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Abstract

The efficient-market hypothesis suggests that security prices already reflect all publicly
available information, while an opposing view supports inefficient and irrational markets.
Despite promises from investment funds and financial experts to beat the market,
empirical data shows that about 95% of funds fail to do so. As an alternative to active
investment strategies, these slides explore market or index tracking, covering heuristic and
discretionary approaches, sophisticated optimization formulations, and recent techniques
for automatically selecting the number of active assets in a statistically controlled manner
(Palomar 2024, chap. 13).
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Active versus passive strategies
Strategies followed by investors:

Active strategies:
Premise: Market is not perfectly efficient (Shiller 1981).
Goal: Add value by choosing high-performing assets to beat market performance.
Examples:

Mean–variance portfolios (Palomar 2024, chap. 7).
High-order portfolios (Palomar 2024, chap. 9).
Portfolios with alternative measures of risk (Palomar 2024, chap. 10).
Risk parity portfolios (Palomar 2024, chap. 11).
Graph-based portfolios (Palomar 2024, chap. 12).

Passive strategies:
Assumption: Market is efficient (Fama 1970).
Belief: Prices reflect all available information, making it impossible to beat the market in
the long run (Malkiel 1973).
Approach: Avoid frequent trading to minimize fees and focus on infrequent rebalancing.
Focus: Index tracking as a method of passive investment (Prigent 2007; Benidis, Feng,
and Palomar 2018a), (Palomar 2024, chap. 13).
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Beating the market

Consistency in beating the market:
Common perception: Only winners are noticed; losers are often ignored.
Importance: Proper data analysis requires data from both winners and losers to
distinguish luck from skill.

Individual investors’ performance:
Individual investors trading stocks directly face significant performance penalties for
active trading (B. M. Barber and Odean 2000).
Question: Can expert financial managers perform better?

Fund managers’ performance:
Studies show 85-95% of actively managed mutual funds fail to outperform their
benchmark indices over the long term (Malkiel 1973).
Variability: Performance can vary based on time period, benchmark index, and specific
group of fund managers.
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Beating the market

Provocative conclusions (Malkiel 1973):
“Investors are far better off buying and holding an index fund than attempting to buy and
sell individual securities or actively managed mutual funds.”
“The market prices stocks so efficiently that a blindfolded chimpanzee throwing darts at
the stock listings can select a portfolio that performs as well as those managed by the
experts.”

Investor realization:
Most investors recognize their limitations in stock-picking and trade management.
Even most professionals struggle to outperform benchmarks.
Result: Paying high mutual fund expenses for underperformance is illogical.
Trend: Rise of indices and inexpensive exchange-traded funds (ETFs).

Portfolio Optimization Index Tracking Portfolios 7 / 78



What is a financial index?

Financial index:
Definition: A collection of carefully selected assets to capture the value of a specific
market or segment.
Nature: Equivalent to a hypothetical portfolio of assets; not a tradable financial
instrument.

Index composition:
Defined by the universe of assets and their composition percentages.
Capitalization-weighted (cap-weighted) index:

Assets weighted based on market capitalization (outstanding shares × share price).
Index value proportional to the weighted average of the capitalization of underlying assets.

Other index construction methods:
Price-weighted
Equal-weighted
Fundamentally-weighted
Factor-weighted
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What is a financial index?

Example: S&P 500:
One of the world’s best-known cap-weighted indices.
Commonly used benchmark for the U.S. stock market.
Historical Performance:

Next figure shows the S&P 500 price over more than a decade.
Prices have historically risen, providing reasonable returns simply by following the market.
Period includes the 2007–2008 global financial crisis and the COVID-19 recession.

Other financial indices:
Thousands of financial indices exist, covering various asset classes, sectors, and regions.
Examples:

Dow Jones Industrial Average (USA)
Nasdaq Composite (USA)
FTSE 100 (UK)
Nikkei 225 (Japan)
DAX (Germany)
Hang Seng Index (Hong Kong)
IBEX 35 (Spain)
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What is a financial index?
Price evolution of the S&P 500 index:
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Index tracking

Index tracking (index replication):
Definition: Passive portfolio management strategy to reproduce the performance of a
market index.
Practical implementation: Construct a real portfolio that mimics the index as closely as
possible.

Exchange-traded funds (ETFs):
ETFs track indices and can be directly traded by investors.
Example: Over 250 ETFs track the S&P 500 index as of 2023.
Most popular ETF: SPDR S&P 500 ETF (ticker SPY), the largest and oldest ETF in the
world.
Performance: next figure shows the S&P 500 index and SPDR S&P 500 ETF (SPY).

SPY value is approximately 1/10 of the S&P 500 level.
Ratio varies from 1/14 to 1/10 over time (2007–2023), but short-term variations are more
critical for hedging.
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Index tracking
Tracking of the S&P 500 index by the SPDR S&P 500 ETF:
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Index tracking

Full replication:
Approach: Buy appropriate quantities of all assets composing the index.
Requirements: Knowledge of precise index composition and regular rebalancing.
Challenges: Transaction costs and managing less liquid assets.

Sparse index tracking (portfolio compression):
Approach: Hold active positions on a reduced basket of representative assets.
Example: Instead of 500 assets for the S&P 500, invest in only 20 properly selected
assets.
Advantages: Lower transaction costs and easier management.
Related Techniques: Sparse regression techniques in statistics.
References: (Jansen and Van Dijk 2002; Maringer and Oyewumi 2007; Scozzari et al.
2013; Xu, Lu, and Xu 2016; Benidis, Feng, and Palomar 2018b, 2018a; Machkour,
Palomar, and Muma 2024).
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Sparsity and cardinality

Sparsity:
Definition: A vector is sparse if it has many elements equal to zero.
Importance: Sparsity is crucial in various problems where controlling the sparsity level is
desired (Elad 2010).

Cardinality:
Definition: The cardinality of a vector x ∈ RN , denoted by card(x), is the number of
nonzero elements:

card(x) ≜
N∑

i=1
1{xi ̸= 0},

where 1{·} denotes the indicator function.
Notation: Often written as the ℓ0-pseudo-norm ∥x∥0, which is not a norm (not even
convex).
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Problem formulation
Sparse regression: A regression problem with the additional requirement that the
solution must be sparse.
Common formulations:

Regularized sparse least squares (LS):

minimize
x

∥Ax − b∥2
2 + λ∥x∥0,

where the parameter λ enforces more or less sparsity in the solution.
Constrained sparse LS:

minimize
x

∥Ax − b∥2
2

subject to ∥x∥0 ≤ k,

where k controls the sparsity level.
Sparse underdetermined system of linear equations:

minimize
x

∥x∥0

subject to Ax = b,

where the system Ax = b is underdetermined (having an infinite number of solutions).
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Methods for sparse regression

Challenges:
The cardinality operator is noncontinuous, nondifferentiable, and nonconvex.
Developing practical algorithms under sparsity is complex.
This has been a well-researched topic for decades, with mature approximate methods
currently available.

Approximating the cardinality operator: (Candès, Wakin, and Boyd 2008)
ℓ1-norm approximation:

∥x∥0 is approximated by ∥x∥1.
Univariate Case: Indicator function 1{t ̸= 0} is approximated by the absolute value |t|.

Concave approximation:
∥x∥0 is approximated by a concave function, making the sparse regression problem
nonconvex.
Univariate Case: Indicator function 1{t ̸= 0} is approximated by a concave function, such
as the log-function log(1 + t/ε).
Parameter ε controls the accuracy of the approximation.
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Methods for sparse regression
Indicator function and approximations:
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ℓ1-norm approximation
Popular algorithms for sparse regression:

LASSO (Least Absolute Shrinkage and Selection Operator) (Tibshirani 1996):
Solves a convex quadratic problem using the ℓ1-norm approximation:

minimize
x

∥Ax − b∥2
2

subject to ∥x∥1 ≤ t,

where the parameter t controls the sparsity level.
Elastic net (Zou and Hastie 2005):

Combines ℓ1 and ℓ2 penalties of LASSO and ridge methods.
Addresses limitations of LASSO, especially with highly correlated variables.

Sparse resolution of underdetermined systems (Candès and Tao 2005; Donoho
2006):

Can be recovered as a linear program under technical conditions:

minimize
x

∥x∥1

subject to Ax = b.
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Concave approximation
Refined concave approximation:

When the ℓ1-norm approximation is insufficient, a more refined concave approximation:

∥x∥0 ≈
N∑

i=1
ϕ(|xi |),

where ϕ(·) is an appropriate concave function, such as the log-function
ϕ(t) = log(1 + t/ε) (Candès, Wakin, and Boyd 2008).

Nonconvex problem formulation:
Concave approximation leads to a nonconvex problem:

minimize
x

∥Ax − b∥2
2 + λ

∑N
i=1 log

(
1 + |xi |

ε

)
.

Solution methods:
Majorization-minimization framework: Used to derive iterative methods for problems
with concave approximations of cardinality.
Iteratively reweighted least squares (IRLS) minimization: Another successful family
of algorithms (Daubechies et al. 2010).
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Preliminaries on MM
Majorization-minimization (MM) method overview: (Hunter and Lange 2004;
Sun, Babu, and Palomar 2017) (Palomar 2024, Appendix B)

MM simplifies complex optimization problems through iterative surrogate minimization.
Produces a converging sequence x0, x1, x2, . . . towards a solution x⋆.

MM iterative process:
At each iteration k, MM uses a surrogate function u

(
x; xk)

to approximate f (x).
The update rule is:

xk+1 = argmin
x∈X

u
(
x; xk)

k = 0, 1, 2, . . .

Convergence conditions for MM: Surrogate function u
(
x; xk

)
must satisfy:

Upper bound property: u
(
x; xk)

≥ f (x).
Touching property: u

(
xk ; xk)

= f
(
xk)

.
Tangent property: Differentiable with ∇u

(
x; xk)

= ∇f (x).
Role of the surrogate function:

Acts as a majorizer, providing an upper bound to the original function.
The method’s name stems from the process of constructing and minimizing this majorizer.
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Iterative reweighted ℓ1-norm minimization

Let’s focus on the following sparse regression:

minimize
x

∑N
i=1 log

(
1 + |xi |

ε

)
subject to Ax = b.

In order to use MM, we need a majorizer of the concave function:

Lemma: Majorizer of the log function
The concave function ϕ(t) = log(1 + t/ε) is majorized at t = t0 by its linearization:

ϕ(t) ≤ ϕ(t0) + ϕ(t0)′(t − t0) = ϕ(t0) + 1
ε + t0

(t − t0).
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Iterative reweighted ℓ1-norm minimization

The term log (1 + |xi |/ε) is majorized at xk
i by αk

i |xi | with weight αk
i = 1

ε+|xk
i | .

Iterative algorithm: To solve the original nonconvex regression problem, solve the
following sequence of convex problems for k = 0, 1, 2, . . .

minimize
x

∑N
i=1 αk

i |xi |
subject to Ax = b,

where the objective function is a weighted ℓ1-norm with weights αk
i = 1/(ε + |xk

i |).

Summary: The concave approximation of the sparse regression problem can be
effectively solved by a sequence of iterative reweighted ℓ1-norm minimization problems
(Candès, Wakin, and Boyd 2008).
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Sparse index tracking

Sparse index tracking is an instance of sparse regression.

Challenge: Difficulty of the cardinality constraint or sparsity control.

Methods: Various methods proposed in the literature to address these challenges
(Jansen and Van Dijk 2002; Maringer and Oyewumi 2007; Scozzari et al. 2013; Xu,
Lu, and Xu 2016; Benidis, Feng, and Palomar 2018b, 2018a).

First, we elaborate on the choice of the tracking error function, as well on some details
of the formulation such as

fixed vs. time-varying portfolios
linear versus log-returns
plain versus cumulative returns
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Tracking error

Return of an index or benchmark: Obtained from the returns of the N constituent
assets r t ∈ RN via the index portfolio bt > 0 (normalized to 1Tbt = 1):

rT
t bt−1 = rb

t , t = 1, . . . , T ,

where vector bt denotes the proportion of capital allocated to the assets (alternatively,
it can be defined in terms of number of shares).

Fixed portfolio notation: If the portfolio is fixed over time, bt = b, the notation
simplifies to:

Xb = rb,

where
matrix X ∈ RT×N contains return vectors r t along the rows
vector rb ∈ RT contains the returns of the index.
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Tracking error
Designing a sparse portfolio:

Goal: Design a sparse portfolio w t such that rT
t w t−1 ≈ rb

t .
Simplified notation: Assume a fixed portfolio over time w t = w :

Xw ≈ rb.

Tracking error (TE):
Simplest definition (Shapcott 1992; Jansen and Van Dijk 2002; Xu, Lu, and Xu 2016;
Scozzari et al. 2013; Benidis, Feng, and Palomar 2018b, 2018a):

TE = 1
T

∥∥rb − Xw
∥∥2

2 .

Expansion with Xb = rb:

TE = (b −w)T 1
T XTX(b −w).

Alternative definition based on b:

TEb = (b −w)TΣ(b −w).
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Fixed versus time-varying portfolio∗

Traditional tracking error definition:

TE = 1
T

∥∥∥rb − Xw
∥∥∥2

2
.

Convenient because it fits naturally in the context of sparse regression.
However, index portfolio changes over time.
Example: For cap-weighted indices, the normalized portfolio evolves as

bt = bt−1 ⊙ (1 + r t)
bT

t−1 (1 + r t)
.

Time-varying portfolio:
Approximating a time-varying portfolio bt with a constant portfolio w seems nonsensical.
In addition, a fixed portfolio w implies frequent rebalancing due to its time-varying
nature:

w t = w t−1 ⊙ (1 + r t)
wT

t−1 (1 + r t)
.
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Fixed versus time-varying portfolio∗

Improving tracking error with time-varying portfolios:

Approximation based on tracking the index rT
t w t−1 ≈ rb

t :

w t ≈
w t−1 ⊙ (1 + r t)

1 + rb
t

≈ w0 ⊙αt ,

where w0 is the initial portfolio and αt =
∏t

t′=1
1+r t′
1+rb

t′
denotes weights based on

cumulative returns.
Portfolio return:

rT
t w t−1 ≈ rT

t (w0 ⊙αt−1) = r̃T
t w0,

where r̃ t = r t ⊙αt−1 are properly weighted returns.
Tracking error for time-varying portfolios:

TEtime-varying = 1
T

∥∥∥rb − X̃w
∥∥∥2

2
,

where X̃ contains the weighted returns r̃ t row-wise and w denotes the initial portfolio.
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Fixed versus time-varying portfolio∗

Tracking error over time of the S&P 500 index assuming fixed and time-varying portfolios:
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Linear versus log-returns∗

Linear returns:
Portfolio returns computed as Xw assume linear returns in X and rb.
Indeed, linear returns are additive along assets.

Log-returns:
Log-returns r log

t and linear returns r lin are related:

r log
t = log

(
1 + r lin

t
)
≈ r lin

t ,

due to log(1 + x) ≈ x for small x .
Log-returns of the portfolio w can be approximated as:

log
(
1 + wTr lin

t
)
≈ wTr log

t .

Practical implication:
The difference between using linear or log-returns is negligible in practice.
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Plain versus cumulative returns

Minimizing error in period-by-period returns:
Implements a short-term index tracking (essential for hedging purposes against other
investments).
But does not imply better tracking of cumulative returns (or price) over time.
Errors in returns can accumulate on a more positive or negative side.
To control long-term deviation of cumulative returns, use long-term returns or cumulative
returns (Benidis, Feng, and Palomar 2018a).

Cumulative return or price error measurement:
Tracking error in terms of cumulative returns (Palomar 2024, chap. 13):

TEcum = 1
T

∥∥rb,cum − Xcumw
∥∥2

2 ,

where the cumulative returns are r cum
t ≈

∑t
t′=1 r t′ .
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Plain versus cumulative returns
Tracking over time of the S&P 500 index using plain returns and cumulative returns:
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Summary of tracking errors
Different data matrices employed in the definition of tracking error:

assuming w fixed

tracking of
   returns

tracking of
   prices

assuming w time-varying

X X
cum

X
cum

X
~ ~

where

X : contains the plain returns r t along the rows;
X̃ : contains the weighted plain returns r̃ t = r t ⊙αt−1 along the rows;
Xcum: contains the cumulative returns r cum

t ≈
∑t

t′=1 r t′ along the rows; and
X̃cum: contains the weighted cumulative returns

∑t
t′=1 r̃ t′ .
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Problem formulation

Index tracking problem formulation: Formulated as a sparse regression problem:

minimize
w

1
T

∥∥∥rb − Xw
∥∥∥2

2
+ λ∥w∥0

subject to w ∈ W,

where:
parameter λ controls the level of sparsity in the portfolio,
constraint set W could be {w | 1Tw = 1, w ≥ 0},
matrix X contains the returns of the assets (any version of returns as before).

Challenges with cardinality operator:
Cardinality operator ∥w∥0 is noncontinuous, nondifferentiable, and nonconvex.
Developing practical algorithms under sparsity is complex.
Approach: Start with heuristic methods and build up to state-of-the-art solutions based
on MM.
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Methods

Two-step approaches:
Observation: If active assets were known a priori, index tracking would be a trivial
convex regression problem without sparsity control difficulty.
Two-step process:

First, select the active assets.
Then, compute the weights (Jansen and Van Dijk 2002).

Limitation: Not optimal; better results can be achieved by solving the problem jointly in
a single step.

Joint methods:
Computationally intensive methods:

Mixed integer programming.
Differential evolution techniques (Maringer and Oyewumi 2007).

Computationally feasible methods:
Iterative reweighted ℓ1-norm optimization method (Benidis, Feng, and Palomar 2018b,
2018a).
Projected gradient method (Xu, Lu, and Xu 2016).

Limitation: These methods cannot theoretically guarantee a globally optimal solution.
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Naive two-step design
1 Heuristic selection of active assets: Select K active assets from a universe of N

assets (K ≪ N) (Jansen and Van Dijk 2002), based on different criteria:

Weight of the assets in the index definition (e.g., largest K assets in b).
Market capitalization of the assets.
Strength of correlation between the assets and the index.

2 Weight calculation: Weights w proportional to the definition in b (scaled so that
1Tw = 1):

w = b ⊙ s
1T(b ⊙ s)

,

where ⊙ denotes Hadamard (elementwise) product and the Boolean pattern vector
s ∈ RN is defined as

si =
{

1 if the i-th asset is selected
0 otherwise.
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Two-step design with refitted weights

1 Heuristic selection of active assets: Select K active assets from a universe of N
assets (K ≪ N) as before and construct the Boolean pattern vector s ∈ RN .

2 Weight calculation: Solve a simple regression problem over the active assets without
having to deal with the sparsity issue:

minimize
w

1
T

∥∥∥rb − Xw
∥∥∥2

2
subject to w ∈ W

w ≤ s.
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Mixed integer programming formulation

Mixed integer programming (MIP):
Nature: Variables constrained to a discrete set, making the problem nonconvex with
exponential worst-case complexity.
Limitation: Impractical for large dimensionality (number of assets) (Scozzari et al.
2013).

MIP formulation:
Reformulate the problem in terms of the Boolean pattern vector s (now a variable with
nonconvex constraints!):

minimize
w,s

1
T

∥∥rb − Xw
∥∥2

2

subject to w ∈ W
w ≤ s, 1Ts = K , si ∈ {0, 1}.
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Evolutionary algorihms

Evolutionary algorithms:
Definition: Optimization and search techniques inspired by natural evolution.
Operation: Work on populations of candidate solutions (individuals) that evolve over
time to improve their fitness.
Process: Successful solutions are selected and combined to produce new candidate
solutions, similar to natural selection.

Applications:
Optimization
Machine learning
Game playing
Suitable for complex, multimodal, and noisy search spaces.

Advantages:
Ability to explore large solution spaces.
Robustness against local optima.
Potential for parallelization.
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Evolutionary algorihms

Popular evolutionary algorithms:
Genetic algorithms:

Use binary or symbolic representation for solutions.
Apply genetic operators like selection, crossover, and mutation.

Differential evolution:
Focuses on continuous optimization problems.
Effective for high-dimensional, non-linear, and noisy problems.

Application in index tracking:
Employed to solve complicated nonconvex mixed-integer problem formulations.
Examples: (Shapcott 1992), (Beasley, Meade, and Chang 2003), (Maringer and Oyewumi
2007).
Limitation: High computational complexity due to the need to evolve a population of
solutions over many generations to explore the nonconvex fitness surface.
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Iterative reweighted ℓ1-norm method

ℓ1-norm approximation:
Not suitable for portfolio optimization due to constraints 1Tw = 1 and w ≥ 0, leading to
∥w∥1 = 1Tw = 1.

Concave approximation:

minimize
w

1
T

∥∥∥rb − Xw
∥∥∥2

2
+ λ

∑N
i=1 log

(
1 + |wi |

ε

)
subject to w ∈ W.

MM framework:
Address the nonconvex problem with the MM framework to obtain an iterative procedure
called iterative reweighted ℓ1-norm method (Benidis, Feng, and Palomar 2018b, 2018a).

Software implementation:
R package sparseIndexTracking implements this method and extensions (Benidis and
Palomar 2019).
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Iterative reweighted ℓ1-norm method

Algorithm: Iterative reweighted ℓ1-norm method for sparse index tracking
Initialization:

Choose initial point w0 ∈ W and set iteration counter k ← 0.
Repeat (kth iteration):

1 Compute weights: αk
i = 1

ε+|wk
i |

.

2 Solve the following weighted ℓ1-norm problem to obtain wk+1:

minimize
w

1
T

∥∥∥rb − Xw
∥∥∥2

2
+ λ

N∑
i=1

αk
i |wi |

subject to w ∈ W;

3 Increment the iteration counter: k ← k + 1.
Until: convergence

Portfolio Optimization Index Tracking Portfolios 46 / 78



Outline
1 Active versus passive strategies

2 Sparse regression

3 Sparse index tracking

Tracking error

Problem formulation

Algorithms

Numerical experiments

4 Enhanced index tracking

5 Automatic sparsity control

6 Summary



Convergence of the iterative reweighted ℓ1-norm method
Convergence of the iterative reweighted ℓ1-norm method for sparse index tracking:
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Comparison of algorithms

Comparison of following tracking methods:
Naive two-step approach with proportional weights to the index definition.
Two-step approach with refitted weights.
Iterative reweighted ℓ1-norm method.
MIP formulation (excluded due to high computational complexity).

Figure analysis:
Tracking error over time:

Shows tracking error over time for S&P 500 with K = 20 active assets.
Computed on a rolling window basis (two-year lookback), recomputed every six months.

Tracking error vs active assets:
Joint designs are superior to traditional two-step approaches.
MIP formulation is impractical due to high computational cost.
Iterative reweighted ℓ1-norm method exhibits low complexity, making it suitable in practice.

Conclusion:
Joint designs outperform traditional two-step approaches.
Iterative reweighted ℓ1-norm method is practical and efficient.
Exhaustive numerical comparisons: (Benidis, Feng, and Palomar 2018b, 2018a).
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Comparison of algorithms
Tracking error over time of the S&P 500 index for different algorithms:
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Comparison of algorithms
Tracking error of the S&P 500 index versus active assets for different algorithms:
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Comparison of formulations
Tracking error of the S&P 500 index versus active assets assuming fixed and time-varying
portfolios:
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Enhanced index tracking
Enhanced index tracking:

Variations on the basic index tracking formulation.
Example: to increase returns by building index-like portfolios with tactical tilts toward
specific styles or stocks.
Example: to use alternative tracking error measures.
Example: to include group sparsity or holding constraints.

Traditional tracking error: Based on the ℓ2-norm between achieved returns Xw and
benchmark returns rb:

TE(w) = 1
T

∥∥∥rb − Xw
∥∥∥2

2
.

Alternative error measures:
Change the norm (e.g., ℓ1-norm or ℓp-norm (Beasley, Meade, and Chang 2003)).
Change the error measure, such as the downside risk or the excess return 1

T 1T (
Xw − rb)

(Beasley, Meade, and Chang 2003; Dose and Cincotti 2005).
Make the error measure robust to outliers.

Illustration: We next consider downside risk, the ℓ1-norm tracking error, and a
Huberized robust tracking error measure.
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Downside risk error measure
Downside Risk: Only considers when achieved returns are worse than the benchmark:

DR(w) = 1
T

∥∥∥∥(
rb − Xw

)+
∥∥∥∥2

2
,

where (·)+ ≜ max(0, ·).
Convexity: DR(w) is a convex function of w and could be optimized with a solver.
Majorization: Alternatively, it can be majorized for the MM method using the
ℓ2-norm:

Lemma: Majorizer of the downside risk
The downside risk function DR(w) is majorized at w = w0 by TE(w) with shifted
benchmark returns r̃b:

DR(w) ≤ 1
T

∥∥∥r̃b − Xw
∥∥∥2

2
,

where r̃b = rb +
(
Xw0 − rb

)+
(Benidis, Feng, and Palomar 2018b, 2018a).

Portfolio Optimization Index Tracking Portfolios 55 / 78



Downside risk error measure

Practical implication: We can now iteratively use the ℓ2-norm based tracking error
1
T

∥∥∥r̃b − Xw
∥∥∥2

2

using all the techniques and methods we have developed.
Interpretation: The shifted benchmark returns

r̃b = rb +
(
Xw0 − rb

)+

are an improvement over the original returns rb for those returns that were
outperformed by the nominal portfolio w0.
Algorithm modification: Index tracking under downside risk can be accomplished
with the original algorithm with a slight modification: At each iteration k, use shifted
benchmark returns instead of rb:(

r̃b)k = rb +
(
Xwk − rb

)+
.
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ℓ1-norm tracking error

ℓ1-norm TE:
TE1(w) = 1

T

∥∥∥rb − Xw
∥∥∥

1
.

Convexity: TE1(w) is a convex function of w and caould be optimized with a solver.
Majorization: Alternatively, it can be majorized for the MM method using the
ℓ2-norm:

Lemma: Majorizer of the ℓ1-norm TE
The ℓ1-norm TE function TE1(w) is majorized at w = w0 by a weighted version of the
TE(w):

TE1(w) ≤ 1
T

∥∥∥rb − Xw
∥∥∥2

2,α
,

where ∥x∥22,α ≜
∑T

i=1 αix2
i is the squared weighted ℓ2-norm with weights

α = 1/(2|rb − Xw0|) (Palomar 2024).
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ℓ1-norm tracking error

Practical implication: We can now iteratively use the ℓ2-norm based tracking error

1
T

∥∥∥rb − Xw
∥∥∥2

2,α

using all the techniques and methods we have developed.

Interpretation: Weights α = 1/(2|rb − Xw0|) in the weighted ℓ2-norm TE
down-weight errors to grow linearly like in the ℓ1-norm.

Algorithm modification: Index tracking under the ℓ1-norm TE can be accomplished
with the original algorithm with a slight modification: At each iteration k, use the
weighted ℓ2-norm with weights:

αk = 1
2|rb − Xwk |

.
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Robust tracking error measures

Robustness against outliers:
ℓ2-norm is sensitive to large errors due to squaring
ℓ1-norm is naturally robust

Huber penalty function: Robust version of the ℓ2-norm:

ϕhub(x) =
{

x2, |x | ≤ M
M (2|x | −M) |x | > M

Behavior: Square function for |x | ≤ M, linear function for |x | > M.

Huberized tracking error:

Hub-TE(w) = 1
T

T∑
t=1

ϕhub(rb
t − X t,:w).
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Robust tracking error measures

Convexity: Hub-TE(w) is a convex function of w and could be optimized with a
solver.
Majorization: Alternatively, it can be majorized for the MM method:

Lemma: Majorizer of the Huberized TE
The Huberized TE function Hub-TE(w) is majorized at w = w0 by a weighted version of
the TE(w):

Hub-TE(w) ≤ 1
T

∥∥∥rb − Xw
∥∥∥2

2,α
+ const,

where ∥x∥22,α ≜
∑T

i=1 αix2
i is the squared weighted ℓ2-norm with weights

α = min
(

1,
M

|rb − Xw0|

)
(Benidis, Feng, and Palomar 2018b, 2018a).
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Robust tracking error measures

Practical implication: We can now iteratively use the ℓ2-norm based tracking error

1
T

∥∥∥rb − Xw
∥∥∥2

2,α

using all the techniques and methods we have developed.

Interpretation: Weights α = min
(
1, M

|rb−Xw0|

)
in the weighted ℓ2-norm TE

down-weight errors larger than M so squared values grow linearly.

Algorithm modification: Index tracking under the Huberized TE can be
accomplished with the original algorithm with a slight modification: At each iteration
k, use the weighted ℓ2-norm with weights:

αk = min
(

1,
M

|rb − Xwk |

)
.
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Numerical experiments

Comparison of tracking error measures for S&P 500 index:
basic TE
Huberized TE
ℓ1-norm TE
DR

Numerical experiments:
Shows tracking over time with approximately K = 20 active assets.
Tracking portfolios computed on a rolling window basis with a two-year lookback period,
recomputed every six months.

Observations:
Design based on downside risk (DR) beats the market, suitable for investment purposes.
Other measures (TE, Huberized TE, ℓ1-norm TE) generally track the index in both
directions, appropriate for hedging purposes.
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Numerical experiments
Tracking over time of the S&P 500 index under different tracking error measures:
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Automatic sparsity control

Sparse index tracking formulation:
Objective: Includes regularization term λ∥w∥0, where λ is a hyper-parameter for desired
sparsity.
Alternative formulation: Move sparsity term to constraints as ∥w∥0 ≤ k, with k
denoting desired sparsity level.
Trade-off: Adjusting λ or k achieves different points on error vs sparsity trade-off curves.

Choosing an operating point on the trade-off curve:
Goal: Select a proper point on the error versus sparsity trade-off curve without
computing the entire curve.
Existing tuning approaches:

Cross-Validation: Use cross-validation to evaluate performance for different values of λ or
k and select the one that minimizes the validation error.
Automated methods: Employ automated hyper-parameter tuning methods such as
Bayesian optimization or random search to efficiently explore the hyper-parameter space.
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False discovery rate (FDR)

Choosing an operating point on the trade-off curve:
Use concepts from statistics and hypothesis testing.
False discovery rate (FDR): Probability of wrongly including a variable in a regression
problem.
Applications:

In genomics, including wrong variables can be catastrophic.
In finance, many claimed research findings may be false (Harvey, Liu, and Zhu 2016).

Controlling FDR:
Ideal method: Decide whether to include a variable by controlling the FDR.
Low-dimensional problems: Seminal paper in 1995 (Benjamini and Hochberg 1995).
High-dimensional problems:

Knockoffs method: Fictitious variables mimicking the covariance structure of original
variables, but high computational cost (R. F. Barber and Candès 2015).
T-Rex (Terminating-Random EXperiments): Based on dummies, orders of magnitude
lower computational cost (Machkour, Muma, and Palomar 2022).

Practical approach:
Use FDR-controlling methods like T-Rex to determine the optimal sparsity level.
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FDR for index tracking

FDR control in sparse index tracking:
Robust approach: Control the FDR instead of selecting sparsity level through trial and
error.
Interpretation of FDR:

All assets in an index are valid variables.
Many assets become redundant due to high correlation with selected assets.
Selecting these redundant assets is considered a “false discovery.”

T-Rex method for sparse index tracking:
Application: Developed in (Machkour, Palomar, and Muma 2024).
Advantage: Automatically selects assets by controlling the FDR.
Implementation: R package TRexSelector (Machkour et al. 2022) implements the
T-Rex method.

Practical benefit:
Avoids the need to fix or tune the hyper-parameter λ in the sparse regression formulation.
Ensures a more precise and robust selection of assets.
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Numerical experiments
Comparison of tracking portfolios:

Standard sparse penalized regression formulation.
FDR-controlling T-Rex method (Machkour, Palomar, and Muma 2024).

Numerical experiments:
Tracking portfolios computed on a rolling window basis with a two-year lookback period,
recomputed every six months.
Tracking error over time in terms of period-by-period returns and cumulative returns.
Cardinality of the portfolios over time.

Observations:
Standard sparse penalized regression formulation is sensitive to the choice of parameter
λ, resulting in varying tracking error and cardinality.
FDR-controlling T-Rex method automatically selects the appropriate sparsity level
without parameter tuning.
Computational cost of T-Rex is slightly higher than solving the standard sparse penalized
regression formulation for a fixed λ but lower than solving it for a range of λ values.

Conclusion: T-Rex method provides a robust and automatic way to control sparsity,
avoiding the need for manual tuning of λ.

Portfolio Optimization Index Tracking Portfolios 68 / 78



Numerical experiments
Tracking over time of the S&P 500 index with and without FDR control:
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Numerical experiments
Tracking over time of the S&P 500 index with and without FDR control:
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Numerical experiments
Tracking over time of the S&P 500 index with and without FDR control:
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Summary
Active and passive strategies are crucial in financial investment, each justified by different
market views. Key points include:

Passive investing avoids fees and poor performance from frequent active trading.
Index tracking mimics an index, assuming market efficiency and that it can’t be
beaten.
Financial indices number in the thousands, covering various asset classes, sectors,
and regions (e.g., S&P 500), with numerous ETFs available for direct trading.
Sparse index tracking approximates an index using few active assets, involving a
tracking error measure and sparsity control.
Tracking error measures include the ℓ2-norm, downside risk, ℓ1-norm, and Huberized
robust versions.
Algorithms for index tracking, like the iterative reweighted ℓ1-norm method, balance
tracking error and sparsity with low computational cost.
Sparsity level is often set by trial and error, but the new FDR-controlling index
tracking method automatically determines it using hypothesis testing.
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