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Abstract

The efficient-market hypothesis states security prices reflect all public information,
suggesting price sequences follow a random walk or returns are independent and
identically distributed. However, the behavioral finance view supports inefficient,
irrational markets. Financial data exhibit temporal structure like volatility clustering that
could be modeled and exploited. These slides examine modeling the temporal dynamics
of financial time series, focusing on mean models, volatility models, and the Kalman filter
for capturing the observed structure deviating from the i.i.d. assumption (Palomar 2024,
chap. 4).
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Temporal structure

Exploratory analysis and financial data modeling:
Financial data analysis can follow two main paths:

Assuming an i.i.d. model (Palomar 2024, chap. 3).
Incorporating temporal structure into the model (Palomar 2024, chap. 4).

Efficient-market hypothesis vs. behavioral finance:
The i.i.d. model is inspired by Fama’s efficient-market hypothesis (EMH), suggesting
prices reflect all publicly available information, making future prices unpredictable (Fama
1970).
Behavioral finance, advocated by Shiller, posits markets are inefficient and somewhat
predictable, allowing for trend analysis (Shiller 1981, 2003).

Nobel Prize in Economic Sciences 2013:
Interesting note: Both Fama (proponent of EMH) and Shiller (proponent of behavioral
finance) were awarded the equivalent of the Nobel Prize in Economic Sciences in 2013,
despite their opposing views.
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Temporal structure

Transition to conditional models:
Moving away from the random walk model (Malkiel 1973) to non-random walk models
(Lo and Mackinlay 2002).
Focus on modeling the returns of N securities, xt , based on past observations denoted as
Ft−1.

General time-series model: The returns are modeled as:

xt = µt + ϵt ,

where µt is the conditional expected return:

µt = IE [xt | Ft−1] ,

and ϵt represents the model error with zero mean and conditional covariance matrix:

Σt = IE
[
(xt − µt)(xt − µt)T | Ft−1

]
.
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Temporal structure

Comparison with i.i.d. model:
The i.i.d. model assumes that xt are independent and identically distributed.
In other words, it assumes constant µt = µ and Σt = Σ over time.
Very simple model but it is fundamental for many important works, e.g., the Nobel
prize-winning Markowitz portfolio theory (Markowitz 1952).

Objective in econometrics:
Modeling returns xt based on historical data Ft−1 is a key goal in econometrics, aiming
to predict future trends and test economic theories.

Example of temporal structure:
A univariate Gaussian AR(1) time series is an illustrative example of temporal structure in
financial data modeling.
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Temporal structure
Example of a synthetic Gaussian AR(1) time series:
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Temporal structure: References

Recommended textbooks on financial data modeling:
For foundational concepts: (Tsay 2010; Ruppert and Matteson 2015).
For a focus on multivariate cases: (Lütkepohl 2007; Tsay 2013).

Survey papers on financial data modeling:
Comprehensive reviews available in (Bollerslev, Chou, and Kroner 1992; Taylor 1994;
Poon and Granger 2003).

Deviation from conventional econometric models:
Traditional focus: Autoregressive models and GARCH volatility models.
Our treatement emphasizes:

Simplicity in models.
Utilization of the Kalman filter, despite its underuse in financial literature.
Stochastic volatility modeling, often overshadowed by GARCH models.
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Intro to Kalman filter

State space modeling overview:
A universal and flexible approach for time series analysis.
Assumes system evolution is driven by unobserved values, indirectly measured through
observations of the system output.
Applications include filtering, smoothing, and forecasting.

Kalman filter introduction:
Named after Rudolf E. Kalman, with contributions from Richard S. Bucy and Ruslan
Stratonovich.
Efficient algorithm for state space modeling.
Also known as Kalman-Bucy filter or Stratonovich-Kalman-Bucy filter.

Key references for state space models and Kalman filtering:
Classical texts: (Anderson and Moore 1979; Durbin and Koopman 2012).
Additional references: (Brockwell and Davis 2002; Shumway and Stoffer 2017; Harvey
1989).
Financial time series: (Zivot, Wang, and Koopman 2004; Tsay 2010; Lütkepohl 2007;
Harvey and Koopman 2009).
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Intro to Kalman filter

Applications of the Kalman filter:
Initially used by NASA in the 1960s for the Apollo program.
Guidance, navigation, and control of vehicles (aircraft, spacecraft, maritime vessels).
Time series analysis, signal processing, econometrics.
Robotic motion planning and control, trajectory optimization.

Software implementation and libraries:
Widespread implementation across most programming languages.
Overview of libraries for R programming language: (Tusell 2011; Petris and Petrone 2011;
Holmes, Ward, and Wills 2012).
R package KFAS for Kalman filtering (Helske 2017).
Python package filterpy offers Kalman methods.
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State space model

State space model:

y t = Zαt + ϵt

αt+1 = Tαt + ηt

(observation equation)
(state equation)

y t : observations
Z : observation matrix
αt : unobserved internal state (initial state: α1 ∼ N (a1,P1))
T : state transition matrix
ϵt , ηt : Gaussian noise terms with zero mean
covariance matrices: ϵt ∼ N (0,H), ηt ∼ N (0,Q)

Parameter estimation:
Parameters (Z , T , H, Q, a1, P1) can be user-defined or inferred from data.
R package MARSS for fitting unknown parameters based on observed data (Holmes, Ward,
and Wills 2012).
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State space model

Extensions to the state space Model:
Time-varying parameters:

Allow Z , T , H, and Q to change over time: Z t , T t , Ht , Qt .
Relaxing key assumptions:

Nonlinear functions of αt instead of linear Zαt and Tαt .
Noise distributions not necessarily Gaussian.

Advanced filtering techniques:
Extended Kalman filter (EKF):

Handles nonlinearities in the state space model.
Unscented Kalman filter (UKF):

Addresses shortcomings of EKF in capturing true mean and covariance.
Particle filtering:

Non-Gaussian noise distributions and nonlinear models.
More computationally intensive but general approach.

Literature on advanced filtering:
For further reading and comprehensive treatment: (Durbin and Koopman 2012).
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Example: Object tracking with state space models

Modeling object position:
Simplest model assuming constant position:

yt = xt + ϵt

xt+1 = xt + ηt ,

Assumes minimal change in position over time.

Incorporating velocity:
Model with position and velocity:

yt =
[
1 0

] [
xt
vt

]
+ ϵt[

xt+1
vt+1

]
=

[
1 ∆t
0 1

] [
xt
vt

]
+ ηt ,

Enhances position modeling by including velocity.
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Example: Object tracking with state space models
Adding acceleration:

Model with position, velocity, and acceleration:

yt =
[
1 0 0

] xt
vt
at

 + ϵtxt+1
vt+1
at+1

 =

1 ∆t 0
0 1 ∆t
0 0 1

 xt
vt
at

 + ηt .

Refined model with acceleration in position equation:
Advanced model accounting for acceleration in position update:xt+1

vt+1
at+1

 =

1 ∆t 1
2 ∆t2

0 1 ∆t
0 0 1

 xt
vt
at

 + ηt .

Offers improved modeling, especially for lower sampling rates, by incorporating
acceleration into position calculation.
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Kalman filtering, forecasting, and smoothing

Kalman filter efficiency and application:
Highly efficient for solving linear state space models with Gaussian noise.
Remarkably implemented in NASA’s Apollo program with rudimentary computers.

Objectives of Kalman filtering:
Characterize the distribution of the hidden state αt given observations up to time t.
Conditional distribution of αt is Gaussian, focusing on conditional mean at|t and
covariance Pt|t .

Forecasting with Kalman filter:
Interest in hidden state at time t + 1, given observations up to time t: at+1|t and Pt+1|t .
Efficient computation through a “forward pass” algorithm, enabling real-time operation.

Kalman smoothing:
Aims to characterize the hidden state distribution at time t, given all observations
y1, . . . , yT .
Distribution is Gaussian, characterized by conditional mean at|T and covariance Pt|T .
Computed using a “backward pass” algorithm, suitable for batch processing.
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Kalman filtering and smoothing
Example of position tracking via Kalman filtering:
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Kalman filtering and smoothing
Example of position tracking via Kalman smoothing:
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Mean modeling

Forecasting financial time series in econometrics:
Objective: Forecast future values of a financial time series based on past observations.
Choice between prices and returns:

Prices tend to show trends; log-prices more convenient than prices: y t = log pt .
Returns (especially log-returns) are more constant and easier to model: log-returns more
convenient than linear returns: x t = y t − y t−1 = log (pt/pt−1).

Focus on univariate case:
Simplifies analysis by treating each asset individually.
Objective: Expected future value at time t based on past observations Ft−1:

For log-prices: IE[yt | Ft−1].
For log-returns: IE[xt | Ft−1].

Temporal structural information:
Possibility of leveraging structural information for forecasting.
However, exploratory data analysis may show insignificant autocorrelation in returns,
suggesting an i.i.d. model might suffice.
The relevance of structural information depends on data nature and observation
frequency.
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Moving average (MA)

Moving average (MA) in financial time series:
MA of order q:

x̂t = 1
q

q∑
i=1

xt−i ,

where q is the lookback period determining the amount of averaging.
Also known as rolling means, computed on a rolling-window basis.

MA estimates µ under the i.i.d. model:
i.i.d. model: xt = µ+ ϵt .
MA estimates µ by averaging out the noise:

x̂t = µ+ 1
q

q∑
i=1

ϵt−i ,

Noise component variance is reduced by a factor of q.
MA for time-varying µt :

The MA approximates the slowly changing µt over time.
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Moving average (MA)

MA interpretation for log-returns and log-prices:
Log-returns:

Rewriting MA operation on log-returns:

x̂t = 1
q

q∑
i=1

xt−i = 1
q (yt−1 − yt−q−1)

Computes the trend of log-prices as a slope.
Log-prices:

MA operation on log-prices:

ŷt = 1
q

q∑
i=1

yt−i

Common in “charting” or “technical analysis”, typically applied directly on prices pt .
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Moving average (MA)

Insights and practical implications:
Charting community practices:

MA on log-prices is popular despite theoretical inefficiency.
Theoretical analysis vs. practical use:

MA on log-returns is theoretically sound and practically efficient.
Difference between using prices vs. log-prices or returns vs. log-returns is minimal.

Illustration and performance evaluation:
Effect of forecasting via MA:

MA on log-prices performs worse than on log-returns, aligning with theoretical expectations.
Mean squared error (MSE) analysis:

MSE lower when averaging log-returns, indicating better forecasting accuracy.
Lookback value q impacts forecasting performance and requires careful selection.

MA(20) on log-prices MA(20) on log-returns

0.004032 0.000725
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Forecasting with moving average
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EWMA

Exponentially-weighted moving average (EWMA or EMA):
Purpose: Adjust the simple moving average to give more weight to recent observations.
Recursive computation:

x̂t = αxt−1 + (1 − α)x̂t−1,

α is the weighting factor (0 ≤ α ≤ 1) controlling the exponential decay or memory.

Exponential weighting mechanism:
The recursion applies exponential weights to past observations:

x̂t = αxt−1 + α(1 − α)xt−2 + α(1 − α)2xt−3 + α(1 − α)3xt−4 + . . .

Interpretation:
Each term is weighted by a factor that decreases exponentially for older observations.
Recent observations have a stronger influence on the moving average, reflecting their
higher relevance to the current state.
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ARMA modeling

Classical forecasting techniques in finance:
Overview:

Extensions of MA and EMA models form the core of financial time series forecasting.
Focus on capturing linear structure in return time series through autoregressive models.

Autoregressive (AR) models:
AR(1) model:

Basic form:
xt = ϕ0 + ϕ1xt−1 + ϵt

Parameters: ϕ0, ϕ1, and noise variance σ2.
Captures linear dependency between consecutive returns.

AR(p) model:
General form:

xt = ϕ0 +
p∑

i=1

ϕi xt−i + ϵt

Parameters: ϕ0, . . . , ϕp, and σ2.
Includes determination of model order p.
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ARMA modeling
Autoregressive moving average (ARMA) models:

ARMA(p,q) model:

xt = ϕ0 +
p∑

i=1
ϕixt−i + ϵt −

q∑
j=1

ψjϵt−j

Parameters: ϕ0, . . . , ϕp, ψ1, . . . , ψq, and σ2.
Combines AR and MA components to exploit linear dependencies in returns and past noise
terms.

Forecasting with ARMA models:
Conditional expected return: (time variation modeled)

µt ≜ IE[xt | Ft−1] = ϕ0 +
p∑

i=1
ϕixt−i −

q∑
j=1

ψjϵt−j

Conditional variance: (constant noise variance!)

σ2
t = IE[(xt − µt)2 | Ft−1] = σ2
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ARMA modeling

ARIMA model overview:
Definition:

ARIMA(p, d , q) model accounts for nonstationarity by differencing the original time series
d times.
For log-prices yt , ARIMA with d = 1 is equivalent to ARMA on log-returns xt .

Model specification:
ARIMA(p, d , q) equation:

xt = ϕ0 +
p∑

i=1
ϕixt−i + ϵt −

q∑
j=1

ψjϵt−j ,

xt is the differenced series: xt = yt − yt−d
ϕ0, ϕi , ψj : model coefficients.
ϵt : noise term.
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ARMA modeling

Software implementations for ARMA/ARIMA:
R package rugarch:

Implements fitting for a range of ARMA models.
Python package statsmodels:

Contains statistical data modeling methods, including ARMA/ARIMA.

Model order selection:
Importance:

The order (p, q) determines the number of parameters and is crucial for model fitting.
Higher order models can better fit historical data but risk overfitting.

Approaches to determine order:
Cross-validation: Split data into training and validation sets to test different orders.
Penalization methods: Use criteria like AIC, BIC, SIC, HQIC to penalize model complexity.
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ARMA modeling
Considerations in financial time series modeling:

Stationarity vs. nonstationarity:
Log-returns are typically stationary, making them suitable for ARMA modeling.
Log-prices often exhibit nonstationarity, requiring differencing to apply ARMA/ARIMA
models.

Overfitting concerns:
Critical in the context of backtesting (Palomar 2024, chap. 8).
Balancing model fit with the ability to generalize to future data is critical.

Forecasting with ARMA models:
Illustration:

Next figure shows forecasting effects with different orders.
Performance evaluation:

Table below presents mean squared error for forecasting.
i.i.d. modeling often performs well due to the lack of strong autocorrelations in returns.

i.i.d. AR(1) MA(1) ARMA(1,1)

0.000754 0.000793 0.000805 0.000914
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Forecasting with ARMA models

7.7
7.8
7.9
8.0
8.1
8.2

Feb 2020 Apr 2020 Jun 2020 Aug 2020 Oct 2020

Log−price time series

−0.10

−0.05

0.00

0.05

0.10

Feb 2020 Apr 2020 Jun 2020 Aug 2020 Oct 2020

Log−return time series

−0.10
−0.05

0.00
0.05
0.10

Feb 2020 Apr 2020 Jun 2020 Aug 2020 Oct 2020

Forecast error time series

true

i.i.d.

AR(1)

MA(1)

ARMA(1,1)

Portfolio Optimization Financial Data: Time Series Modeling 32 / 74



Seasonality decomposition

Structural time series models overview:
Concept: Decompose observed time series into unobserved components like trend,
seasonal, and irregular components.
Example: Random walk model extended to include seasonal component:

yt = µt + γt + ϵt ,

where µt represents the trend and γt the seasonal component.

Modeling components:
Trend component (µt):

Modeled as µt = µt−1 + ηt .
Represents the underlying trend in the time series.

Seasonal component (γt):
Modeled for s seasons in a period as γt = −

∑s−1
j=1 γt−j + ωt .

Ensures the sum over a full period is approximately zero.
ωt is a small white noise term.
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Seasonality decomposition
Time series decomposition:

Historical context:
Received significant attention since the 1950s.
Variety of models proposed for time series decomposition.

Exponential smoothing methods:
Sophisticated versions of EWMA.
Combine EWMA with decomposition into trend, seasonality, cycle, etc.
Useful for time series with seasonality and cyclic components.

Application in financial data:
Intraday financial data:

Contains specific components changing with patterns during the day.
Example: “Volatility smile” pattern with higher volatility at the beginning/end of the day.

State space representation and Kalman algorithm:
Intraday volatility decomposition can be modeled via state space representation.
Efficient implementation with the Kalman algorithm for dynamic modeling and forecasting.

References and rurther reading:
Comprehensive treatments in (Lütkepohl 2007; Durbin and Koopman 2012).
Exponential smoothing methods and their applications (Hyndman et al. 2008).
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Kalman modeling

Kalman filtering for financial time series:
Application to random walk model:

Random walk model for log-prices extended to include time-varying drift and volatility.
State space model and Kalman algorithm allow for dynamic drift modeling.

Local level model:
State space representation:

xt = µt + ϵt

µt+1 = µt + ηt ,

µt : hidden state representing the drift.
ϵt : observation noise.
ηt : noise term allowing drift evolution.
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Kalman modeling

Improvement over simple moving average:
More accurate than MA due to dynamic drift modeling.
No need to choose lookback parameter q as in MA(q).
Variances of noise terms can be predetermined or estimated via maximum likelihood.

Local linear trend model:
State space representation:

yt =
[
1 0

] [
ỹt
µt

]
+ ϵt[

ỹt+1
µt+1

]
=

[
1 1
0 1

] [
ỹt
µt

]
+ ηt .

ỹt : noiseless version of log-prices.
Allows for observation noise and state transition noise.
Drift µt can be time-varying.
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Kalman modeling
Comparison with other models:

Kalman filtering outperforms MA, EWMA, and ARMA models in forecasting accuracy.
Offers a dynamic approach to modeling financial time series with time-varying
components.

Practical considerations:
Decision on model complexity balanced against meaningful performance improvement.
Kalman filtering provides a sophisticated method for dynamic modeling in finance.

Forecasting performance:
Illustration:

Next figure shows forecasting effects with Kalman filtering on log-returns and log-prices.
Mean squared error (MSE) analysis:

Table below presents MSE for forecasting.
Performance improves with more accurate models.
Complexity vs. performance trade-off must be considered.

Kalman on log-returns (dynamic) Kalman on log-prices (static) Kalman on log-prices (dynamic)

0.000632 0.00056 0.000557
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Forecasting with Kalman
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Kalman modeling
Kalman filtering in ARMA modeling:

ARMA models can be reformulated as state space models to utilize Kalman filtering.
Multiple methods exist to convert ARMA to state space form.

State space representation of AR(p):
Hidden state definition:

αt =

 xt
...

xt−p+1


represents the state vector including past p values.
State space model for AR(p):

xt =
[
1 0 . . . 0

]
αt

αt+1 =


ϕ0
0
...
0

 +


ϕ1 . . . ϕp−1 ϕp
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

 αt +


ϵt
0
...
0

 .
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Kalman modeling

Components:
Observation equation relates the observed value xt to the state vector αt .
State transition equation models the evolution of the state vector over time.
ϕ0, ϕ1, . . . , ϕp: AR model coefficients.
ϵt : Noise term in the observation equation.

Advantages of Kalman filtering for ARMA:
Allows for dynamic updating and estimation of the state vector.
Can handle time-varying coefficients and non-stationary processes.
Provides a unified framework for estimation, forecasting, and smoothing.

References for state space and Kalman filtering:
Comprehensive treatments and conversion methods can be found in (Zivot, Wang, and
Koopman 2004; Lütkepohl 2007; Tsay 2010; Durbin and Koopman 2012).
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Multivariate case: VARMA model

Vector ARMA (VARMA) for multivariate case:
Extends ARMA to multiple assets using matrix coefficients.
VARMA(p, q) model:

xt = ϕ0 +
p∑

i=1
Φixt−i + ϵt −

q∑
j=1

Ψjϵt−j ,

Parameters: ϕ0 ∈ RN , Φi ,Ψj ∈ RN×N , Σ ∈ RN×N (covariance matrix of ϵt).
Challenges: Parameter count grows quadratically with number of assets, risking
overfitting.
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Multivariate case: VECM model

Vector Error Correction Model (VECM):
Based on cointegration concept, applies ARMA model on log-prices.
VECM model:

xt = ϕ0 + Πy t−1 +
p−1∑
i=1

Φ̃ixt−i + ϵt ,

Π = αβT: Reveals cointegration relationships.
Important for mean-reverting strategies in pairs trading or statistical arbitrage.
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Multivariate Kalman modeling

State space model for Kalman filtering:
Local trend model extended to multiple assets.

Asset-by-asset model:
xi,t = µi,t + ϵi,t

µi,t+1 = µi,t + ηi,t ,

where the observation noise is ϵi,t ∼ N (0, hi) and the drift noise is ηi,t ∼ N (0, qi).

General vector model with correlated noise terms:

xt = µt + ϵt

µt+1 = µt + ηt ,

where:
observation noise vector: ϵt ∼ N (0,H)
drift noise vector: ηt ∼ N (0,Q).
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Multivariate modeling: Practical considerations

Simple MA and EWMA can be applied to each asset separately.

VARMA and VECM models address the multivariate nature of financial data.

Kalman filtering provides a dynamic framework for modeling correlated assets.

Careful model selection and parameter estimation are crucial to avoid overfitting and
to capture meaningful relationships in multivariate financial time series.
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Volatility/Variance modeling

Volatility clustering:
Large price changes tend to be followed by large changes, and small changes by small.
Constitutes a temporal structure in financial data that can be exploited through modeling.

Objective of modeling:
Initially focused on mean modeling (conditional expected return µt).
Now exploring models for conditional variance Σt .

Simplification to univariate case:
Focus on single asset for simplicity.
Goal: Compute expectation of future variance based on past observations Ft−1.
Key Equation: Var[ϵt | Ft−1] = IE[ϵ2t ], where ϵt = xt − µt .

Practical considerations:
Often simplified to IE[x2

t | Ft−1] due to small magnitude of µt .
Volatility not directly observable; requires proxies or visual inspection for assessment.

Volatility modeling references:
Standard material textbooks: (Lütkepohl 2007; Tsay 2010; Ruppert and Matteson 2015).
These slides based on (Palomar 2024, chap. 4).
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Moving average (MA)

i.i.d. model and residual distribution:
Residuals ϵt assumed to follow a normal distribution: ϵt ∼ N (0, σ2).
Simplest variance estimation: σ2 = IE[ϵ2t ] by averaging squared values.

Time-varying variance and volatility:
In practice, variance (σ2

t ) and volatility (σt) vary over time.
Volatility envelope: Refers to the time-varying volatility σt .

Moving average for time-varying variance:
To model slowly time-varying variance, use moving average on squared residuals.
Equation for estimating time-varying variance:

σ̂2
t = 1

q

q∑
i=1

ϵ2t−i .
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Volatility envelope with moving averages
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EWMA

Exponential weighting for recent observations:
Similar to exponential moving averages (EMA), recent observations can be given more
weight.
Efficient recursive computation formula:

σ̂2
t = αϵ2t−1 + (1 − α)σ̂2

t−1,

where α (0 ≤ α ≤ 1) controls the exponential decay or memory.

Volatility envelope with EWMAs:
Next figure shows volatility envelope using EWMAs with different memories.
Large residual spikes followed by exponential decay in volatility are observable.
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Volatility envelope with EWMA
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ARCH modeling

Heteroskedasticity:
Refers to time-varying variance in data.

ARCH model:
Introduced by Engle in 1982.
Models volatility clustering with equation:

ϵt = σtzt , σ2
t = ω +

q∑
i=1

αiϵ
2
t−i ,

where ϵt is the innovation, zt is an i.i.d. random variable, and σt is the time-varying
volatility.
Parameters: ω > 0 and α1, . . . , αq ≥ 0.
Engle awarded the 2003 Nobel Prize for this work.

Limitation of ARCH:
High volatility not persistent enough without a large q.
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GARCH modeling

GARCH model:
Proposed by Bollerslev in 1986.
Extends ARCH by adding past variances:

ϵt = σtzt , σ2
t = ω +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjσ
2
t−j ,

with parameters ω > 0, α1, . . . , αq ≥ 0, β1, . . . , βp ≥ 0.
Ensures more persistent volatility.

Extensions and variations:
Numerous extensions including nonlinear models and non-Gaussian distributions.
Intraday financial data models account for “volatility smile”.

Fitting GARCH models:
Typically done via maximum likelihood procedures.
Software implementations available in R: rugarchand fGarch packages.
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Volatility envelope with GARCH models
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Criticism of GARCH models

GARCH models as EWMA:
GARCH models likened to “glorified” EWMA.
Simplified GARCH(1,1) (with ω = 0 and β1 = 1 − α1) resembles EWMA:

σ2
t = α1ϵ

2
t−1 + (1 − α1)σ2

t−1.

Volatility representation:
GARCH models represent volatility as overlapping exponential decays from spikes.
Resulting volatility curve appears rugged, not smooth as expected for a slowly varying
envelope.
Despite this, GARCH models are widely used and popular.

Parameter estimation challenges:
GARCH fitting is “data hungry” and can be unreliable with insufficient observations.
Example: Monte Carlo simulations show large variation in parameter estimates even with
1, 000 data points (4 years of daily data).
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Unstability in GARCH model fitting
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Stochastic volatility modeling

Stochastic volatility (SV) model:
Proposed by Taylor in 1982.
Models volatility probabilistically via a state space model.
Log-variance formulation (log σ2

t = ht):

ϵt = exp(ht/2)zt , ht = γ + ϕht−1 + ηt ,

where ϵt = σtzt , and volatility dynamics are modeled stochastically.

Comparison with GARCH:
SV and GARCH proposed in the same year but SV less popular due to complex fitting
process.
SV models log variance and includes a stochastic noise term ηt in volatility dynamics,
differing from GARCH’s deterministic evolution.
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Stochastic volatility modeling

Fitting SV models:
More theoretically involved and computationally demanding than GARCH.
Maximum likelihood optimization not exactly feasible.
Kalman filtering used as a practical approximation.
MCMC algorithms typically employed for coefficient estimation.

Software for SV modeling:
R package stochvol for MCMC1 fitting of SV models.
Python package PyMC for MCMC methods in SV modeling.

Insight and applications:
Despite lower popularity, SV models offer a probabilistic approach to volatility modeling.
Covered in overview papers and textbooks, indicating significant relevance in financial
econometrics.

1MCMC: Markov chain Monte Carlo.
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Volatility envelope with SV modeling via MCMC
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Kalman modeling of volatility envelope

State space representation of SV model:
Logarithm of squared observation equation:

log(ϵ2t ) = ht + log(z2
t ),

where log(z2
t ) is a non-Gaussian i.i.d. process.

Gaussian distribution assumption:
For zt ∼ N (0, 1), mean and variance of log(z2

t ) are derived using Digamma and
Trigamma functions.

SV model approximation: Under Gaussian assumption for zt :

log(ϵ2t ) = −1.27 + ht + ξt

ht = γ + ϕht−1 + ηt

where ξt is a non-Gaussian i.i.d. process with variance π2/2.
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Kalman modeling of volatility envelope

Random walk plus noise model:
A specific case with γ = 0 and ϕ = 1:

log(ϵ2t ) = −1.27 + ht + ξt

ht = ht−1 + ηt

with the single remaining parameter σ2
η.

Kalman filtering and SV model:
Kalman filtering used for approximation, though not optimal due to non-Gaussian ξt .
Different model choices produce varying volatility envelopes.

Realized volatility:
Volatility is unobservable, making model choice challenging.
Realized volatility, observable through higher-frequency data, can aid in model fitting.
Example: Hourly data used to estimate daily volatility.
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Volatility envelope with SV modeling via Kalman filter

0.00

0.05

0.10

Feb 2020 Apr 2020 Jun 2020 Aug 2020 Oct 2020

absolute residuals

SV − random walk

SV − AR(1)

Residual time series and envelope forecast

Portfolio Optimization Financial Data: Time Series Modeling 61 / 74



Volatility envelope with SV modeling via Kalman smoother
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Multivariate EWMA

Multivariate EWMA volatility modeling:
Extension of univariate EWMA to multivariate case:

Σ̂t = αϵt−1ϵT
t−1 + (1 − α)Σ̂t−1,

where ϵt = xt − µt ∈ RN is the forecasting error vector.
α is the smoothing parameter for exponential decay or memory.

Customization for each asset:
Model can be adapted to have different smoothing parameters for each asset.

Portfolio Optimization Financial Data: Time Series Modeling 63 / 74



Multivariate GARCH

Multivariate GARCH model extensions:
Attempts to extend univariate GARCH to multivariate context.
Forecasting error vector decomposed as:

ϵt = Σ1/2
t zt ,

where zt is a zero-mean random vector with identity covariance matrix.

Volatility matrix dynamics:
Modeling Σ1/2

t is complex due to increased parameter count.
Overfitting becomes a risk with a large number of parameters.
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Multivariate GARCH

Constant conditional correlation (CCC) Model:
Addresses dimensionality by using univariate models for each asset and a constant
correlation matrix.
Model equation:

Σt = DtCDt ,

where Dt is the diagonal matrix of time-varying volatilities and C is the constant
correlation matrix.
Convenient in practice but assumes fixed correlation structure.

Dynamic conditional correlation (DCC) Model:
Allows time-varying correlation matrix, avoiding overfitting with a single scalar parameter.
First, model the volatility for each asset and remove it: ϵ̄t = D−1

t ϵt .
Then, the time-varying correlation matrix C t is obtained via EWMA:

Qt = αϵ̄t−1ϵ̄T
t−1 + (1 − α)Qt−1,

followed by normalization to ensure a proper correlation matrix.
Disadvantage: All correlations share the same memory parameter α.
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Multivariate GARCH

The recommended procedure for building DCC models is (Tsay 2013):

1 Use any of the mean modeling techniques to obtain a forecast µt and then compute
the residual or error vector of the forecast ϵt = xt − µt .

2 Apply any of the univariate volatility models to obtain the volatility envelopes for the
N assets (σ1,t , . . . , σN,t).

3 Standardize each of the series with the volatility envelope, ϵ̄t = D−1
t ϵt , so that a

series with approximately constant envelope is obtained.
4 Compute either a fixed covariance matrix of the multivariate series ϵ̄t or an

exponentially weighted moving average version.

Copulas are another popular approach for multivariate modeling that can be combined with
DCC models (Tsay 2013; Ruppert and Matteson 2015).
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Multivariate SV

Multivariate stochastic volatility (SV) model:
Extension of univariate SV to multivariate case:

ϵt = Diag (exp(ht/2)) zt ,

where ht = log(σ2
t ) is the log-variance vector and zt is a zero-mean random vector with

fixed covariance matrix Σz .

Covariance matrix modeling:
Modeled as:

Σt = Diag (exp(ht/2)) ΣzDiag (exp(ht/2)) ,

resembling the form of the CCC model with time-varying volatilities and fixed correlations.
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Multivariate SV

Approximated state space model:
Logarithm of observation equation leads to:

log
(
ϵ2

t
)

= −1.27 × 1 + ht + ξt

ht = γ + Diag (ϕ) ht−1 + ηt

where ξt is a non-Gaussian i.i.d. vector process with covariance matrix Σξ.

Multivariate random walk plus noise model:
Multivariate version of the random walk model:

log
(
ϵ2

t
)

= −1.27 × 1 + ht + ξt

ht = ht−1 + ηt .

Extensions of SV model:
Include common factors and heavy-tailed distributions.
Address more complex market dynamics and distributional assumptions.
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Summary

Numerous models incorporate temporal structure for mean (µt) and variance (Σt)
modeling of financial time series:

Mean models range from moving averages to ARMA/VECM, but may not outperform
i.i.d. given small autocorrelations, though conclusions depend on data
frequency/nature.
Volatility models are practical as data exhibits volatility clustering. Popular approaches
are GARCH (econometrics standard) and stochastic volatility (smoother volatility
paths but computationally complex before Kalman filtering).
State space models provide a general framework encompassing common mean models
and approximating volatility models like stochastic volatility.
The Kalman filter efficiently fits state space models to financial data, enabling
essential time-varying modeling, though underutilized in finance despite coverage in
standard texts.
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