Portfolio Optimization

Graph-Based Portfolios

Daniel P. Palomar (2024). Portfolio Optimization: Theory and Application. Cambridge University Press.

portfoliooptimizationbook.com

Latest update: October 11, 2024

Outline

[Introduction](#page-3-0)

2 [Hierarchical clustering and dendrograms](#page-10-0)

3 [Hierarchical clustering-based portfolios](#page-19-0)

- [Hierarchical 1](#page-22-0)*/*N portfolio
- [Hierarchical risk parity \(HRP\) portfolio](#page-37-0)
- [Hierarchical equal risk contribution \(HERC\) portfolio](#page-45-0)

[Numerical experiments](#page-55-0)

Abstract

Graphs offer a compact representation of big data, enabling analysis of large networks and pattern extraction. For financial data, asset graphs provide crucial information for modern portfolio design, potentially enhancing the mean-variance portfolio formulation. However, the optimal incorporation of graph information in portfolio optimization remains an open question. These slides explore some attempts in the literature [\(Palomar 2024, chap. 12\)](#page-65-0).

Outline

1 [Introduction](#page-3-0)

2 [Hierarchical clustering and dendrograms](#page-10-0)

[Hierarchical clustering-based portfolios](#page-19-0)

- [Hierarchical 1](#page-22-0)*/*N portfolio
- [Hierarchical risk parity \(HRP\) portfolio](#page-37-0)
- [Hierarchical equal risk contribution \(HERC\) portfolio](#page-45-0)

[Numerical experiments](#page-55-0)

[Summary](#page-63-0)

Introduction

Markowitz's mean-variance portfolio:

- Balances expected return and risk.
- Optimization problem:

$$
\begin{array}{ll}\n\mathsf{maximize} & \mathbf{w}^{\mathsf{T}} \mathbf{\mu} - \frac{\lambda}{2} \mathbf{w}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{w} \\
\mathsf{subject to} & \mathbf{w} \in \mathcal{W},\n\end{array}
$$

- \bullet λ : risk-aversion hyper-parameter.
- $\mathcal{W} \colon$ constraint set (e.g., $\mathcal{W} = \{\bm{w} \mid \bm{1}^{\mathsf{T}}\bm{w} = 1, \bm{w} \geq \bm{0}\}).$

Challenges with estimation errors:

- Mean vector *µ* and covariance matrix **Σ** are prone to errors.
- Estimation errors significantly impact portfolio performance.

Improvement using graph of assets:

- Potential for enhancement by incorporating asset graph connectivity.
- Graph connectivity patterns may reveal key investment insights.

Graphs and distance matrices

Graph-based portfolio construction:

- Utilizes graph information encoded as a distance matrix **D**.
- Distance reflects the relationship between asset pairs.
- **Correlation-based distance matrix:**

$$
D_{ij}=\sqrt{\frac{1}{2}(1-\rho_{ij})}
$$

where ρ_{ii} is the correlation between assets *i* and *j*.

Connection with Euclidean distance:

- \bullet Standardized data columns: $\tilde{\mathbf{x}}_i = (\mathbf{x}_i \mu_i)/\sigma_i$
- Empirical correlation:

$$
\rho_{ij} = \frac{1}{T} \tilde{\mathbf{x}}_i^{\mathsf{T}} \tilde{\mathbf{x}}_j
$$

Normalized squared Euclidean distance:

$$
\frac{1}{T} \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2^2 = 2(1 - \rho_{ij})
$$

Graphs and distance matrices

Other distance functions:

• Minkowski metric based on p-norm:

$$
D_{ij} = \|\tilde{\boldsymbol{x}}_i - \tilde{\boldsymbol{x}}_j\|_p
$$

where
$$
\|\mathbf{a}\|_p = \left(\sum_{t=1}^T |a_i|^p\right)^{1/p}
$$

- Manhattan distance $(p = 1)$
- Euclidean distance $(p = 2)$.
- **Holistic distance matrix approach:** Euclidean distance between distance vectors:

$$
\tilde{D}_{ij} = \|\boldsymbol{d}_i - \boldsymbol{d}_j\|_2
$$

- **d**i : ith column of **D**.
- Reflects similarity of assets with the entire asset universe.
- Overcomes the limitation of pairwise-only information.

Toy example

Correlation matrix C:

$$
\boldsymbol{C} = \begin{bmatrix} 1 & 0.7 & 0.2 \\ 0.7 & 1 & -0.2 \\ 0.2 & -0.2 & 1 \end{bmatrix}
$$

Correlation-based distance matrix D:

$$
\boldsymbol{D} = \begin{bmatrix} 0 & 0.3873 & 0.6325 \\ 0.3873 & 0 & 0.7746 \\ 0.6325 & 0.7746 & 0 \end{bmatrix}
$$

• Euclidean distance matrix of correlation distances \tilde{D} **:**

$$
\tilde{\boldsymbol{D}} = \begin{bmatrix} 0 & 0.5659 & 0.9747 \\ 0.5659 & 0 & 1.1225 \\ 0.9747 & 1.1225 & 0 \end{bmatrix}.
$$

Other advanced graph estimation methods [\(Palomar 2024, chap. 5\)](#page-65-0):

Heavy-tailed Markov random field (MRF) with degree control:

maximize
$$
\log \text{gdet}(\mathcal{L}(\mathbf{w})) - \frac{N + \nu}{T} \sum_{t=1}^{T} \log (\nu + (\mathbf{x}^{(t)})^T \mathcal{L}(\mathbf{w}) \mathbf{x}^{(t)})
$$

subject to $\mathfrak{d}(\mathbf{w}) = \mathbf{1}$,

where

- \bullet gdet(\cdot): generalized determinant
- **w**: graph weight vector
- \cdot $\mathcal{L}(\mathbf{w})$: Laplacian operator
- $\partial(w)$: degree operator
- *ν*: controls heavy-tailness.

k**-component heavy-tailed MRF with degree control:** Aims for a k-component graph (graph with k clusters)

maximize
\n
$$
\begin{array}{ll}\n& \text{maximize} \\
& \mathbf{w} \geq \mathbf{0}, \mathbf{F} \in \mathbb{R}^{N \times k} \\
& \text{subject to} & \mathbf{0}(\mathbf{w}) = 1, \quad \mathbf{F}^{\mathsf{T}} \mathbf{F} = \mathbf{I},\n\end{array}
$$
\n
$$
+ \gamma \text{Tr}(\mathbf{F}^{\mathsf{T}} \mathcal{L}(\mathbf{w}) \mathbf{F})
$$

where

- *γ*: regularization hyper-parameter
- **F**: enforces low-rank property.

Outline

[Introduction](#page-3-0)

2 [Hierarchical clustering and dendrograms](#page-10-0)

[Hierarchical clustering-based portfolios](#page-19-0)

- [Hierarchical 1](#page-22-0)*/*N portfolio
- [Hierarchical risk parity \(HRP\) portfolio](#page-37-0)
- [Hierarchical equal risk contribution \(HERC\) portfolio](#page-45-0)

[Numerical experiments](#page-55-0)

[Summary](#page-63-0)

Hierarchical clustering and dendrograms

Clustering overview:

- Multivariate statistical analysis technique.
- Used in machine learning, data mining, pattern recognition, bioinformatics, finance, etc.
- Groups elements into clusters based on similar characteristics.
- Unsupervised classification method.

Hierarchical clustering:

- Forms a recursive nested clustering.
- Builds a binary tree of data points representing nested groups.
- Allows data exploration at different levels of granularity.
- Contrasts with partitional clustering, which finds all clusters simultaneously without a hierarchical structure.

Dendrogram:

- Visual representation of the hierarchical clustering tree.
- Encodes the successive or hierarchical clustering process.
- Provides a complete, interpretable description of the clustering in graphical format.
- Popular due to its high interpretability.

Hierarchical clustering and dendrograms

Consider a toy example with distance matrix:

$$
\tilde{\boldsymbol{D}} = \begin{bmatrix} 0 & 0.5659 & 0.9747 \\ 0.5659 & 0 & 1.1225 \\ 0.9747 & 1.1225 & 0 \end{bmatrix}
$$

The dendrogram groups first the first and second elements since they have the smallest distance:

Basic procedure

Hierarchical clustering process:

- Requires a distance matrix **D**.
- Sequentially clusters items based on distance.

Methods for hierarchical clustering:

- **Agglomerative (bottom-up):**
	- **•** Starts with each item as a singleton cluster.
	- Merges the closest clusters sequentially.
	- **Continues until one cluster remains.**

Divisive (top-down):

- **Starts with all items in one cluster.**
- Recursively divides each cluster into smaller ones.

Levels of hierarchy:

- Each level represents a grouping into disjoint clusters.
- The entire hierarchy is an ordered sequence of groupings.

Basic procedure

- **Linkage clustering methods:** measure of dissimilarity between clusters:
	- **Single linkage:**
		- Distance is the minimum distance between any two points in the clusters.
		- Related to the minimum spanning tree (MST).
	- **Complete linkage:**
		- Distance is the maximum distance between any two points in the clusters.
	- **Average linkage:**
		- Distance is the average distance between any two points in the clusters.
	- **Ward's method:**
		- Distance is the increase in squared error when merging clusters.
		- Related to distances between cluster centroids.

Effects of Linkage Method:

- Significantly impacts the resulting hierarchical clustering.
- Single linkage may cause a "chaining" effect and imbalanced groups.
- Complete linkage tends to produce more balanced groups.
- Average linkage is an intermediate case.
- Ward's method often yields results similar to average linkage.

Dendrograms of S&P 500 stocks

Average linkage

Ward's method

Complete linkage

Determining the number of clusters:

- \bullet Traversing the dendrogram from top to bottom transitions from one giant cluster to N singleton clusters.
- \bullet In practice, dealing with N singleton clusters may lead to overfitting.

Simplification vs. detail:

- Fewer clusters simplify the data but lose fine details, too many clusters might identify spurious patterns.
- The challenge lies in choosing the optimal number of clusters.

Automatic detection of optimal clusters:

- Essential to avoid overfitting.
- Aids in identifying the most appropriate number of clusters.

Gap statistic:

- Determines the optimal number of clusters.
- Compares empirical within-cluster dissimilarity to uniformly distributed data.
- Identifies the balance between simplification and preserving significant patterns.

Quasi-diagonalization of correlation matrix

Quasi-diagonalization of correlation matrix:

- Hierarchical clustering reorders items in the correlation matrix.
- Groups similar assets closer and dissimilar assets farther apart.
- Known as *matrix seriation* or *matrix quasi-diagonalization*.
- An old statistical technique for revealing inherent clusters.

Benefits of quasi-diagonalization:

- Rearranges the correlation matrix into a quasi-diagonal form.
- Reveals similar assets as blocks along the main diagonal.
- Enhances visual pattern recognition compared to a randomly ordered matrix.

Visualization through heatmaps:

- Heatmaps can display the original and quasi-diagonal correlation matrices.
- Original matrix with randomly ordered stocks shows no clear pattern.
- Quasi-diagonal matrix, after reordering, clearly shows correlated stocks in diagonal blocks.

Identification of clusters:

- Quasi-diagonal matrix allows for easy identification of asset clusters.
- Corresponding dendrograms can confirm the number and composition of these clusters.

Quasi-diagonalization of correlation matrix

Effect of seriation in the correlation matrix of S&P 500 stocks:

Heatmap of quasi-diagonal correlation matrix

Outline

[Introduction](#page-3-0)

[Hierarchical clustering and dendrograms](#page-10-0)

3 [Hierarchical clustering-based portfolios](#page-19-0)

- [Hierarchical 1](#page-22-0)*/*N portfolio
- [Hierarchical risk parity \(HRP\) portfolio](#page-37-0)
- [Hierarchical equal risk contribution \(HERC\) portfolio](#page-45-0)

[Numerical experiments](#page-55-0)

[Summary](#page-63-0)

Hierarchical clustering-based portfolios

Portfolio design based on graph of assets:

- Aims to create robust, diversified portfolios with better risk-adjusted performance.
- Less reliance on noisy estimates of mean vector *µ* and covariance matrix **Σ**.

Hierarchical clustering for diversification:

- Distributes capital weights across hierarchically nested clusters.
- Identifies isolated stocks contributing to diversification.
- Visualized using the hierarchical tree layout.

Capital allocation in hierarchical clustering-based portfolios:

- Total capital starts at the top of the dendrogram.
- Capital is allocated top-down through the hierarchy.
- Each division of a cluster into sub-clusters splits the capital accordingly.
- Portfolios for sub-clusters are designed at each split.

Hierarchical clustering-based portfolios

Characteristics of hierarchical clustering-based portfolios:

- **1 Distance matrix:** Defines the graph (e.g., correlation-based, distance matrix of columns, sophisticated graph learning).
- ² **Linkage method:** Employed in the clustering process (e.g., single, complete, average, Ward).
- ³ **Clustering stopping criterion:** Determines when to stop clustering (e.g., single-item clusters, gap statistic).
- **4 Splitting criterion:** Recursively splits the assets (e.g., bisection, dendrogram-based).
- **3 Intra-weight allocation:** Allocation of weights within clusters.
- **⁶** Inter-weight allocation: Allocation of weights across clusters.

We will explore:

- Hierarchical 1*/*N Portfolio.
- **Hierarchical Risk Parity Portfolio.**
- Hierarchical Equal Risk Contribution Portfolio.

Outline

[Introduction](#page-3-0)

[Hierarchical clustering and dendrograms](#page-10-0)

3 [Hierarchical clustering-based portfolios](#page-19-0)

- [Hierarchical 1](#page-22-0)*/*N portfolio
- [Hierarchical risk parity \(HRP\) portfolio](#page-37-0)
- [Hierarchical equal risk contribution \(HERC\) portfolio](#page-45-0)

[Numerical experiments](#page-55-0)

[Summary](#page-63-0)

Cluster-based waterfall portfolio overview:

- Introduced by [\(Papenbrock 2011\)](#page-65-1) in his PhD thesis.
- Utilizes hierarchical tree from correlation-based distance matrix.
- Allocation process splits weights equally at each dendrogram split.

Allocation process:

- Proceeds in a top-down manner through the dendrogram.
- Splits weights equally at each splitting point.
- Illustration provided in the next figure.

Illustration of the hierarchical 1*/*N portfolio construction in a top-down manner:

Impact of linkage method on weight allocation:

- **Single linkage:**
	- Suffers from "chaining" effect, leading to high weights on some stocks.
- **Complete linkage:**
	- Produces more even groups and weights.
- **Average linkage:**
	- Intermediate between single and complete linkage.
- **Ward's method:**
	- Similar to complete linkage but with even more balanced groups and weights.
- **Regular** 1*/*N **portfolio:**
	- Represents equalized weights without using graph information, termed naive 1*/*N portfolio.

Hierarchical 1*/*N portfolio

Chaining effect of different linkage methods on the hierarchical 1*/*N allocation:

Hierarchical 1*/*N portfolio

Summary:

¹ **Distance matrix:**

• Correlation-based:
$$
D_{ij} = \sqrt{\frac{1}{2}(1 - \rho_{ij})}
$$
.

² **Linkage method:**

- Single linkage for high-risk investors.
- Ward's method for risk-averse investors.

³ **Clustering stopping criterion:**

• Continues to single-item clusters.

⁴ **Splitting criterion:**

• Follows the dendrogram.

⁵ **Intra-weight allocation:**

• 1/N portfolio strategy.

⁶ **Inter-weight allocation:**

• $1/N$ portfolio with $N = 2$, i.e., 50% - 50% split at each branching.

Comparing hierarchical 1*/*N **portfolios with different linkage methods:**

- Hierarchical 1/N portfolios are compared using single, complete, average, and Ward's linkage methods.
- Naive $1/N$ portfolio serves as a benchmark.

Backtest results:

- Ward's method seems to be a good choice for hierarchical 1*/*N portfolio construction.
- The original publication [\(Papenbrock 2011\)](#page-65-1) supports the use of Ward's method for subsequent analysis.

Portfolio allocation of hierarchical 1*/*N portfolios with different linkage methods:

Backtest performance of hierarchical 1*/*N portfolios with different linkage methods:

Comparison of hierarchical 1*/*N **portfolio using different distance matrices:**

- ¹ **Correlation-based distance matrix:**
	- As per [\(Papenbrock 2011\)](#page-65-1):

$$
D_{ij}=\sqrt{\frac{1}{2}(1-\rho_{ij})}
$$

² **Correlation-based distance-of-distance matrix:**

As used in [\(López de Prado 2016\)](#page-65-2):

$$
\tilde{D}_{ij} = \|\boldsymbol{d}_i - \boldsymbol{d}_j\|_2
$$

³ **Graphs estimated via heavy-tailed MRF:**

- Regular heavy-tailed MRF.
- \bullet *k*-component heavy-tailed MRF.

Backtest observations:

- The simple correlation-based distance-of-distance matrix appears to have a better drawdown profile.
- More exhaustive backtests are recommended to draw definitive conclusions.

Portfolio Optimization [Graph-Based Portfolios](#page-0-0) 32 / 66

Portfolio allocation of hierarchical $1/N$ portfolios with different distance matrices:

Backtest performance of hierarchical 1*/*N portfolios with different distance matrices:

- Hierarchical 1/N (corr−distance)
- Hierarchical 1/N (corr−distance−of−distance)
- Hierarchical 1/N (regular−heavy−tail graph)
- Hierarchical 1/N (k−comp−heavy−tail graph)

Final comparison of hierarchical 1*/*N **portfolio:**

- Selected version uses Ward's method for linkage and correlation-based distance-of-distance matrix.
- Benchmarks: naive 1*/*N portfolio, global minimum variance portfolio (GMVP), and Markowitz mean-variance portfolio (MVP).

Observations:

- Hierarchical $1/N$ portfolio shows a distinct allocation pattern, emphasizing diversification.
- MVP exhibits the worst drawdown due to sensitivity in estimating μ .
- GMVP and naive 1*/*N portfolio show better performance than MVP.
- Hierarchical $1/N$ portfolio demonstrates the mildest drawdown, indicating superior risk management.

Considerations and further evaluation:

- The presented backtest is anecdotal and not sufficient for definitive conclusions.
- A proper empirical evaluation requires multiple randomized backtests.
- Further analysis is necessary to robustly assess the performance of the hierarchical 1*/*N portfolio against benchmarks.

Portfolio allocation of hierarchical 1*/*N portfolio along benchmarks:

Backtest performance of hierarchical 1*/*N portfolio along benchmarks:

Outline

[Introduction](#page-3-0)

[Hierarchical clustering and dendrograms](#page-10-0)

3 [Hierarchical clustering-based portfolios](#page-19-0)

- [Hierarchical 1](#page-22-0)*/*N portfolio
- [Hierarchical risk parity \(HRP\) portfolio](#page-37-0)
- [Hierarchical equal risk contribution \(HERC\) portfolio](#page-45-0)
- [Numerical experiments](#page-55-0)

[Summary](#page-63-0)

Hierarchical risk parity (HRP) portfolio overview:

- Introduced by [\(López de Prado 2016\)](#page-65-2).
- **Based on hierarchical tree from correlation-based distance-of-distance matrix.**
- Utilizes single linkage method for clustering.
- Allocation process uses inverse-variance portfolio (IVarP) for weight splitting.

Global minimum variance portfolio (GMVP) recap:

- Minimizes portfolio variance subject to budget constraint.
- Solution simplifies to IVarP if covariance matrix **Σ** is diagonal:

$$
w=\frac{\sigma^{-2}}{\mathbf{1}^T\sigma^{-2}}.
$$

- Inverse-variance portfolio (IVarP) for $N = 2$ assets:
	- Weight allocation based on inverse of variances:

$$
\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \sigma_2^2/(\sigma_1^2 + \sigma_2^2) \\ \sigma_1^2/(\sigma_1^2 + \sigma_2^2) \end{bmatrix}.
$$

HRP portfolio design process:

- Similar to hierarchical 1*/*N portfolio, allocation proceeds top-down through the dendrogram.
- **Differences:**
	- Uses bisection for splitting, not the dendrogram's natural structure.
	- Weight splitting based on IVarP for $N = 2$ assets.
- Empirical evaluation required to compare performance with hierarchical 1*/*N portfolio.

Interpretation and connection to GMVP:

- HRP can be seen as a refined version of the IVarP.
- At each step, weights are scaled based on inverse variances, ignoring correlations between subsets.
- Correlations considered only in variance computation of subsets.
- When covariance matrix is diagonal, IVarP, GMVP, and HRP coincide.
- Connection between HRP and GMVP explored further in subsequent sections.

Comparison of bisection splitting and dendrogram-based splitting:

Summary:

¹ **Distance matrix:**

- Correlation-based distance-of-distance matrix.
- ² **Linkage method:**
	- Single linkage.

³ **Clustering stopping criterion:**

• Continues to single-item clusters.

⁴ **Splitting criterion:**

• Bisection, ignoring dendrogram grouping sizes.

⁵ **Intra-weight allocation:**

IVarP.

⁶ **Inter-weight allocation:**

• IVarP for $N = 2$.

Comparison of HRP portfolios with benchmarks:

- HRP portfolios compared with global minimum variance portfolio (GMVP) and inverse-variance portfolio (IVarP).
- Two versions of HRP: one with bisection split and another with dendrogram split.

Observations:

- GMVP shows concentration in two assets, while others are more diversified.
- HRP portfolios show similar diversification to IVarP.
- HRP portfolios exhibit slight improvement over IVarP.
- Graphs estimated via heavy-tailed MRF methods may offer better performance than correlation-based methods.
- HRP portfolios aim to balance diversification and risk management.
- The choice of splitting method in HRP (bisection vs. dendrogram) may not significantly alter the diversification profile compared to IVarP.
- The performance of HRP portfolios in terms of drawdown and P&L suggests potential advantages over traditional IVarP, especially when using advanced graph estimation methods.

Portfolio allocation of HRP portfolios and benchmarks:

Backtest performance of HRP portfolios and benchmarks:

Portfolio Optimization [Graph-Based Portfolios](#page-0-0) 45 / 66

Outline

[Introduction](#page-3-0)

[Hierarchical clustering and dendrograms](#page-10-0)

3 [Hierarchical clustering-based portfolios](#page-19-0)

- [Hierarchical 1](#page-22-0)*/*N portfolio
- [Hierarchical risk parity \(HRP\) portfolio](#page-37-0)
- [Hierarchical equal risk contribution \(HERC\) portfolio](#page-45-0)

[Numerical experiments](#page-55-0)

[Summary](#page-63-0)

Hierarchical equal risk contribution (HERC) portfolio overview:

- Introduced by [\(Raffinot 2018\)](#page-65-3).
- Refines and extends the hierarchical 1*/*N and HRP portfolios.
- Incorporates early stopping based on the gap statistic for cluster selection.
- Utilizes equal risk contribution (ERC) for weight allocation among clusters.

Key differences from previous approaches:

- **Early stopping with Gap statistic:**
	- Automatically selects the appropriate number of clusters.
	- Avoids clustering down to single assets.

General equal risk contribution:

- Splits weights based on alternative risk measures (e.g., standard deviation, conditional value-at-risk).
- **Profilly** for two clusters:

$$
\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} RC_1/(RC_1+RC_2) \\ RC_2/(RC_1+RC_2) \end{bmatrix},
$$

where RC_i is the risk contribution of the *i*th cluster.

Main findings:

- Hierarchical $1/N$ portfolio is a strong baseline.
- HERC portfolios based on downside risk measures (especially conditional drawdown-at-risk) show statistically better risk-adjusted performances.

Illustration of early stopping:

- The next figure demonstrates early stopping in hierarchical clustering with a toy dendrogram.
- Groups assets into clusters based on the gap statistic, avoiding overly granular clustering.

Effect of early stopping in the hierarchical clustering process:

Summary:

¹ **Distance matrix:**

Correlation-based distance-of-distance matrix.

² **Linkage method:**

Ward's method.

³ Clustering stopping criterion:

Gap statistic for optimal cluster selection.

⁴ **Splitting criterion:**

• Follows the dendrogram structure.

⁵ **Intra-weight allocation:**

• 1/N portfolio strategy.

⁶ **Inter-weight allocation:**

Equal risk contribution based on various risk measures.

Conclusion: HERC portfolio represents a sophisticated approach to portfolio construction, balancing risk across clusters for improved risk-adjusted returns.

Simplification in weight splitting for HERC portfolios:

- For weight allocation, two risk contribution measures are considered:
	- $RC_i = 1$: Leads to a 50% 50% split, similar to the hierarchical $1/N$ portfolio.
	- $\mathsf{RC}_i = 1/\sigma_i^2$: Aligns with the inverse-variance portfolio (IVarP) formula, akin to the HRP portfolio.

Comparison of HERC portfolios with benchmarks:

- Benchmarks include: 1*/*N portfolio, hierarchical 1*/*N portfolio, inverse-variance portfolio (IVarP), and HRP portfolio.
- Two versions of HERC portfolios are evaluated: one with bisection split and another with dendrogram split.

Portfolio allocation of HERC portfolios and benchmarks:

Portfolio weights

Backtest performance of HERC portfolios and benchmarks:

Observations and further evaluation:

- Difficult to draw definitive conclusions from a single backtest.
- More exhaustive backtests are necessary to robustly assess the performance of HERC portfolios.
- Future analysis should aim to evaluate the risk-adjusted returns and drawdown characteristics of HERC portfolios in various market conditions.

Conclusion:

- The HERC portfolio introduces a nuanced approach to portfolio construction by incorporating risk contributions and early stopping based on the gap statistic.
- Its performance relative to traditional and hierarchical portfolio strategies warrants further empirical investigation to fully understand its benefits and limitations.

From portfolio risk minimization to hierarchical portfolios

- The basic structure of hierarchical portfolios is heuristic and suboptimal, which is understandable since the motivation was not optimality but stability against estimation errors.
- On the other hand, portfolios designed based on the minimization of some properly chosen measure of risk are not heuristic by definition but optimal according to the design criterion.
- Can we make an explicit connection between the two paradigms?

Indeed, it is possible to design a continuum between hierarchical portfolios and optimally designed portfolios [\(Palomar 2024, sec. 12.3.4\)](#page-65-0).

Outline

[Introduction](#page-3-0)

2 [Hierarchical clustering and dendrograms](#page-10-0)

[Hierarchical clustering-based portfolios](#page-19-0)

- [Hierarchical 1](#page-22-0)*/*N portfolio
- [Hierarchical risk parity \(HRP\) portfolio](#page-37-0)
- [Hierarchical equal risk contribution \(HERC\) portfolio](#page-45-0)

[Numerical experiments](#page-55-0)

[Summary](#page-63-0)

Overview:

- Conducted multiple randomized backtests using S&P 500 stocks from 2015-2020.
- Generated 200 resamples with $N = 50$ stocks and a random two-year period.
- Walk-forward backtest with a 1-year lookback, reoptimizing monthly.
- Caution: Results are indicative and should be supplemented with more exhaustive backtests.

Observations:

- **Splitting**: Natural dendrogram splits might be expected to outperform, but it seems that bisection might provide more balanced clusters (while utilizing dendrogram ordering).
- **Graph learning**: Sophisticated methods do not clearly outperform simple graph-based approaches.

Numerical experiments - Splitting: bisection versus dendrogram

Comparison of graph-based portfolios: bisection versus dendrogram splitting:

Numerical experiments - Graph estimation: simple versus sophisticated

Comparison of graph-based portfolios: simple versus sophisticated graph learning methods:

Numerical experiments - Final comparison

Portfolios compared:

- Hierarchical $1/N$ portfolio.
- HERC $1/N$ portfolio.
- HRP portfolio.
- **HERC IVarP.**

Benchmarks:

- 1/*N* portfolio.
- IVarP.

Empirical results:

The following table and figures show no significant differences among methods.

Conclusion:

- Further exhaustive comparison needed to draw clear conclusions.
- Current analysis does not favor one graph-based portfolio method over others.

Comparison of selected graph-based portfolios: performance measures:

Numerical experiments - Final comparison

Comparison of selected graph-based portfolios: barplots of maximum drawdown and annualized volatility:

Performance of portfolios

Numerical experiments - Final comparison

Comparison of selected graph-based portfolios: boxplots of Sharpe ratio:

Outline

[Introduction](#page-3-0)

2 [Hierarchical clustering and dendrograms](#page-10-0)

[Hierarchical clustering-based portfolios](#page-19-0)

- [Hierarchical 1](#page-22-0)*/*N portfolio
- [Hierarchical risk parity \(HRP\) portfolio](#page-37-0)
- [Hierarchical equal risk contribution \(HERC\) portfolio](#page-45-0)

[Numerical experiments](#page-55-0)

Graphs compactly represent big data, revealing underlying structure and patterns.

Key takeaways for portfolio design using graphs:

- Graphs represent asset relationships: nodes are assets, edges are pairwise relationships.
- Financial graphs can be learned from data, e.g., based on heavy-tailed Markov random fields or k-component versions for clustered graphs [\(Palomar 2024, chap. 5\)](#page-65-0).
- Hierarchical clustering partitions assets into clusters at different levels of detail.
- Graph information should be incorporated into portfolio formulation, with notable examples being hierarchical 1*/*N, risk parity, and equal risk contribution portfolios.

López de Prado, M. 2016. "Building Diversified Portfolios That Outperform Out of Sample." Journal of Portfolio Management 42 (4): 59–69.

Palomar, D. P. 2024. Portfolio Optimization: Theory and Application. Cambridge University Press.

- Papenbrock, J. 2011. "Asset Clusters and Asset Networks in Financial Risk Management and Portfolio Optimization." PhD thesis, Karlsruher Institute für Technologie.
- Raffinot, T. 2018. "The Hierarchical Equal Risk Contribution Portfolio." SSRN Electronic Journal. <https://dx.doi.org/10.2139/ssrn.3237540>.