

minimize
y

1
1+y

subject to y ≥ 1,

The optimal points x can be recovered from the optimal y as x = ±√y .
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Equivalent reformulations

Example: Transforming functions
Consider the problem:

minimize
x1,x2

x2
1 + x2

2

subject to x1
1+x2

2
≤ 0

(x1 + x2)2 = 0,

which is nonconvex (the inequality constraint function is nonconvex and the equality
constraint function is not affine).
It can be equivalently rewritten as the convex problem:

minimize
x1,x2

x2
1 + x2

2

subject to x1 ≤ 0
x1 = −x2.
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Equivalent reformulations: Change of variables

Reformulating a convex optimization problem with a one-to-one mapping:
Suppose ϕ is a one-to-one mapping from z to x.
Define f̃i(z) = fi(ϕ(z)).
The original problem:

minimize
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

Can be rewritten (ignoring equality constraints) as:

minimize
z

f̃0(z)
subject to f̃i(z) ≤ 0, i = 1, . . . ,m.

Preservation of convexity:
Convexity may or may not be preserved depending on the mapping ϕ.
With equality constraints, the mapping ϕ has to be affine to preserve the convexity of the
problem.
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Equivalent reformulations: Transformation of functions

Reformulating a convex optimization problem with strictly increasing functions:
Suppose ψi are strictly increasing functions satisfying ψi(0) = 0.
Define f̃i(x) = ψi (fi(x)).
The original problem:

minimize
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

Can be rewritten (ignoring equality constraints) as:

minimize
x

f̃0(x)
subject to f̃i(x) ≤ 0, i = 1, . . . ,m.

Preservation of convexity:
Convexity may or may not be preserved depending on the mappings ψi .

Convex Optimization Theory 59 / 136



Equivalent reformulations: Slack variables

Transformation using slack variables:
Observation: fi(x) ≤ 0 if and only if there is an si ≥ 0 that satisfies fi(x) + si = 0.
By introducing nonnegative slack variables si ≥ 0, we can transform linear (or affine)
inequalities aT

i x ≤ bi into linear equalities aT
i x + si = bi .

Benefits of using slack variables:
Converts inequality constraints into equality constraints, which can simplify the problem
formulation.
Helps in revealing hidden convexity or making the problem more tractable.
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Equivalent reformulations: Eliminating equality constraints

Affine equality constraints in convex problems:
Equality constraints in convex problems must be affine, i.e., of the form Ax = b.
From linear algebra, the subspace of points satisfying such affine constraints can be
written as:

x = Fz + x0,

where:
x0 is any solution to Ax = b.
F is a matrix whose range is the nullspace of A, i.e., AF = 0.
z is any vector of appropriate dimensions.

Affine equality constraints can be eliminated by expressing the solution space in terms of
a new variable z.
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Equivalent reformulations: Eliminating equality constraints

Reformulating the problem:
Original problem:

minimize
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b.

Equivalent problem after eliminating equality constraints:

minimize
z

f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m,

with variable z.
Preservation of convexity:

Since the composition of a convex function with an affine function is convex, eliminating
equality constraints preserves the convexity of the problem.
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Equivalent reformulations: Epigraph problem form

Epigraph form of a convex problem:
The epigraph form of the convex problem:

minimize
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

Can be written as:
minimize

t,x
t

subject to f0(x) − t ≤ 0
fi(x) ≤ 0, i = 1, . . . ,m
Ax = b,

with variables x ∈ Rn and t ∈ R.
Equivalence to the original problem:

The epigraph form is equivalent to the original problem.
(x, t) is optimal for the epigraph form if and only if x is optimal for the original problem
and t = f0(x).
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Equivalent reformulations: Minimizing over some variables

Nested minimization:
We always have:

inf
x,y

f (x, y) = inf
x

f̃ (x),

where f̃ (x) = infy f (x, y).
If f (x, y) is jointly convex in x and y , then f̃ (x) is convex.

Explanation:
We can always minimize a function by first minimizing over some set of variables, and
then minimizing over the remaining ones.
This is a nested minimization, meaning that as x changes, the y that minimizes f (x, y)
to obtain f̃ (x) changes as well.
Do not confuse this with an alternate minimization method, where one optimizes
alternately over x and y until convergence is achieved.
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Equivalent reformulations: Minimizing over some variables
Partitioning variables:

Suppose the variable x ∈ Rn is partitioned into two blocks as x = (x1, x2).
The convex problem:

minimize
x

f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . ,m1

f̃i(x2) ≤ 0, i = 1, . . . ,m2,

Is equivalent to the convex problem:
minimize

x1
f̃0(x1)

subject to fi(x1) ≤ 0, i = 1, . . . ,m1,

Where:
f̃0(x1) = infz{f0(x1, z) | f̃i(z) ≤ 0, i = 1, . . . ,m2}.

Summary:
Nested minimization simplifies a convex problem by first minimizing over some variables.
This approach preserves convexity and can make the problem more tractable.
Partitioning variables and applying nested minimization can simplify a complex problem.
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Approximate reformulations

Approximating nonconvex problems:
When a formulated optimization problem remains nonconvex despite attempts to unveil
hidden convexity, one can resort to approximations to form an approximated problem,
possibly convex, that is easier to solve:

minimize
x

f̃0(x)
subject to f̃i(x) ≤ 0, i = 1, . . . ,m

Ax = b,

where f̃i(x) ≈ fi(x).
Types of approximations:

1 Conservative approximation (tightened approximation): f̃i(x) ≥ fi(x)
Guarantees the feasibility of the approximated solution.

2 Relaxed approximation (relaxation): f̃i(x) ≤ fi(x)
Does not guarantee the feasibility of the approximated solution and may require an
additional step to enforce feasibility.

3 Approximation without guarantees: f̃i(x) ≈ fi(x)
Convex Optimization Theory 66 / 136



Approximate reformulations
Example: Relaxing a problem by removing some constraints (typically the more
difficult ones).
Example: Nonconvex constraint x2 = 1 or, equivalently, x ∈ {±1}, which is a
nonconvex discrete set.

Relaxation:
Enlarge the feasible set by using the interval −1 ≤ x ≤ 1.
This relaxation defines a feasible set that is a superset of the original feasible set.

Tightening:
Reduce the feasible set by using x = 1.
This tightening defines a feasible set that is a subset of the original feasible set.

Summary:
Approximations can transform a nonconvex problem into a convex one, making it easier
to solve.
Conservative approximations guarantee feasibility, while relaxed approximations may
require additional steps to enforce feasibility.
Approximations are a practical approach to handle nonconvex problems when exact
solutions are difficult to obtain.
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Quasi-convex optimization

Quasiconvex optimization problem:
Standard form:

minimize
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,
where the inequality constraint functions f1, . . . , fm are convex, and the objective f0 is
quasiconvex.

Difference between convex and quasiconvex optimization:
A quasiconvex optimization problem can have locally optimal solutions that are not
globally optimal.
This can occur when the function becomes flat before reaching the optimal value.

Sublevel sets representation:
The sublevel sets of a quasiconvex function can be represented via a family of convex
inequalities:

f (x) ≤ t ⇐⇒ ϕt(x) ≤ 0,
where ϕt(x) is a family of convex functions in x (indexed by t).
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Quasi-convex optimization

Quasi-convex optimization via feasibility problems:
Let p⋆ denote the optimal value of the original quasiconvex optimization problem.
If the convex feasibility problem:

find
x

x
subject to ϕt(x) ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b,

is feasible, then p⋆ ≤ t. Conversely, if it is infeasible, then p⋆ > t.
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Quasi-convex optimization

Starts with an interval [l , u] known to contain the optimal value p⋆ and sequentially
halves the interval.
The length of the interval after k iterations is 2−k(u − l).
Number of iterations required to achieve a tolerance of ϵ is ⌈log2((u − l)/ϵ)⌉.

Bisection method (aka “sandwich technique”)
Initialization:

Initialize l and u such that p⋆ ∈ [l , u].
Repeat while (u − l) > ϵ:

Compute midpoint of interval: t = (l + u)/2.
Solve the convex feasibility problem for t.
If feasible, set u = t; otherwise set l = t.
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Taxonomy of convex problems

Problems can be classified into specific types, identified by abbreviations:
LP
QP
QCQP
SOCP
SDP
CP
FP
LFP
GP

This classification is beneficial for both theoretical and algorithmic purposes.
Solvers are designed to handle specific types of problems.
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Linear programming (LP)

Linear program (LP):
A problem is called a linear program or linear problem (LP) when the objective and
constraint functions are all affine:

minimize
x

cTx + d
subject to Gx ≤ h

Ax = b,

where the parameters A, b, c, d , G, and h are of appropriate size.
Linear programs are convex optimization problems.

Geometric interpretation of an LP:
Visualized as a polyhedron on an inclined flat surface.
An optimal solution is always located at a corner of the polyhedron.
This observation forms the basis of the popular simplex method, developed by Dantzig in
1947, for solving LPs.
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Linear programming (LP)

Rewriting norm minimization problems as LPs:
ℓ∞-norm minimization as an LP:

Problem:
minimize

x
∥x∥∞

subject to Gx ≤ h
Ax = b,

Equivalent LP:
minimize

t,x
t

subject to −t1 ≤ x ≤ t1
Gx ≤ h
Ax = b.
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Linear programming (LP)

Rewriting norm minimization problems as LPs:
ℓ1-norm minimization as an LP:

Problem:
minimize

x
∥x∥1

subject to Gx ≤ h
Ax = b,

Equivalent LP:
minimize

t,x

∑
i ti

subject to −t ≤ x ≤ t
Gx ≤ h
Ax = b.

Summary:
Linear programs are a special class of convex optimization problems where all functions
are affine.
The geometric interpretation of LPs helps in understanding the simplex method.
Some norm minimization problems can be rewritten as LPs, making them easier to solve
using linear programming techniques.
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Linear-fractional programming
Linear-fractional program (LFP):

The problem of minimizing a ratio of affine functions over a polyhedron is called a
linear-fractional program (LFP):

minimize
x

cTx + d
eTx + f

subject to Gx ≤ h
Ax = b,

with dom f0 =
{

x | eTx + f > 0
}

.
Properties of LFP:

An LFP is not a convex problem, but it is quasiconvex.
Therefore, it can be solved via bisection by sequentially solving a series of feasibility LPs:

find
x

x
subject to t(eTx + f ) ≥ cTx + d

Gx ≤ h
Ax = b.
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Linear-fractional programming
Charnes-Cooper transform:

Alternatively, the LFP can be transformed into an LP via the Charnes-Cooper transform:

minimize
y,t

cTy + dt
subject to Gy ≤ ht

Ay = bt
eTy + ft = 1
t > 0,

with variables y , t, related to the original variable x as:

y = x
eTx + f and t = 1

eTx + f .

The original variable can be recovered from y , t as x = y/t.
Summary:

LFPs are quasiconvex problems that can be solved using the bisection method by solving
a series of feasibility LPs.
Alternatively, the Charnes-Cooper transform can convert an LFP into an LP.
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Quadratic programming

Quadratic program (QP):
A convex optimization problem is called a quadratic program (QP) if the objective
function is (convex) quadratic, and the constraint functions are affine:

minimize
x

1
2 xTPx + qTx + r

subject to Gx ≤ h
Ax = b,

where P ⪰ 0. QPs include LPs as a special case when P = 0.

Geometric interpretation of a QP:
Visualized as an elliptical surface intersecting a polyhedron.
The optimal solution does not necessarily coincide with a vertex of the polyhedron.
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Quadratic programming

Examples:
Least squares (LS): The LS problem:

minimize
x

∥Ax − b∥2
2

is an unconstrained QP.

Box-constrained LS: The following regression problem with upper and lower bounds on
the variables:

minimize
x

∥Ax − b∥2
2

subject to li ≤ xi ≤ ui , i = 1, . . . , n

is a QP.
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Quadratic programming

Quadratically constrained quadratic program (QCQP):
If the objective function as well as the inequality constraints are (convex) quadratic, then
the problem is called a quadratically constrained quadratic program (QCQP):

minimize
x

1
2 xTP0x + qT

0x + r0

subject to 1
2 xTP ix + qT

i x + ri ≤ 0, i = 1, . . . ,m
Ax = b,

where P i ⪰ 0. In this case, the feasible region is the intersection of ellipsoids. QCQPs
include QPs as a special case when P i = 0 for i = 1, . . . ,m.

Summary:
QPs are convex optimization problems with a quadratic objective function and affine
constraints.
QCQPs extend QPs by allowing quadratic inequality constraints, resulting in feasible
regions that are intersections of ellipsoids.
Both QPs and QCQPs are important classes of convex optimization problems with
numerous applications.
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Second-order cone programming

Second-order cone program (SOCP):
A convex optimization problem is called a second-order cone program (SOCP) if it has
the form:

minimize
x

f Tx
subject to ∥Aix + bi∥ ≤ cT

i x + di , i = 1, . . . ,m
Fx = g ,

where the constraints ∥Aix + bi∥ ≤ cT
i x + di are called second-order cone (SOC)

constraints since they are affine compositions of the (convex) SOC:{
(x, t) ∈ Rn+1 | ∥x∥ ≤ t

}
.

Relationship to other problems:
An SOCP reduces to a QCQP when c i = 0 for i = 1, . . . ,m (by squaring both sides of
the inequalities).
If each Ai is a row-vector (or Ai = 0), then an SOCP reduces to an LP.
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Second-order cone programming
Example: Robust LP: (cont’d)

Consider the linear program:
minimize

x
cTx

subject to aT
i x ≤ bi , i = 1, . . . ,m.

Suppose there is some uncertainty in the parameters ai and they are known to lie in given
ellipsoids:

Ei = {āi + P iu | ∥u∥ ≤ 1} ,
where P i ∈ Rn×n.
If we require that the constraints be satisfied for all possible values of the parameters ai ,
we obtain a robust LP:

minimize
x

cTx
subject to aT

i x ≤ bi , for all ai ∈ Ei , i = 1, . . . ,m.

The robust constraint aT
i x ≤ bi for all ai ∈ Ei can equivalently be expressed as:

sup
{

aT
i x | ai ∈ Ei

}
= āT

i x +
∥∥∥PT

i x
∥∥∥

2
≤ bi .
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Second-order cone programming

Example: Robust LP:
Hence, the robust LP can be expressed as the SOCP:

minimize
x

cTx

subject to āT
i x +

∥∥∥PT
i x

∥∥∥
2

≤ bi , i = 1, . . . ,m.

Summary:
SOCPs are convex optimization problems with second-order cone constraints.
They generalize LPs and QCQPs, providing a flexible framework for modeling various
problems.
Robust LPs can be formulated as SOCPs to handle uncertainty in the parameters,
ensuring constraints are satisfied for all possible values within given ellipsoids.
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Semidefinite programming

Semidefinite program (SDP): A more general convex problem than an SOCP is the
semidefinite program (SDP), formulated as:

minimize
x

cTx
subject to x1F 1 + x2F 2 + · · · + xnFn + G ⪯ 0

Ax = b,

which has linear matrix inequality (LMI) constraints of the form:

x1F 1 + . . .+ xnFn + G ⪯ 0,

where F 1, · · · ,Fn,G ∈ Sk (Sk is the set of symmetric k × k matrices) and A ⪰ B
means that A − B is positive semidefinite. Multiple LMI constraints can always be
written as a single one by using block diagonal matrices.
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Semidefinite programming

Reduction to LP: When the matrix in the LMI inequality is diagonal:

minimize
x

cTx
subject to Diag(Ax − b) ⪯ 0,

the SDP is equivalent to the LP:

minimize
x

cTx
subject to Ax ≤ b.
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Semidefinite programming
Reduction to SOCP: When the matrix in the LMI has a specific 2 × 2 block
structure:

minimize
x

f Tx

subject to
[

(cT
i x + di)I Aix + bi

(Aix + bi)T cT
i x + di

]
⪰ 0, i = 1, . . . ,m,

the SDP is equivalent to the SOCP:
minimize

x
f Tx

subject to ∥Aix + bi∥ ≤ cT
i x + di , i = 1, . . . ,m.

Schur complement:
The equivalence can be shown via the Schur complement:

X =
[

A B
BT C

]
⪰ 0 ⇐⇒ S = C − BTA−1B ⪰ 0,

where we have tacitly assumed A ≻ 0.
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Semidefinite programming
Example: Eigenvalue minimization:

The maximum eigenvalue minimization problem:
minimize

x
λmax(A(x)),

where A(x) = A0 + x1A1 + · · · + xnAn, is equivalent to the SDP:
minimize

x
t

subject to A(x) ⪯ tI.
This follows from:

λmax(A(x)) ≤ t ⇐⇒ A(x) ⪯ tI.
Summary:

SDPs are a general class of convex optimization problems with linear matrix inequality
(LMI) constraints.
They generalize LPs and SOCPs, providing a powerful framework for modeling various
problems.
The Schur complement is a useful tool for showing equivalences between SDPs and other
problem forms.
For more details on SDPs, refer to (Vandenberghe and Boyd 1996).Convex Optimization Theory 87 / 136



Conic programming

Generalized convex optimization problem:
A useful generalization of the standard convex optimization problem can be achieved by
allowing the inequality constraints to be vector-valued and incorporating generalized
inequalities into the constraints:

minimize
x

f0(x)
subject to f i(x) ⪯Ki 0,

hi(x) = 0,
1 ≤ i ≤ m,
1 ≤ i ≤ p,

where the generalized inequalities ⪯Ki are defined by the proper cones Ki (note that
a ⪯K b ⇔ b − a ∈ K) and fi are Ki -convex.
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Conic programming
Generalized inequalities:

A generalized inequality is a partial ordering on Rn that has many of the properties of the
standard ordering on R.
Example: The matrix inequality defined by the cone of positive semidefinite n × n
matrices Sn

+.
K-convex functions:

A function f : Rn → Rki is Ki -convex if the domain is a convex set and, for all
x, y ∈ dom f and θ ∈ [0, 1],

f (θx + (1 − θ)y) ⪯Ki θf (x) + (1 − θ)f (y).

Cone programs (CP):
Among the simplest convex optimization problems with generalized inequalities are cone
programs (CP) (or conic-form problems), which have a linear objective and one inequality
constraint function:

minimize
x

cTx
subject to Fx + g ⪯K 0

Ax = b.
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Conic programming
Special cases of CPs:

Linear Programs (LPs):
If K = Rn

+ (nonnegative orthant), the partial ordering ⪯K is the usual componentwise
inequality between vectors and the CP reduces to an LP.

Second-Order Cone Programs (SOCPs):
If K = Cn (second-order cone), ⪯K corresponds to a constraint of the form:{

(x, t) ∈ Rn+1 | ∥x∥ ≤ t
}

,

and the CP becomes an SOCP.
Semidefinite Programs (SDPs):

If K = Sn
+ (positive semidefinite cone), the generalized inequality ⪯K reduces to the usual

matrix inequality:
x1F 1 + . . . + xnF n + G ⪯ 0,

and the CP simplifies to an SDP.
Summary:

Generalized convex optimization problems extend the standard form by incorporating
vector-valued inequality constraints and generalized inequalities.
Cone programs (CPs) are a special class of these problems.
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Fractional programming

Fractional programming (FP):
Fractional programming involves optimization problems that include ratios.
The simplest form of a fractional program (FP) is:

maximize
x

f (x)
g(x)

subject to x ∈ X ,

where f (x) ≥ 0, g(x) > 0, and X denotes the feasible set.
One particular case is the LFP, where both f and g are linear functions.

Applications and extensions:
FPs have been widely studied and extended to deal with multiple ratios, such as:

maximize
x

min
i

fi(x)
gi(x)

subject to x ∈ X .

FPs are nonconvex problems, making them challenging to solve.
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Fractional programming

Concave-convex FP:
In the case known as concave-convex FP, where f is a concave function and g is a
convex function, they can be solved relatively easily using different methods.

Methods for solving concave-convex FP:
1 Bisection method:

Similar to the linear case of LFP, the bisection method involves solving a sequence of
convex feasibility problems of the form:

find
x

x
subject to tg(x) ≤ f (x)

x ∈ X .

2 Dinkelbach’s transform:
This approach eliminates the fractional objective by solving a sequence of simpler convex
problems of the form:

maximize
x

f (x) − y kg(x)
subject to x ∈ X ,

where the weight y k is updated as y k = f (xk)/g(xk).
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Fractional programming
Methods for solving concave-convex FP: (cont’d)

3 Schaible transform:
This is a more general case of the Charnes-Cooper transform (used for LFPs).
The original concave-convex FP is transformed into an equivalent convex problem:

maximize
y,t

tf
( y

t

)
subject to tg

( y
t

)
≤ 1

t > 0
y/t ∈ X ,

with variables y , t, related to the original variable x by:

y = x
g(x) and t = 1

g(x) .

The original variable can be easily recovered from y , t by x = y/t.
Summary:

Fractional programming deals with optimization problems involving ratios.
Concave-convex FPs can be solved using methods like the bisection method, Dinkelbach’s
transform, and Schaible transform.
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Geometric programming

Monomial and posynomial functions:
A monomial function, or simply a monomial, is a function f : Rn → R with dom f = Rn

++
defined as:

f (x) = cxa1
1 xa2

2 . . . xan
n ,

where c > 0 and ai ∈ R.
A posynomial function, or simply a posynomial, is a sum of monomials:

f (x) =
K∑

k=1
ckxa1k

1 xa2k
2 . . . xank

n ,

where ck > 0.
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Geometric programming

Geometric program (GP):
A geometric program (GP) is a (nonconvex) problem of the form:

minimize
x

f0(x)
subject to fi(x) ≤ 1,

hi(x) = 1,
i = 1, . . . ,m,
i = 1, . . . , p,

where f0, . . . , fm are posynomials and h1, . . . , hp are monomials. The domain of this
problem is D = Rn

++, i.e., the constraint x > 0 is implicit.
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Geometric programming

Transformation to convex form:
Apply the change of variables yi = log xi and b = log c on the monomial
f (x) = cxa1

1 xa2
2 . . . xan

n .
The log of the monomial is:

f̃ (y) = log f (ex) = b + a1y1 + a2y2 + · · · + anyn = b + aTy ,

which is an affine function.
For a posynomial, we obtain:

f̃ (y) = log
K∑

k=1
ebk +aT

k y ,

which is the so-called log-sum-exp function, a convex function.
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Geometric programming

Transformed GP in convex form:
The resulting transformed GP in convex form is:

minimize
y

log
∑K0

k=1 eb0k +aT
0k y

subject to log
∑Ki

k=1 ebik +aT
ik y ≤ 0,

hi + gT
i y = 0,

i = 1, . . . ,m,
i = 1, . . . , p.

References:
Comprehensive monographs on GP include (S. Boyd et al. 2007) and (Chiang 2005).

Summary:
Geometric programming involves optimization problems with monomial and posynomial
functions.
These problems are not naturally convex but can be converted into convex optimization
problems through a logarithmic change of variables and transformation of the objective
and constraint functions.
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Lagrange duality

Links the original minimization problem (primal problem) with a maximization problem
(dual problem).

Sometimes the dual problem is simpler to solve than the primal one.

Fundamental results: duality gap and Karush-Kuhn-Tucker (KKT) optimality
conditions.

KKT conditions:
may help obtain a closed-form solution to the original problem
allow to characterize properties of the solutions
are key in developing primal-dual interior-point methods.
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Lagrangian

Lagrangian:
Optimization problem in standard form:

minimize
x

f0(x)
subject to fi (x) ≤ 0,

hi (x) = 0,
i = 1, . . . ,m
i = 1, . . . , p,

Variable x ∈ Rn, domain D, and optimal value p⋆.
Lagrangian L : Rn × Rm × Rp → R:

L(x,λ,ν) = f0(x) +
m∑

i=1
λi fi(x) +

p∑
i=1

νihi(x),

λi and νi are the Lagrange multipliers for inequality and equality constraints, respectively.
Vectors λ and ν are called dual variables or Lagrange multiplier vectors.

Convex Optimization Theory 100 / 136



Lagrange duality

Lagrange dual function:
Defined as the minimum value of the Lagrangian over x for a given (λ,ν):

g(λ,ν) = inf
x∈D

L(x,λ,ν) = inf
x∈D

{
f0(x) +

m∑
i=1

λi fi(x) +
p∑

i=1
νihi(x)

}
.

Infimum is with respect to all x ∈ D (not necessarily feasible points).
Dual function is concave, even if the original problem is not convex.

Primal and dual variables/functions:
Original optimization variable x is the primal variable.
Lagrange multipliers λ and ν are the dual variables
Original objective function f0(x) is the primal function.
The infimum of the Lagrangian is the dual function.
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Lagrange duality
Lower bounds on the optimal value:

Dual function g(λ,ν) provides lower bounds on the optimal value p⋆:

g(λ,ν) ≤ p⋆

Holds even if the original problem is not convex.
Verified through inequalities for any feasible x:

f0(x) ≥ f0(x) +
m∑

i=1
λi fi(x) +

p∑
i=1

νihi(x)

≥ inf
z∈D

{
f0(z) +

m∑
i=1

λi fi(z) +
p∑

i=1
νihi(z)

}
= g(λ,ν),

Primal-dual feasible pair (x, (λ,ν)) localizes the optimal value within an interval:

p⋆ ∈ [g (λ,ν) , f0(x)] .

Utilized in optimization algorithms for non-heuristic stopping criteria.
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Lagrange dual problem

Tightest lower bound:
Lagrange dual function gives a lower bound on the optimal value p⋆: g(λ,ν) ≤ p⋆.
Tightest lower bound leads to the Lagrange dual problem:

maximize
λ,ν

g(λ,ν)
subject to λ ≥ 0.

It is a convex optimization problem because the objective is concave (maximization
problem) and the constraints are convex (trivially linear).

Dual problem and primal problem:
Original problem is called the primal problem.
Variables (λ,ν) are dual feasible if λ ≥ 0 and g(λ,ν) > −∞.
(λ⋆,ν⋆) are dual optimal if they are optimal for the dual problem.
Optimal value of the dual problem is denoted by d⋆.
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Lagrange dual problem

Example: Least-norm solution of linear equations
Problem:

minimize
x

xTx
subject to Ax = b.

Lagrangian:
L(x,ν) = xTx + νT(Ax − b).

Dual function:
g(ν) = L

(
−1

2ATν,ν

)
= −1

4νTAATν − bTν.

Lower bound property:

p⋆ ≥ −1
4νTAATν − bTν for all ν.

Dual problem (QP):
maximize

ν
− 1

4 νTAATν − bTν.
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Lagrange dual problem
Example: Standard form LP

Problem:
minimize

x
cTx

subject to Ax = b, x ≥ 0.
Lagrangian:

L(x,λ,ν) = cTx + νT(Ax − b) − λTx =
(

c + ATν − λ
)T

x − bTν.

Dual function:

g(λ,ν) = inf
x

L(x,λ,ν) =
{

−bTν c + ATν − λ = 0
−∞ otherwise,

Lower bound property:
p⋆ ≥ −bTν if c + ATν ≥ 0.

Dual problem (LP):
maximize

ν
−bTν

subject to c + ATν ≥ 0.
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Lagrange dual problem

Example: Two-way partitioning
Nonconvex problem (due to matrix W ̸⪰ 0 and quadratic equality constraints):

minimize
x

xTW x
subject to x2

i = 1, i = 1, . . . , n.

Lagrangian:

L(x,ν) = xTW x +
n∑

i=1
νi

(
x2

i − 1
)

= xT (W + Diag(ν)) x − 1Tν.

Dual function:

g(ν) = inf
x

L(x,ν) =
{

−1Tν W + Diag(ν) ⪰ 0
−∞ otherwise.

Dual problem (SDP):
maximize

ν
−1Tν

subject to W + Diag(ν) ⪰ 0.
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Lagrange dual problem

Example: Introducing new variables
Original problem:

minimize
x

∥Ax − b∥2 .

Introduce dummy variables:

minimize
x,y

∥y∥2

subject to y = Ax − b.

Dual problem:
maximize

ν
bTν

subject to ATν = 0, ∥ν∥2 ≤ 1.
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Lagrange dual problem

Example: Implicit constraints
Original problem (LP with box constraints):

minimize
x

cTx
subject to Ax = b

−1 ≤ x ≤ 1.

Dual problem:
maximize

ν,λ1,λ2
−bTν − 1Tλ1 − 1Tλ2

subject to c + ATν + λ1 − λ2 = 0
λ1 ≥ 0, λ2 ≥ 0.

Rewriting the primal problem with implicit constraints: f0(x) =
{

cTx −1 ≤ x ≤ 1
∞ otherwise

More insightful dual problem:

maximize
ν

−bTν −
∥∥∥ATν + c

∥∥∥
1
.
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Weak and strong duality

Weak duality:
Optimal value d⋆ of the Lagrange dual problem is the tightest lower bound on p⋆:

d⋆ ≤ p⋆

Difference Γ = p⋆ − d⋆ is called the optimal duality gap (always nonnegative).
Useful for establishing a lower limit on the optimal value of a challenging problem.

Strong duality:
Equality in weak duality:

d⋆ = p⋆

Implies the duality gap is zero.
Strong duality is desirable and facilitates solving difficult problems via the dual.
Does not hold for general optimization problems but often holds for convex problems
under certain conditions (constraint qualifications).
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Weak and strong duality

Constraint qualifications: (there are many types)
Slater’s condition:

Requires the existence of a strictly feasible point:

x ∈ relint D such that fi (x) < 0, i = 1, . . . , m, and hi (x) = 0, i = 1, . . . , p.

Strong duality holds if Slater’s condition is met and the problem is convex.
Example: Inequality form LP

Problem:
minimize

x
cTx

subject to Ax ≤ b.
Dual problem:

maximize
λ

−bTλ

subject to ATλ + c = 0, λ ≥ 0.
Strong duality holds if Ax̃ < b for some x̃.
In this case, p⋆ = d⋆ always holds (except when both primal and dual problems are
infeasible).
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Weak and strong duality

Example: Convex QP
Problem (with P ⪰ 0):

minimize
x

xTPx
subject to Ax ≤ b.

Dual problem:
maximize

λ
− 1

4 λTAP−1ATλ − bTλ

subject to λ ≥ 0.

Strong duality holds if Ax̃ < b for some x̃.
In this case, p⋆ = d⋆ always holds.
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Weak and strong duality

Example: Nonconvex QP
Problem (with P ̸⪰ 0):

minimize
x

xTAx + 2bTx
subject to xTx ≤ 1.

Dual problem (SDP):
maximize

t,λ
−t − λ

subject to
[
A + λI b

bT t

]
⪰ 0.

Strong duality holds even though the original problem is nonconvex (not trivial to show).
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Complementary slackness

If strong duality holds, primal and dual optimal values are equal: d⋆ = p⋆.
Let x⋆ be a primal optimal point and (λ⋆,ν⋆) be a dual optimal point:

f0(x⋆) = g(λ⋆,ν⋆)

= inf
x∈D

{
f0(x) +

m∑
i=1

λ⋆
i fi(x) +

p∑
i=1

ν⋆
i hi(x)

}

≤ f0(x⋆) +
m∑

i=1
λ⋆

i fi(x⋆) +
p∑

i=1
ν⋆

i hi(x⋆)

≤ f0(x⋆),

where
the first line comes from the zero duality gap,
the second line is the definition of the dual function,
the third line follows from the definition of infimum,
the fourth line results from feasibility (λ⋆

i ≥ 0, fi(x⋆) ≤ 0, and hi(x⋆) = 0).
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Complementary slackness
Complementary slackness:

The two inequalities in the chain must hold with equality.
Equality in the first inequality means x⋆ minimizes L(x,λ⋆,ν⋆) over x.
Equality in the second inequality implies:

m∑
i=1

λ⋆
i fi(x⋆) = 0.

This leads (because each term is nonpositive) to the complementary slackness conditions:
λ⋆

i fi(x⋆) = 0, i = 1, . . . ,m.
They hold for any primal optimal x⋆ and dual optimal (λ⋆,ν⋆) (assuming strong duality
holds).

Interpretation of complementary slackness:
If a Lagrange multiplier is active (λ⋆

i > 0), then the constraint is at the boundary of the
feasible set fi (x⋆) = 0.
If a constraint is strictly feasible (fi(x⋆) < 0), then λ⋆

i = 0 (the Lagrange multiplier is not
necessary).
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Karush-Kuhn-Tucker (KKT) optimality conditions
Preliminaries:

Assume functions f0, f1, . . . , fm, h1, . . . , hp are differentiable.
Let x⋆ and (λ⋆,ν⋆) be any primal and dual optimal points with zero duality gap.
Since x⋆ minimizes L(x,λ⋆,ν⋆) over x, its gradient must vanish:

∇f0(x⋆) +
m∑

i=1
λ⋆

i ∇fi(x⋆) +
p∑

i=1
ν⋆

i ∇hi(x⋆) = 0.

KKT conditions:
For any optimization problem (not necessarily convex), any pair of optimal and dual
points, x⋆ and (λ⋆,ν⋆), must satisfy:

fi(x⋆) ≤ 0, i = 1, . . . ,m (primal feasibility)
hi(x⋆) = 0, i = 1, . . . , p

λ⋆
i ≥ 0, i = 1, . . . ,m (dual feasibility)

λ⋆
i fi(x⋆) = 0, i = 1, . . . ,m (complementary slackness)

∇f0(x⋆) +
m∑

i=1
λ⋆

i ∇fi(x⋆) +
p∑

i=1
ν⋆

i ∇hi(x⋆) = 0 (zero Lagrangian gradient)
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Karush-Kuhn-Tucker (KKT) optimality conditions

Sufficiency of KKT conditions for convex problems:
For convex optimization problems, the KKT conditions are also sufficient for optimality.
If x̃ achieves a zero gradient in the Lagrangian, it minimizes the Lagrangian:

g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

= f0(x̃) +
m∑

i=1
λ̃i fi(x̃) +

p∑
i=1

ν̃ihi(x̃)

= f0(x̃),

This shows zero duality gap and, therefore, primal and dual optimality.

Importance of KKT conditions:
Play a key role in optimization.
Can sometimes characterize the solution analytically.
Many algorithms are conceived or can be interpreted as methods for solving the KKT
conditions.
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Karush-Kuhn-Tucker (KKT) optimality conditions

KKT conditions:
fi(x⋆) ≤ 0, i = 1, . . . ,m (primal feasibility)
hi(x⋆) = 0, i = 1, . . . , p

λ⋆
i ≥ 0, i = 1, . . . ,m (dual feasibility)

λ⋆
i fi(x⋆) = 0, i = 1, . . . ,m (complementary slackness)

∇f0(x⋆) +
m∑

i=1
λ⋆

i ∇fi(x⋆) +
p∑

i=1
ν⋆

i ∇hi(x⋆) = 0 (zero Lagrangian gradient)

Theorem: KKT optimality conditions
For any optimization problem with differentiable functions:

For any optimization problem (not necessarily convex) with strong duality, the KKT
conditions are necessary for optimality.
For a convex optimization problem satisfying Slater’s condition, strong duality follows,
and the KKT conditions are necessary and sufficient for optimality.
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Perturbation and sensitivity analysis

Consider the original optimization problem:

minimize
x

f0(x)
subject to fi (x) ≤ 0,

hi (x) = 0
i = 1, . . . ,m
i = 1, . . . , p,

and its dual problem:
maximize

λ,ν
g(λ,ν)

subject to λ ≥ 0.

We now add a perturbation on the constraints:

fi (x) ≤ ui

and
hi (x) = vi .
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Perturbation and sensitivity analysis

The perturbed optimization problem is defined as

minimize
x

f0(x)
subject to fi (x) ≤ ui ,

hi (x) = vi ,
i = 1, . . . ,m
i = 1, . . . , p

and its corresponding perturbed dual problem becomes

maximize
λ,ν

g(λ,ν) − uTλ − vTν

subject to λ ≥ 0.

We define p⋆(u, v) as the optimal value of the perturbed problem as a function of u
and v .
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Perturbation and sensitivity analysis

Local sensitivity: If strong duality holds for the original problem and p⋆(u, v) is
differentiable at (0, 0), then

∂p⋆(0, 0)
∂ui

= −λ⋆
i ,

∂p⋆(0, 0)
∂vi

= −ν⋆
i .

Global sensitivity: If strong duality holds for the original problem, then (from weak
duality)

p⋆(u, v) ≥ g(λ⋆,ν⋆) − uTλ⋆ − vTν⋆

= p⋆(0, 0) − uTλ⋆ − vTν⋆.

Interpretation:
if λ⋆

i large: p⋆ increases a lot if we tighten constraint i (ui < 0)
if λ⋆

i small: p⋆ does not decrease much if we loosen constraint i (ui > 0)
if ν⋆

i large and positive: p⋆ increases a lot if we take vi < 0
if ν⋆

i large and negative: p⋆ increases a lot if we take vi > 0.
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Generalized inequalities

Definition of a cone:
A set K ⊂ Rn such that for every x ∈ K and θ ≥ 0, we have θx ∈ K.

Proper cone:
A cone K is called a proper cone if it is:

Convex
Closed
Solid (i.e., has a nonempty interior)
Pointed (i.e., contains no line)

Generalized inequality:
Defined using a proper cone K.
A partial ordering on Rn with properties similar to the standard ordering on R:

x ⪯K y ⇐⇒ y − x ∈ K
Also written as y ⪰K x

Example: Nonnegative orthant and componentwise inequality
The nonnegative orthant K = Rn

+ is a proper cone.
Associated generalized inequality ⪯K corresponds to componentwise inequality:

x ⪯K y means xi ≤ yi for i = 1, . . . , m.
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Generalized inequalities

Example: Positive semidefinite cone and matrix inequality
The positive semidefinite cone Sn

+ is a proper cone in the set of n × n symmetric matrices
Sn.
Associated generalized inequality ⪯K is the usual matrix inequality:

X ⪯K Y means Y − X is positive semidefinite (typically written as Y ⪰ X).
Properties of generalized inequality:

Meant to suggest an analogy to ordinary inequality on R (i.e., ≤).
Many properties of ordinary inequality hold for generalized inequalities.
Important differences:

≤ on R is a total ordering: any two points are comparable (x ≤ y or y ≤ x).
Generalized inequalities define a partial ordering: not all points are comparable.
Concepts like minimum and maximum are more complicated in the context of generalized
inequalities.

Generalized inequalities and convex functions:
Extend the definition of a convex function to the vector case.
A function f : Rn → Rq is K-convex if: For all x, y ∈ dom f and θ ∈ [0, 1]:

f (θx + (1 − θ)y) ⪯K θf (x) + (1 − θ)f (y).
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Vector optimization

Vector optimization problem:

minimize
x

(with respect to K) f 0(x)
subject to fi(x) ≤ 0,

hi(x) = 0,
1 ≤ i ≤ m
1 ≤ i ≤ p,

where:
K ⊂ Rq is a proper cone
f 0 : Rn → Rq is the vector-valued objective function
fi : Rn → R are the inequality constraint functions
hi : Rn → R are the equality constraint functions.
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Vector optimization

Comparison with standard optimization problem:
The objective function takes values in Rq.
Includes a proper cone K to compare objective values.

Convex vector optimization problem:
The problem is convex if:

The objective function f 0 is K-convex.
The inequality constraint functions f1, . . . , fm are convex.
The equality constraint functions h1, . . . , hp are affine (can be written as Ax = b).

Interpretation of the problem:
The general inequality ⪯K is a partial ordering, not a total ordering.
This means:

We may encounter two points, x and y , that are not comparable.
Neither f 0(x) ⪯K f 0(y) nor f 0(y) ⪯K f 0(x) holds.
This situation cannot occur in the standard optimization problem.
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Pareto optimality

Achievable objective values:
Set of objective values of feasible points:

O = {f 0(x) | x is feasible}

Minimum element:
The set O has a minimum element if there is a feasible x⋆ such that:

f 0(x⋆) ⪯K f 0(x) for all feasible x
x⋆ is optimal for the problem and f 0(x⋆) is the optimal value.
Using set notation, x⋆ is optimal if and only if it is feasible and:

O ⊆ f 0(x⋆) + K

General case:
Most vector optimization problems do not have an optimal point because of incomparable
points via the cone K.
When O lacks a minimum element, we discuss minimal elements.
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Pareto optimality

Minimal elements and Pareto optimality:
Minimal elements are the best among the objective values that can be compared.
Points x achieving minimal elements in O are Pareto optimal points.
f 0(x) is a Pareto optimal value for the vector optimization problem.

Pareto optimal point:
A point xpo is Pareto optimal if it is feasible and:

For any other feasible x, f 0(x) ⪯K f 0(xpo) implies f 0(x) = f 0(xpo)
Using set notation, xpo is Pareto optimal if and only if it is feasible and:

(f 0(xpo) − K) ∩ O = f 0(xpo)
In words, xpo cannot be in the cone of points worse than any other point.

Efficient frontier:
A vector optimization problem usually has many Pareto optimal values (and points).
These values lie on the boundary of the set of achievable objective values, termed the
efficient frontier.
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Multi-objective optimization

Multi-objective optimization problem:
Based on the cone K = Rq

+ (nonnegative orthant).
Also called multicriterion optimization problem.
Components of the vector objective function f 0, denoted by F1, . . . ,Fq, represent q
different scalar objectives to be minimized.
Simplest case: bi-objective or bi-criterion optimization problems with two objectives
F1(x) and F2(x).

Convex multi-objective optimization problem:
The problem is convex if:

Inequality constraint functions f1, . . . , fm are convex.
Equality constraint functions h1, . . . , hp are affine (denoted as Ax = b).
Objectives F1, . . . , Fq are convex.
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Multi-objective optimization

Comparison of feasible points:
For two feasible points x and y :

Fi (x) ≤ Fi (y) means x is at least as good as y according to the ith objective.
Fi (x) < Fi (y) means x is better than y according to the ith objective.

x dominates y if:
Fi (x) ≤ Fi (y) for i = 1, . . . , q.
For at least one j, Fj(x) < Fj(y).

In words, x is better than y if x meets or beats y on all objectives and beats it in at least
one objective.
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Multi-objective optimization

Optimality in multi-objective optimization:
For a point x⋆ to be considered optimal, it must be simultaneously optimal for each
scalar problem:

Fi(x⋆) ≤ Fi(y), i = 1, . . . , q.

Generally, this cannot happen unless the objectives are noncompeting (no trade-offs
among objectives).
In most practical problems, there is a trade-off among objectives, leading to no single
optimal solution.

Pareto optimality:
A point xpo is Pareto optimal if no objective can be improved without degrading at least
one other objective.
The set of Pareto optimal values is called the optimal trade-off surface or, when q = 2,
the optimal trade-off curve.
Also referred to as the efficient frontier in other contexts.
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Scalarization

Scalarization technique:
Standard method for finding Pareto optimal points in a vector optimization problem.
For a multi-objective optimization problem, the scalarized problem is:

minimize
x

∑q
i=1 λiFi(x)

subject to fi(x) ≤ 0,
hi(x) = 0,

1 ≤ i ≤ m
1 ≤ i ≤ p,

Weights λi are associated with the objectives and must satisfy λi ≥ 0.
Properties of scalarization:

An optimal point of the scalarized problem is Pareto optimal for the multi-objective
optimization problem.
Different weights yield different Pareto optimal solutions.
Some Pareto optimal points may not be obtainable via scalarization.

Convex Optimization Theory 131 / 136



Scalarization

Convex multi-objective optimization:
For convex problems, the scalarized problem is also convex.
Yields all Pareto optimal points for different weights.
For every Pareto optimal point, there are weights such that it is optimal in the scalarized
problem.

Example: Regularized least squares (LS)
Modified least squares problem with two objectives:

F1(x) = ∥Ax − b∥2
2: measure of regression error.

F2(x) = ∥x∥2
2: measure of the energy of x.

Multi-objective optimization problem formulation:

minimize
x

(with respect to R2
+) f0(x) = (F1(x),F2(x))

Corresponding scalarization:

minimize
x

∥Ax − b∥2
2 + γ ∥x∥2

2 ,

γ ≥ 0 is the weight indicating the preference in the trade-off.
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Summary

Optimization has a long history, with theory developed over the past century and
algorithms evolving from the 1947 simplex method to mid-1990s interior-point
methods.
Optimization problems are generally hard to solve with exponential time complexity,
but convex problems have manageable polynomial time complexity, making convex
optimization appealing.
Convex problems consist of convex functions and sets, supported by rich theory and
efficient algorithms, with numerous solvers available in most programming languages.
Lagrange duality offers powerful theoretical results, including the KKT optimality
conditions for characterizing optimal solutions.
The standard problem formulation can be extended with multi-objective and robust
formulations.
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