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Abstract

Markowitz’s mean-variance portfolio theory, which balances expected return against risk
measured by variance, faces challenges when applied to financial data due to its
non-Gaussian distribution characterized by asymmetry and heavy tails. Incorporating
higher-order moments such as skewness and kurtosis into portfolio design could address
this issue but introduces significant difficulties. The computation, storage, and
manipulation of these moments become exponentially more complex as they grow at a
rate of N4 with the number of assets. Additionally, the resulting portfolio formulations
are nonconvex, complicating optimization further. Despite these challenges,
advancements in computational power and techniques have only recently made high-order
portfolios feasible for managing large asset numbers, reaching into the hundreds or
thousands (Palomar 2024, chap. 9).
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Introduction

Markowitz’s mean-variance portfolio optimization:
Balances expected return and risk (variance).
Optimization problem:

maximize
w

wTµ− λ
2 wTΣw

subject to w ∈ W

where
λ: risk-aversion hyper-parameter
W: constraint set, e.g., W = {w | 1Tw = 1, w ≥ 0}.

Beyond the Gaussian assumption:
Empirical studies show financial data are not Gaussian.
Portfolio optimization should include higher-order moments:

skewness (third moment)
kurtosis (fourth moment)

Aim for higher skewness and lower kurtosis in portfolios.
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Introduction

Skewed t distribution:
Next figure shows skewed t distribution with varying skewness (γ) and kurtosis (ν).
γ = 0: symmetric case.
ν →∞: non-heavy-tailed case.

Incorporating higher moments in portfolio optimization:
Investors may prefer to trade-off lower expected return/higher volatility for higher
skewness/lower kurtosis.
Measures can be skew-adjusted; example of Sharpe ratio:

skew-adjusted-SR = SR×
√

1 + skewness
3 SR.

Portfolio Optimization High-Order Portfolios 6 / 57



Introduction
Illustration of skewness and kurtosis with the skewed t distribution:
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Introduction
High-order portfolios overview:

Third and fourth moments of a portfolio:
Third moment (skewness): wTΦ(w ⊗ w).
Fourth moment (kurtosis): wTΨ(w ⊗ w ⊗ w).

Co-skewness matrix: Φ ∈ RN×N2 .
Co-kurtosis matrix: Ψ ∈ RN×N3 .
Challenges:

Computation, storage, and manipulation of high-order moments are difficult.
Nonconvex nature of the third moment complicates portfolio formulations.

Historical perspective: (Palomar 2024, chap. 9)
Early attempts in the 1960s to incorporate high-order moments (Young and Trent 1969;
Jean 1971).
Dimensionality and computational issues hindered progress.
Skepticism due to the impracticality of modeling high-order cross-moments (Brandt,
Santa-Clara, and Valkanov 2009).
Recent advancements in estimation methods and computational techniques (Boudt, Lu,
and Peeters 2014; Zhou and Palomar 2021; Wang et al. 2023).
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Introduction
Estimation and computational challenges:

High-order portfolio design can negatively impact out-of-sample performance without
improved estimators.
Improved estimation methods introduce structure and shrinkage.
Parametric multivariate distributions reduce parameter estimation complexity.

Algorithmic developments:
Nonconvex problems can be addressed with meta-heuristic optimization, but have high
computational cost.
Local optimization methods offer practical solutions with acceptable costs.
Difference-of-convex (DC) programming and DC-SOS decomposition techniques.
Successive convex approximation (SCA) framework (Scutari et al. 2014) accelerates
convergence for high-dimensional problems.

Advancements in high-order portfolio optimization:
Significant reduction in computational cost through parametric models.
Development of faster numerical methods for large-scale portfolio optimization.
High-order portfolios now feasible for practical application.
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High-order moments

Understanding high-order moments:
High-order moments are crucial for non-Gaussian distributions.
First four moments of a random variable X :

Mean (first moment): X̄ ≜ IE [X ]
Variance (second moment): IE[(X − X̄)2]
Skewness (third moment): IE[(X − X̄)3]
Kurtosis (fourth moment): IE[(X − X̄)4].

Interpretation:
Mean: indicates location.
Variance: measures spread.
Skewness: assesses asymmetry.
Kurtosis: characterizes the tail thickness.
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High-order moments: Non-parametric case

Portfolio moments:
Portfolio return with N assets: wTr .
First four moments of portfolio return:

Mean: ϕ1(w) = wTµ
Variance: ϕ2(w) = wTΣw
Skewness: ϕ3(w) = wTΦ(w ⊗ w)
Kurtosis: ϕ4(w) = wTΨ(w ⊗ w ⊗ w).

Parameters:
µ: mean vector
Σ: covariance matrix
Φ: co-skewness matrix
Ψ: co-kurtosis matrix.
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High-order moments: Non-parametric case

Computational aspects:
We will optimize some combination of these four moments of the portfolio.
This means that we will need to compute the gradient and Hessian of these moments.

Gradients and hessians:
Gradients:

∇ϕ1(w) = µ.
∇ϕ2(w) = 2Σw .
∇ϕ3(w) = 3Φ(w ⊗ w).
∇ϕ4(w) = 4Ψ(w ⊗ w ⊗ w).

Hessians:
∇2ϕ1(w) = 0.
∇2ϕ2(w) = 2Σ.
∇2ϕ3(w) = 6Φ(I ⊗ w).
∇2ϕ4(w) = 12Ψ(I ⊗ w ⊗ w).
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High-order moments: Non-parametric case

Complexity analysis:
Complexity of parameters and their computation grows with N:

µ: O(N)
Σ: O(N2)
Φ: O(N3)
Ψ: O(N4).

Gradients and Hessians complexity:
∇ϕ1(w) and ∇2ϕ1(w): O(1) and O(1)
∇ϕ2(w) and ∇2ϕ2(w): O(N2) and O(1)
∇ϕ3(w) and ∇2ϕ3(w): O(N3) and O(N3)
∇ϕ4(w) and ∇2ϕ4(w): O(N4) and O(N4).

Memory requirement example: Storing Ψ for N = 200 needs ~12 GB.

Implications for practical application:
Markowitz’s portfolio complexity: O(N2).
Incorporating third and fourth moments increases complexity to O(N4).
High complexity limits practical application to portfolios with a small number of assets.
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High-order moments: Structured moments

Structured moments in portfolio analysis:
Introducing structure to high-order moment matrices can reduce parameter estimation.
Factor modeling introduces structure at the expense of higher complexity in the
estimation procedure due to intricate matrix structures.

Single market-factor model:
Returns modeled as:

r t = α + βrmkt
t + ϵt .

Moments expressed as:
Mean vector: µ = α + βϕmkt

1
Covariance matrix: Σ = ββTϕmkt

2 + Σϵ

Co-skewness matrix: Φ = β
(
βT ⊗ βT)

ϕmkt
3 + Φϵ

Co-kurtosis matrix: Ψ = β
(
βT ⊗ βT ⊗ βT)

ϕmkt
4 + Ψϵ

ϕmkt
i : ith moment of the market factor

Σϵ, Φϵ, Ψϵ: covariance, co-skewness, and co-kurtosis matrices of residuals.
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High-order moments: Parametric case

Overview of multivariate distributions:
Multivariate normal distribution characterized by mean µ and covariance Σ.
Financial data often exhibit non-Gaussian features like skewness and kurtosis.

Multivariate normal mixture distributions:
Introduce randomness into covariance and mean for more general distributions.
Variance mixtures affect covariance but not mean.
Mean-variance mixtures affect both mean and covariance.

Normal variance mixture:
Example: Multivariate t distribution with inverse gamma distribution for w .
Models heavy tails but not asymmetry.
Hierarchical structure:

x | τ ∼ N
(

µ,
1
τ

Σ
)

,

τ ∼ Gamma
(ν

2 ,
ν

2

)
.
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High-order moments: Parametric case
Normal mean-variance mixture:

Example: Multivariate generalized hyperbolic (GH) distribution.
Models both heavy tails and asymmetry.
Hierarchical structure for skewed t distribution:

x | τ ∼ N
(

µ + 1
τ

γ,
1
τ

Σ
)

,

τ ∼ Gamma
(ν

2 ,
ν

2

)
.

Complexity in fitting distributions:
More complex distributions like unrestricted multivariate skewed t (uMST) are hard to fit
due to computational complexity.
Skewed t distribution offers a good balance between fitting financial data asymmetries
and computational simplicity.

Goodness of fit:
Empirical comparison shows skewed t distribution a good choice for financial data.
Maintains simplicity while fitting data well, unlike more complex distributions.
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High-order moments: Parametric case
Likelihood of different fitted multivariate distributions for S&P 500 daily stock returns:
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High-order moments: Parametric case

Simplified moments under multivariate skewed t distribution:
The parametric model simplifies moment computations significantly.
First four moments (Wang et al. 2023):

ϕ1(w) = wTµ + a1wTγ
ϕ2(w) = a21wTΣw + a22(wTγ)2

ϕ3(w) = a31(wTγ)3 + a32(wTγ)wTΣw
ϕ4(w) = a41(wTγ)4 + a42(wTγ)2wTΣw + a43(wTΣw)2

Coefficients a1, a21, a22, etc., are functions of the degrees of freedom ν.

Clarification on parameters:
µ: Location vector, not the mean.
Σ: Scatter matrix, not the covariance matrix.
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High-order moments: Parametric case

Gradients and Hessians:
Gradients:

∇ϕ1(w) = µ + a1γ
∇ϕ2(w) = 2a21Σw + 2a22(wTγ)γ
∇ϕ3(w) = 3a31(wTγ)2γ + a32

(
(wTΣw)γ + 2(wTγ)Σw

)
∇ϕ4(w) = 4a41(wTγ)3γ + 2a42

(
(wTγ)2Σw + (wTΣw)(wTγ)γ

)
+ 4a43(wTΣw)Σw

Hessians:
∇2ϕ1(w) = 0
∇2ϕ2(w) = 2a21Σ + 2a22γγT

∇2ϕ3(w) = 6a31(wTγ)γγT + 2a32
(
γwTΣ + ΣwγT + (wTγ)Σ

)
∇2ϕ4(w) =
12a41(wTγ)2γγT + 2a42

(
2(wTγ)ΣwγT + (wTγ)2Σ + 2(wTγ)γwTΣ + (wTΣw)γγT)

+
4a43

(
2ΣwwTΣ + (wTΣw)Σ

)
Take-home message under parametric modeling:

No need to compute, store, and manipulate huge co-skewness and co-kurtosis matrices.
Can cheaply compute gradients and Hessians based on the parameters: µ, Σ, ν, and γ.
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High-order moments: L-moments
L-moments overview:

L-moments characterize the distribution of a random variable and describe its properties
such as location, dispersion, asymmetry, and tail thickness.
They are linear functions of order statistics, making them easier to estimate than
traditional moments.

Definition of L-moments:
Let X be a random variable and X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics of a
random sample of size n drawn from the distribution of X .
L-moments for a random variable X are defined as:

λr = 1
r

r−1∑
k=0

(−1)k
(

r − 1
k

)
IE[Xr−k:r ], r = 1, 2, . . .

First four L-moments:
λ1 = IE[X ]
λ2 = 1

2 IE[X2:2 − X1:2]
λ3 = 1

3 IE[X3:3 − 2X2:3 + X1:3]
λ4 = 1

4 IE[X4:4 − 3X3:4 + 3X2:4 − X1:4]
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High-order moments: L-moments

Descriptive information provided by L-moments:
L-location (λ1) is identical to the mean.
L-scale (λ2) measures expected difference between any two realizations (like variance).
L-skewness (λ3) provides a measure of asymmetry less sensitive to extreme tails.
L-kurtosis (λ4) measures tail thickness, less sensitive to extreme tails.

Estimation of L-moments:
Direct estimation from observations is computationally demanding.
Simplified estimators in terms of sample values in ascending order x(i):

λ̂1 = 1
n

∑n
i=1 x(i)

λ̂2 = 1
2

1
Cn

2

∑n
i=1

(
C i−1

1 − Cn−i
1

)
x(i)

λ̂3 = 1
3

1
Cn

3

∑n
i=1

(
C i−1

2 − 2C i−1
1 Cn−i

1 + Cn−i
2

)
x(i)

λ̂4 = 1
4

1
Cn

4

∑n
i=1

(
C i−1

3 − 3C i−1
2 Cn−i

1 + 3C i−1
1 Cn−i

2 − Cn−i
3

)
x(i)

Comparison with traditional moments:
L-moments convey similar information to traditional moments but are more stable.
This stability makes L-moments particularly useful for analyzing financial data, where
they exhibit fewer jumps and provide a clearer picture.
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High-order moments: L-moments
Moments and L-moments of the S&P 500 index in a rolling-window fashion:
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High-order moments: L-moments
Moments and L-moments of the S&P 500 index in a rolling-window fashion:
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High-order moments: L-moments
Moments and L-moments of the S&P 500 index in a rolling-window fashion:
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Portfolio formulations

Formulations involving High-Order Moments:
Higher-order moments introduce nonconvexity into portfolio formulations.
Different expressions for moments ϕ1(w), ϕ2(w), ϕ3(w), and ϕ4(w) offer various
formulation options.
MVSK portfolio: mean-variance-skewness-kurtosis.

Moment expression options:
Non-parametric: Direct calculations from returns; computationally demanding and may
need large data.
Factor model structured: Utilizes market or multiple factors to structure moments,
reducing parameter count.
Parametric: Uses multivariate skewed t distribution, easing moment computations and
balancing distributional capture with feasibility.
L-moments: Linear in order statistics, offering easier estimation and robustness to
extremes, while conveying distribution insights.
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MVSK portfolios

MVSK portfolio formulation: Optimize a weighted combination of the first four
moments:

minimize
w

−λ1ϕ1(w) + λ2ϕ2(w)− λ3ϕ3(w) + λ4ϕ4(w)
subject to w ∈ W

where λi are hyper-parameters reflecting risk aversion.

Investor preferences:
Seek higher mean and skewness: ϕ1(w), ϕ3(w).
Prefer lower variance and kurtosis: ϕ2(w), ϕ4(w).
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MVSK portfolios

Alternative formulations:
Constraints on moments:

find
w

w
subject to ϕ1(w) ≥ α1

ϕ2(w) ≤ α2
ϕ3(w) ≥ α3
ϕ4(w) ≤ α4,

αi : Hyper-parameters denoting investor’s targets.

Numerical algorithms:
General-purpose solvers are always an option.
Specialized algorithms for solving MVSK have been recently developed (Zhou and
Palomar 2021; Wang et al. 2023).
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MVSK portfolios

Expected utility in portfolio design:
Focuses on maximizing the expected value of a utility function IE

[
U(wTr)

]
.

Moves beyond the mean-variance objective.

Historical context:
High-order portfolios considered since 1969.
Geometric mean approximation of returns:

IE
[
log

(
1 + wTr

)]
≈ log (1 + ϕ1(w))− ϕ2(w)

2ϕ2
1(w) + ϕ3(w)

3ϕ3
1(w) −

ϕ4(w)
4ϕ4

1(w) ,

Mean-variance portfolio arises from using the first two terms of the log-approximation.

Advancements in high-order approximations:
High-order expansions for arbitrary expected utilities can be now considered.
Recent work includes high-order approximations with structured estimators for moments.
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Making portfolios efficient
Shortage function in multi-objective optimization:

Measures the distance between a portfolio’s moments and the efficient frontier.
Utilized to optimize portfolios towards Pareto-optimal points.

Optimization using the shortage function:
Given a reference portfolio w0 and direction vector g .
Objective: Maximize δ, representing movement towards the efficient frontier.
Constraints ensure improvement in desired moments along g .
Formulation:

maximize
w,δ≥0

δ

subject to ϕ1(w) ≥ ϕ1(w0) + δg1
ϕ2(w) ≤ ϕ2(w0)− δg2
ϕ3(w) ≥ ϕ3(w0) + δg3
ϕ4(w) ≤ ϕ4(w0)− δg4.

Feasibility and efficiency:
Formulation is always feasible.
If w0 is on the efficient frontier, the solution is w = w0 and δ = 0.
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Portfolio tilting

Extending portfolio improvement with optimality measure:
Reference portfolio w0 optimization:

Obtained by minimizing a cost function ξ(w).
Examples of ξ(·) include Herfindahl index, risk contributions equalization, diversification
ratio, and tracking error.

MVSK portfolio tilting formulation:
Objective: Maximize δ to make w0 more optimal.
Constraints include maintaining or improving moment values and allowing a controlled
loss of optimality (κ) for closer efficient frontier alignment.
Formulation:

maximize
w,δ≥0

δ

subject to ξ(w) ≤ ξ(w0) + κ
ϕ1(w) ≥ ϕ1(w0) + g1(δ)
ϕ2(w) ≤ ϕ2(w0)− g2(δ)
ϕ3(w) ≥ ϕ3(w0) + g3(δ)
ϕ4(w) ≤ ϕ4(w0)− g4(δ)
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Portfolio tilting

Cost function examples for portfolio tilting:
Herfindahl index: ξ(w) =

∑N
i=1 w2

i ; encourages diversity.

Risk parity: ξ(w) =
∑N

i=1

(
wi (Σw)i
wTΣw −

1
N

)2
; equalizes risk contributions.

Diversification ratio: ξ(w) = − wTσ√
wTΣw

; maximizes return-to-risk ratio.

Tracking error: ξ(w) =
√

(w −wbenchmark)TΣ(w −wbenchmark); minimizes benchmark
deviation.

Optimization Parameters:
gi(δ): Functions increasing with δ.
κ: Allows optimality loss for efficient frontier approach, set as 0.01× ξ(w0).

Numerical algorithms:
General-purpose solvers are always an option.
Efficient algorithms developed for solving the MVSK tilting portfolio formulation (Zhou
and Palomar 2021).
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Polynomial goal programming MVSK portfolio

Polynomial goal programming for moment trade-off:
Objective: Minimize distance to reference moments with a polynomial.
Formulation:

minimize
w,d≥0

∣∣∣ d1
ϕ0

1

∣∣∣λ1
+

∣∣∣ d2
ϕ0

2

∣∣∣λ2
+

∣∣∣ d3
ϕ0

3

∣∣∣λ3
+

∣∣∣ d4
ϕ0

4

∣∣∣λ4

subject to ϕ1(w) + d1 ≥ ϕ0
1

ϕ2(w)− d2 ≤ ϕ0
2

ϕ3(w) + d3 ≥ ϕ0
3

ϕ4(w)− d4 ≤ ϕ0
4

d : Deviation from aspired moment levels ϕ0
i .

Aspired levels represent extreme values and are not jointly achievable.

Minkovski distance case:
Special case of polynomial goal programming with exponents λi = 1/p.
Objective becomes a Minkovski distance minimization.
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Algorithms

MVSK portfolio formulation and objective function:
Focus on MVSK portfolio with nonconvex objective due to higher-order moments.
Objective function:

f (w) = −λ1ϕ1(w) + λ2ϕ2(w)− λ3ϕ3(w) + λ4ϕ4(w)

Decomposing MVSK objective into convex and nonconvex terms:

fcvx(w) = −λ1ϕ1(w) + λ2ϕ2(w)
fncvx(w) = −λ3ϕ3(w) + λ4ϕ4(w).

Efficient numerical methods beyond general nonlinear solvers:
Developing ad-hoc methods for greater efficiency based on the successive convex
approximation (SCA) framework (Scutari et al. 2014) and the majorization-minimization
(MM) framework (Sun, Babu, and Palomar 2017).
R package highOrderPortfolios (Zhou and Palomar 2021; Wang et al. 2023):
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SCA: Preliminaries

Successive convex approximation (SCA) method: (Scutari et al. 2014)
SCA approximates a difficult optimization problem with a series of simpler convex
problems.
Iteratively produces a sequence x0, x1, x2, . . . converging towards a solution x⋆.

SCA iterative process:
At each iteration k, uses a surrogate function f̃

(
x; xk)

to approximate objective f (x).
The update rule includes a smoothing step to ensure convergence:

x̂k+1 = argmin
x∈X

f̃
(
x; xk)

xk+1 = xk + γk
(

x̂k+1 − xk
) k = 0, 1, 2, . . .

where {γk} is a sequence with γk ∈ (0, 1].

Convergence conditions:
Surrogate function f̃

(
x; xk)

must be strongly convex on X .
Surrogate function must be differentiable with gradient equal to that of f (x) at xk .
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SCA: Algorithm
SCA framework for nonconvex optimization:

Leave convex term fcvx(w) unchanged.
Approximate nonconvex term fncvx(w) quadratically around w = wk :

f̃ncvx
(
w ; wk)

=fncvx
(
wk)

+∇fncvx
(
wk)T (

w −wk)
+ 1

2
(
w −wk)T [

∇2fncvx
(
wk)]

PSD
(
w −wk)

,

Projection onto positive semidefinite matrices: [Ξ]PSD = UDiag (λ+) UT.

Quadratic convex approximation of f (w):

f̃
(
w ; wk

)
= 1

2wTQkw + wTqk + constant,

where:
Qk = λ2∇2ϕ2(w) +

[
∇2fncvx

(
wk

)]
PSD

qk = −λ1∇ϕ1(w) +∇fncvx
(
wk

)
−

[
∇2fncvx

(
wk

)]
PSD

wk .
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SCA: Algorithm

SCA-Q-MVSK method for MVSK portfolio optimization (Zhou and Palomar 2021)
Initialization:

Choose initial point w0 ∈ W and sequence {γk}.
Set iteration counter k ← 0.

Repeat (kth iteration):
1 Calculate ∇fncvx

(
wk

)
and

[
∇2fncvx

(
wk

)]
PSD

.
2 Solve the QP approximation problem and keep solution as ŵk+1.
3 wk+1 ← wk + γk(ŵk+1 −wk)
4 k ← k + 1

Until: convergence
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MM: Preliminaries
Majorization-Minimization (MM) method overview: (Hunter and Lange 2004;
Sun, Babu, and Palomar 2017) (Palomar 2024, Appendix B)

MM simplifies complex optimization problems through iterative surrogate minimization.
Iteratively produces a sequence x0, x1, x2, . . . converging towards a solution x⋆.

MM iterative process:
At each iteration k, MM uses a surrogate function u

(
x; xk)

to approximate f (x).
The update rule is:

xk+1 = argmin
x∈X

u
(
x; xk)

k = 0, 1, 2, . . .

Convergence conditions for MM: Surrogate function u
(
x; xk

)
must satisfy:

Upper bound property: u
(
x; xk)

≥ f (x).
Touching property: u

(
xk ; xk)

= f
(
xk)

.
Tangent property: Differentiable with ∇u

(
x; xk)

= ∇f (x).
Role of the surrogate function:

Acts as a majorizer, providing an upper bound to the original function.
The method’s name stems from the process of constructing and minimizing this majorizer.
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MM: Algorithm

MM Framework for nonconvex optimization:
Convex term fcvx(w) remains as is.
Construct a majorizer for nonconvex term fncvx(w) around w = wk :

f̃ncvx
(
w ; wk)

= fncvx
(
wk)

+∇fncvx
(
wk)T (

w −wk)
+ τMM

2 ∥w −wk∥2
2

where τMM is a positive constant ensuring f̃ncvx
(
w ; wk)

is an upper-bound of fncvx(w).

Quadratic convex approximation of f (w):
Formulated as:

f̃
(
w ; wk)

= −λ1ϕ1(w) + λ2ϕ2(w) +∇fncvx
(
wk)T w + τMM

2 ∥w −wk∥2
2 + constant,

Gradient of fncvx obtained from gradients of ϕ3(w) and ϕ4(w).
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MM: Algorithm

MM-based algorithm implementation:
Solve convex problems successively:

minimize
w

− λ1ϕ1(w) + λ2ϕ2(w) +∇fncvx
(
wk)T w + τMM

2 ∥w −wk∥2
2,

Denote solution as MM(wk), with wk+1 = MM(wk).

Acceleration technique - SQUAREM:
Instead of direct update, use two steps and combine:

difference first update: rk = MM(wk)−wk ,

difference of differences: vk = R(MM(wk))− R(wk),
stepsize: αk = −max

(
1, ∥rk∥2/∥vk∥2

)
,

actual step taken: yk = wk − αkrk ,

final update on actual step: wk+1 = MM(yk).

Stepsize αk can be refined for robustness and faster convergence.
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MM: Algorithm

Acc-MM-L-MVSK method for MVSK portfolio optimization (Wang et al. 2023)
Initialization:

Choose initial point w0 ∈ W and proper constant τMM for the majorized problem.
Set iteration counter k ← 0.

Repeat (kth iteration):
1 Calculate ∇fncvx

(
wk

)
.

2 Compute the quantities rk , vk , αk , yk , and current solution wk+1, which requires
solving the majorized problem three times.

3 k ← k + 1
Until: convergence
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Numerical experiments: Convergence and computation time

Empirical study summary:
Assess computational efficiency of SCA-Q-MVSK versus Acc-MM-L-MVSK methods.
Both non-parametric and parametric calculations for gradients and Hessians were used.

Findings:
Parametric calculations are faster and necessary for large N.
At N = 100, parametric is quicker (0.5s) than non-parametric (5s).
At N = 400, only parametric (1 min) is viable.
Enhanced Acc-MM-L-MVSK method omits τMM calculation, offering the quickest
convergence.
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Numerical experiments: Convergence and computation time
Convergence of different MVSK portfolio optimization algorithms for N = 100:
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Numerical experiments: Convergence and computation time
Convergence of different MVSK portfolio optimization algorithms for N = 400:
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Numerical experiments: Convergence and computation time
Computation time of different (parametric) MVSK portfolio optimization algorithms:

10−2

10−1

100

101

102

100 150 200 250 300 350 400
dimension N

C
P

U
 ti

m
e 

(s
ec

on
ds

) Algorithms

Nonlinear solver

SCA−Q−MVSK

Acc−MM−L−MVSK

Computation time versus dimension

Portfolio Optimization High-Order Portfolios 47 / 57



Numerical experiments: Portfolio backtest

Portfolios:
Global Maximum Return (GMRP)
Global Minimum Variance (GMVP)
Modified MVSK (like GMVP with λ1 = 0)

Evaluation:
Period: 2016-2019
Universe: 20 S&P 500 stocks

Metrics:
Cumulative P&L
Drawdown

Results:
Cumulative P&L and drawdown shown in figure and table.
MVSK shows slight improvement over GMVP.

Insights:
Incorporating skewness and kurtosis enhances performance.
Highlights the value of higher-order moments in optimization.
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Numerical experiments: Portfolio backtest
Backtest of high-order portfolios: cumulative P&L and drawdown:
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Numerical experiments: Portfolio backtest

Backtest of high-order portfolios: performance measures:

Portfolio Sharpe
ratio

annual
return

annual
volatility

Sortino
ratio

max
drawdown

CVaR
(0.95)

GMRP -0.01 0% 27% -0.02 39% 4%
GMVP 1.47 16% 11% 2.12 13% 2%
MVSK 1.56 17% 11% 2.26 12% 2%
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Numerical experiments: Multiple portfolio backtests

Multiple randomized backtests overview:
Dataset: N = 20 stocks, 2015-2020.
Method: 100 resamples with N = 8 stocks and random 2-year periods.
Backtest: Walk-forward with 1-year lookback, monthly reoptimization.

Results presentation:
Performance measures for each portfolio across all backtests in next table.
Boxplots of Sharpe ratio and maximum drawdown.

Key observations:
Modest performance improvement of MVSK portfolio over GMVP.
Highlights the potential benefits of incorporating higher-order moments in portfolio
optimization strategies.
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Numerical experiments: Multiple portfolio backtests

Multiple randomized backtest of high-order portfolios: performance measures:

Portfolio Sharpe
ratio

annual
return

annual
volatility

Sortino
ratio

max
drawdown

CVaR
(0.95)

GMRP 0.33 9% 26% 0.45 20% 4%
GMVP 1.05 13% 13% 1.48 12% 2%
MVSK 1.15 14% 13% 1.58 12% 2%
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Numerical experiments: Multiple portfolio backtests
Multiple randomized backtest of high-order portfolios: Sharpe ratio and maximum
drawdown:

MVSK

GMVP

GMRP

−1 0 1 2 3

Sharpe ratio

MVSK

GMVP

GMRP

0.1 0.2 0.3 0.4

max drawdown

Portfolio Optimization High-Order Portfolios 53 / 57



Outline

1 Introduction

2 High-order moments

3 Portfolio formulations

4 Algorithms∗

5 Summary



Summary

Markowitz’s portfolio, based on mean and variance, may not fully capture financial
data’s non-Gaussian traits, suggesting a need for higher moments.
High-order portfolios include skewness and kurtosis to address the asymmetry and
heavy tails in financial distributions.
Initially conceptualized in the 1960s, high-order portfolios faced challenges due to the
exponential increase in parameters (N4) and nonconvex formulations, making early
estimation and optimization difficult.
Various high-order portfolio strategies exist, including MVSK portfolios and
polynomial-goal formulations.
Modern algorithms now facilitate efficient high-order portfolio management.
Decades of research have made high-order portfolio design feasible for managing
extensive asset collections, leaving the adoption of higher moments to traders’
discretion.
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