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Abstract

Modern portfolio theory (MPT) started with Harry Markowitz’s 1952 seminal paper
Portfolio Selection, for which he would later receive the Nobel prize in 1990. He put forth
the idea that risk-adverse investors should optimize their portfolio based on a combination
of two objectives: expected return and risk. Until today, that idea has remained central
to portfolio optimization. In practice, however, the vanilla Markowitz portfolio
formulation has some issues and drawbacks; as a consequence most practitioners tend to
combine it with several heuristics or avoid it altogether. In these slides, we explore the
mean–variance Markowitz portfolio in its many facets (Palomar 2024, chap. 7).
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Mean–variance portfolio (MVP)

Mean–variance portfolio (MVP):
Concept introduced by Markowitz in his 1952 paper (Markowitz 1952).
Further discussed in monographs by Rubinstein(Rubinstein 2002) and Kolm, Tutuncu, &
Fabozzi (Kolm, Tütüncü, and Fabozzi 2014)] with a retrospective view.
Markowitz received the Nobel Prize for this work.

Importance of risk in portfolio management:
Expected return wTµ measures the average benefit.
Risk is crucial to avoid bankruptcy.
Risk measure quantifies investment strategy risk.

Basic risk measures:
Volatility:

√
wTΣw

Variance: wTΣw
Higher variance indicates potential for larger losses.
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Return–risk trade-off

Sophisticated risk measures:
Downside risk measures (e.g., semivariance)
Value-at-Risk (VaR)
Conditional Value-at-Risk (CVaR)

Markowitz’s risk-return optimization:
Investors should consider both expected return and risk.
Trade-off: higher expected return comes with higher risk, and vice versa.
Multi-objective optimization problem.

Efficient frontier:
Optimal trade-off curve of expected return and volatility.
Represents best possible expected return-volatility pairs for feasible portfolios.
Investor’s choice on the curve depends on their risk appetite.
Figure shows the trade-off between expected return and volatility.
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Return–volatility trade-off
Efficient frontier and 1,000 random feasible portfolios:
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MVP formulation

Bi-objective optimization:
Objectives: expected return wTµ and risk (volatility

√
wTΣw or variance wTΣw).

Variance is computationally more efficient than volatility.
Variance involves quadratic programming; volatility involves second-order cone
programming.

Scalarization approach:
Combines objectives into a single weighted sum.
Optimization problem:

maximize
w

wTµ− λ
2 wTΣw

subject to 1Tw = 1, w ≥ 0,

λ is a risk-aversion hyper-parameter.
Constraints ensure full investment and non-negativity of asset weights.
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MVP formulation
Efficient frontier and common portfolios:
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MVP formulation: Impact of λ

Varying λ produces portfolios along the efficient frontier.
λ = 0: Global Maximum Return Portfolio (GMRP), focusing solely on expected return.
λ→∞: Global Minimum Variance Portfolio (GMVP), focusing solely on minimizing
variance.

Portfolio allocation varies significantly with λ in the original MVP formulation.

Backtest results show that smaller λ values may lead to worse Sharpe ratios and more
severe drawdowns compared to larger values.
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Quadratic problem (QP) solution for MVP

MVP as a QP:
The MVP formulation is solvable using a QP solver.
The vanilla formulation ignoring no-shorting constraint w ≥ 0 allows for a closed-form
solution.

Closed-form solution:
Solution without shorting constraint:

w = 1
λ

Σ−1 (µ + ν1) ,

Optimal dual variable ν:

ν = λ− 1TΣ−1µ

1TΣ−11
,

ν ensures the normalization constraint 1Tw = 1 is satisfied.
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Example: Optimum investment sizing
Investment sizing problem:

Determine budget allocation between a risky asset and cash.
Optimal sizing derived from MVP for a single asset.

MVP formulation for single asset:
Optimization problem for N = 1:

maximize
w

wµ− λ
2 w2σ2

subject to 0 ≤ w ≤ 1,

Solution for investment sizing:

w =
[

1
λ

µ

σ2

]1

0
,

where [·]10 is a projection to ensures w is within the interval [0, 1].

Growth rate maximization:
Maximum growth rate when λ = 1.
Optimal sizing is the projected mean-to-variance ratio: w = [µ/σ2]10.
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Alternative MVP formulations
Markowitz’s mean-variance portfolio (MVP) can be reformulated in two other widely
used ways, each offering a different approach to balancing the trade-off between risk
and return.

Variance as a constraint:
maximize

w
wTµ

subject to wTΣw ≤ α

1Tw = 1, w ≥ 0,

where the hyper-parameter α controls the maximum level of variance accepted.

Characteristics:
Intuitive interpretation: maximum accepted variance.
Can recover the entire efficient frontier by adjusting α.
May be infeasible if α is not properly chosen; e.g., safe choice is: α = 1

N2 1TΣ1 (based on
variance of 1/N portfolio).
Quadratically-constrained QP (QCQP), requiring more complex solvers.
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Alternative MVP formulations

Expected return as a constraint:

minimize
w

wTΣw
subject to wTµ ≥ β

1Tw = 1, w ≥ 0,

where the hyper-parameter β controls the minimum level of expected return accepted.

Characteristics:
Intuitive interpretation: minimum accepted expected return.
Can recover the entire efficient frontier by adjusting β.
May be infeasible if β is not properly chosen; e.g., safe choice is: β = 1

N 1Tµ (based on
expected return of 1/N portfolio).
Still a QP, efficiently solvable with a QP solver.
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Portfolio optimization software

R package fPortfolio: Offers a wide variety of portfolio optimization formulations
and constraints.

Python library Riskfolio-Lib: Specializes in risk parity portfolio optimization with
an extensive range of risk measures.
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MVP: Numerical experiments
Portfolio allocation of MVP with different values of hyper-parameter λ:
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MVP: Numerical experiments
Backtest performance of MVP with different values of hyper-parameter λ:
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MVP: Numerical experiments

Backtest performance of MVP with different values of hyper-parameter λ:

Portfolio Sharpe ratio annual return annual volatility max drawdown

1/N 3.34 115% 35% 14%
MVP (λ = 1) 2.60 112% 43% 20%
MVP (λ = 4) 2.57 106% 41% 19%
MVP (λ = 16) 3.37 113% 33% 15%
MVP (λ = 64) 3.65 116% 32% 14%
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MVP as a regression∗

The Mean-Variance Portfolio (MVP) formulation can intriguingly be viewed through
the lens of regression analysis.
This perspective hinges on interpreting the portfolio’s variance as an ℓ2-norm error
term, offering a novel way to understand portfolio optimization.
Variance as ℓ2-norm error:

wTΣw = wTIE
[
(r t − µ)(r t − µ)T

]
w

= IE
[
(wT(r t − µ))2

]
= IE

[
(wTr t − ρ)2

]
,

where ρ = wTµ.
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MVP as a regression∗

Sample approximation:

IE
[
(wTr t − ρ)2

]
≈ 1

T

T∑
t=1

(wTr t − ρ)2 = 1
T ∥Rw − ρ1∥22

where R = [r1, . . . , rT ]T.

Reformulated optimization:

minimize
w

wTΣw − 2
λwTµ

subject to 1Tw = 1, w ≥ 0

Substituting variance with ℓ2-norm:

minimize
w ,ρ

1
T ∥Rw − ρ1∥22 − 2

λρ

subject to ρ = wTµ

1Tw = 1, w ≥ 0.

Portfolio Optimization Modern Portfolio Theory 20 / 79



MVP as a regression: Interpretation and insights∗

Recall the formulation:

minimize
w ,ρ

1
T ∥Rw − ρ1∥22 − 2

λρ

subject to ρ = wTµ

1Tw = 1, w ≥ 0.

Objective: The portfolio w aims to achieve returns as constant as possible over time,
ideally equal to ρ, thereby minimizing variance as quantified by the ℓ2-norm.
Expected Return as a Variable: The expected return, ρ, is an optimization variable,
though it can also be fixed to a predetermined value.
Relation to Index Tracking: This regression-based interpretation of MVP aligns with
the concept of index tracking, where the goal is to closely follow a benchmark index’s
performance with minimal deviation.
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MVP with practical constraints

The Mean-Variance Portfolio (MVP) framework can be extended to incorporate a
variety of practical constraints beyond the basic budget constraint 1Tw = 1 and
no-shorting constraint w ≥ 0.

These additional constraints reflect more realistic trading conditions and investor
preferences, such as

managing risk exposure,
controlling transaction costs, and adhering to regulatory or self-imposed investment
guidelines.

This flexibility makes the MVP framework a powerful tool for constructing portfolios
that are not only theoretically optimal but also practically feasible and aligned with
investor preferences.
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Extended MVP formulation with practical constraints

Formulation:
maximize

w
wTµ− λ

2 wTΣw
subject to ∥w∥1 ≤ γ leverage

∥w −w0∥1 ≤ τ turnover
|w | ≤ u max positions
βTw = 0 market neutral
∥w∥0 ≤ K sparsity

Constraints explained:
Leverage: ∥w∥1 ≤ γ limits the total absolute weight, controlling shorting and leverage.
Turnover: ∥w −w0∥1 ≤ τ limits the total change in weights, reducing transaction costs.
Max Positions: |w | ≤ u sets upper bounds on individual asset weights.
Market Neutral: βTw = 0 ensures the portfolio’s beta relative to a benchmark (e.g., a
market index) is zero.
Sparsity: ∥w∥0 ≤ K limits the number of non-zero weights, selecting a subset of assets.
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Convexity and solvability

General formulation:
maximize

w
wTµ− λ

2 wTΣw
subject to w ∈ W.

where W represents a general set of convex constraints.

As long as the constraints in W are convex, the optimization problem remains convex
and solvable.
The cardinality constraint ∥w∥0 ≤ K is nonconvex, making it a notable exception.
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Improving the MVP with heuristics

The mean-variance portfolio (MVP) can be enhanced with various heuristics to
address its tendency towards insufficient diversification.
These heuristics include no-shorting constraints, upper bound constraints, and ℓ2-norm
constraints, which have shown practical effectiveness.

No-shorting constraint: w ≥ 0
Reduces noise amplification from the estimated covariance matrix.
Performs comparably to sophisticated covariance estimators.

Upper bound constraints: 0 ≤ w ≤ u
Acts as a regularizer for the covariance matrix.

Diversification constraint: ∥w∥22 ≤ D
Maximum diversity level D is bounded by 1/N and can be set based on a benchmark
portfolio.
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Improving the MVP with heuristics: Numerical experiments

Portfolio allocation:
Diversification heuristics lead to improved portfolio diversification.
Example heuristics: upper bound ∥w∥∞ ≤ 0.25 and diversification constraint
∥w∥2

2 ≤ 0.25.
Backtest results:

More diversified MVPs exhibit better Sharpe ratios and drawdowns.

Overall, these heuristics serve to mitigate one of the MVP’s key limitations by
promoting diversification, which is a fundamental principle in portfolio management.
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Improving the MVP with heuristics: Numerical experiments
Portfolio allocation of MVP under diversification heuristics:
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Improving the MVP with heuristics: Numerical experiments
Backtest performance of MVP under diversification heuristics:
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Improving the MVP with heuristics: Numerical experiments

Backtest performance of MVP under diversification heuristics:

Portfolio Sharpe ratio annual return annual
volatility

max drawdown

1/N 3.34 115% 35% 14%
GMVP 3.67 115% 31% 14%
MVP 2.44 99% 41% 19%
MVP with
upper bound

2.98 96% 32% 14%

MVP with
diversific.
const.

2.79 97% 35% 16%
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Maximum Sharpe ratio portfolio (MSRP)

The Sharpe ratio of a portfolio is the excess return per unit of risk.

The Maximum Sharpe Ratio Portfolio (MSRP) is a key concept within Markowitz’s
mean-variance framework, aiming to identify the portfolio on the efficient frontier that
offers the highest Sharpe ratio.

Formulation:
maximize

w
wTµ− rf√

wTΣw
subject to 1Tw = 1, w ≥ 0,

where rf is the return of the risk-free asset.

Problem type: Non-convex, but a fractional program (FP) solvable by various
methods (Palomar 2024, chap. 7).
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Solving the MSRP: Bisection method

Approach: Solve a sequence of convex feasibility problems.
Convex feasibility problem for MSRP:

find
w

w
subject to t

√
wTΣw ≤ wTµ− rf

1Tw = 1, w ≥ 0,

where t is a fixed parameter, not an optimization variable!
Type of problem: Second-order cone program (SOCP).
Note: Feasibility or infeasibility depends on the value of the parameter t.

Portfolio Optimization Modern Portfolio Theory 32 / 79



Solving the MSRP: Bisection method

The bisection method provides a systematic approach to finding the MSRP by iteratively
narrowing down the range within which the maximum Sharpe ratio lies.

Bisection method
Initialization:

Choose an interval [l , u] containing the optimal Sharpe ratio and a tolerance ϵ > 0.
Repeat:

1 Set t ← (l + u)/2.
2 Solve the convex feasibility problem.
3 If feasible, set l ← t and keep solution w ; else set u ← t.

Until: u − l ≤ ϵ.
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Solving the MSRP: Dinkelbach method

The Dinkelbach method offers an efficient approach to solving non-convex
concave-convex fractional programs (FPs), such as the Maximum Sharpe Ratio
Portfolio (MSRP).

This method iteratively solves a series of manageable convex optimization problems,
specifically second-order cone programs (SOCPs), to find the optimal solution.

Convex problem sequence: At each iteration k:

maximize
w

wTµ− rf − yk
√

wTΣw
subject to 1Tw = 1, w ≥ 0,

Parameter update:

yk = (wk)Tµ− rf√
(wk)TΣwk
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Solving the MSRP: Dinkelbach method

Dinkelbach method
Initialization:

Choose an initial portfolio w0.
Set iteration counter k ← 0.

Repeat (kth iteration):
1 Update yk .
2 Solve the convex SOCP to obtain the solution wk+1.
3 Increment the iteration counter: k ← k + 1.

Until: The solution converges to the optimal portfolio.
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Solving the MSRP: Schaible transform method

The Schaible transform method provides an efficient way to solve concave-convex
fractional programs (FPs) without resorting to iterative schemes.
This method is particularly useful for the Maximum Sharpe Ratio Portfolio (MSRP)
problem, allowing for a direct approach to optimization.
Transformed MSRP problem:

maximize
y

yT (µ− rf1)
subject to yTΣy ≤ 1

1Ty > 0, y ≥ 0,

Recovery of original variables: w = y/
(
1Ty

)
.

Note: The constraint 1Ty > 0 can often be ignored with interior-point methods.
Problem type: A convex quadratically-constrained quadratic program (QCQP).
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Solving the MSRP: Schaible transform method∗

Alternative Schaible Transform Minimization Form:

minimize
y

yTΣy
subject to yT (µ− rf1) ≥ 1

1Ty > 0, y ≥ 0,

Feasibility: Requires yT (µ− rf1) > 0.

Problem Type: A simpler quadratic program (QP), preferred for its efficiency.
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Example: MSRP with return and upper bound constraints∗

Original formulation:

maximize
w

wTµ√
wTΣw

subject to wTµ ≥ β, w ≤ u
1Tw = 1, w ≥ 0

Reformulated problem as a QP:

minimize
y

yTΣy
subject to yTµ ≥ 1

0 < 1Ty ≤ β−1, 0 ≤ y ≤ u ·
(
1Ty

)
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Example: MSRP with shorting and return constraint∗

Original formulation:

maximize
w

wTµ√
wTΣw

subject to wTµ ≥ β
∥w∥1 = 1.

Reformulated problem as a QP:

minimize
y

yTΣy
subject to yTµ ≥ 1

0 < ∥y∥1 ≤ β−1,
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Utility-Based Portfolios

Markowitz’s mean–variance portfolio is based on the mean and the variance trade-off.

Utility-based portfolios offer a more general approach to expressing investor
preferences through utility functions, which can encompass a variety of risk and return
considerations beyond mean and variance.

We explore the specific Kelly criterion portfolio and the general expected utility theory
(Palomar 2024, chap. 7).
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Kelly criterion portfolio

Origin: Introduced by John Larry Kelly, Jr. in 1956, combining game theory and
information theory.
Concept: Maximizes the expected logarithmic growth of wealth.
Application: Applied to portfolio design by Markowitz and popularized in gambling
and investment strategies.
Portfolio returns: Rportf

t = wTr t

Wealth accumulation formula: WT = W0
∏T

t=1

(
1 + wTr t

)
Exponential growth: Wt ∼ et×G

Growth rate: G = lim
T→∞

log
(

WT
W0

)1/T

Estimation: G = lim
T→∞

1
T

∑T
t=1 log

(
1 + wTr t

)
= IE

[
log

(
1 + wTr

)]
,
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Kelly criterion portfolio formulation

Objective: Maximize the growth rate for long-term wealth.

Formulation:
maximize

w
IE

[
log

(
1 + wTr

)]
subject to 1Tw = 1, w ≥ 0.

Convexity: The problem is convex due to the concavity of the logarithm function.

Resolution methods:
via sample average
via exponential cone programming
via mean–variance approximations
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Kelly criterion portfolio via sample average

Sample average approximation: Replace the expectation with a sample mean:

IE
[
log

(
1 + wTr

)]
≈ 1

T

T∑
t=1

log
(
1 + wTr t

)
.

Practical challenges: Solvers that can handle the logarithm function directly may be
limited.

Portfolio Optimization Modern Portfolio Theory 45 / 79



Kelly criterion portfolio via mean–variance approximations

The Kelly criterion portfolio, which aims to maximize the expected logarithmic growth
of wealth, can be approached through mean-variance approximations.
First-order Taylor approximation:

IE
[
log

(
1 + wTr

)]
≈ wTµ− 1

2wTΣw ,

Justification for mean-variance formulation: This approximation aligns with
Markowitz’s mean-variance portfolio formulation, effectively justifying its use with
λ = 1.

Portfolio Optimization Modern Portfolio Theory 46 / 79



Kelly criterion portfolio via mean–variance approximations∗

Better Higher-Order Approximations: Further refinements can be made by
approximating around the point r = µ:

IE
[
log

(
1 + wTr

)]
≈ log

(
1 + wTµ

)
− 1

2
wTΣw

(1 + wTµ)2

or
IE

[
log

(
1 + wTr

)]
≈ wTµ− 1

2(wTµ)2 − 1
2

wTΣw
1 + 2wTµ

Levy-Markowitz Interval Approximation:

IE
[
log

(
1 + wTr

)]
≈ 1

2κ2 log
((

1 + wTµ
)2
− κ2wTΣw

)
+

(
1− 1

κ2

)
log

(
1 + wTµ

)
where κ measures the width of the approximating interval in standard deviations.
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Kelly criterion portfolio via mean–variance approximations∗

Nonconvexity and estimation errors: While these approximations offer theoretical
refinements, their practical benefits may be limited due to nonconvexity in the
formulations and the magnitude of estimation errors in µ and Σ.

Historical perspective: Markowitz provides a historical overview of mean-variance
approximations and their implications for portfolio design.

Beyond mean-variance: Higher order moments, such as skewness and kurtosis, can
be used to achieve better approximations for portfolio design, addressing the
limitations of mean-variance approximations.
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Expected utility theory

Expected utility theory forms the cornerstone of rational decision-making in economics
and statistics, providing a framework for modeling choices under uncertainty.

It was axiomatized by von Neumann and Morgenstern, and further developed by
Savage, to formalize how individuals make choices that maximize their satisfaction or
“utility.”

In portfolio design, the objective is to maximize some expected utility of portfolio
returns.
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Expected utility portfolios

Formulation:
maximize

w
IE

[
U(wTr)

]
subject to 1Tw = 1, w ≥ 0.

Utility function U(·): Represents the investor’s preferences over different outcomes.

Examples of utility functions:
Logarithmic: U(x) = log (1 + x)
Square Root: U(x) =

√
1 + x

Inverse: U(x) = − 1
x

Power: U(x) = −p 1
xp for p > 0

Exponential: U(x) = 1− exp(−λx), where λ > 0 is the risk aversion parameter
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Expected utility portfolios

Practical considerations: While expected utility theory offers a theoretically robust
framework for portfolio optimization, its practical application can be challenging.

The choice of utility function significantly influences the resulting portfolio, and the
direct application of this theory may not always provide actionable advice for investors.

Convexity: The optimization problem is convex if the utility function U(·) is concave.

Kelly criterion as a special case: If the utility function is chosen as the expected
logarithmic growth of wealth, then the formulation becomes the Kelly portfolio.

Resolution methods:
via sample average
via mean–variance approximations
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Expected utility portfolios via sample average

Sample average approximation: The expectation in the objective can be
approximated by the sample mean:

IE
[
U(wTr)

]
≈ 1

T

T∑
t=1

U
(
wTr t

)
.

Solver challenges: Finding solvers capable of directly handling various utility
functions may be difficult, even when these functions are concave.
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Expected utility portfolios via mean–variance approximations∗

The expected utility maximization problem can be approached through mean-variance
approximations, making it more tractable for practical applications.

Second-order Taylor approximation around r = 0:

IE
[
U(wTr)

]
≈ U(0) + U ′(0) wTµ + 1

2U ′′(0)(wTΣw + (wTµ)2),

Second-order Taylor approximation around r = µ:

IE
[
U(wTr)

]
≈ U(wTµ) + 1

2U ′′(wTµ)wTΣw .
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Expected utility portfolios via mean–variance approximations∗

Three-point interval Levy-Markowitz approximation:

IE
[
U(wTr)

]
≈ U(wTµ)

+
U

(
wTµ + κ

√
wTΣw

)
+ U

(
wTµ− κ

√
wTΣw

)
− 2U

(
wTµ

)
2κ2 .

where κ measures the width of the approximating interval centered at the mean.
Empirical performance: These mean-variance approximations have been shown to
perform well in practice, with negligible differences among them for real data.
Simplification for optimization: By reducing the expected utility problem to a
mean-variance framework, these approximations facilitate the use of conventional
optimization solvers and techniques.
Beyond mean-variance: Further exploration of higher order moments, such as
skewness and kurtosis, is discussed for refining these approximations and enhancing
portfolio design.

Portfolio Optimization Modern Portfolio Theory 55 / 79



Outline

1 Mean–variance portfolio (MVP)

2 Maximum Sharpe ratio portfolio (MSRP)

3 Utility-based portfolios

Kelly criterion portfolio

Expected utility theory

4 Universal algorithm∗

5 Drawbacks

6 Summary



Universal algorithm for portfolio optimization

All previous portfolio formulations, including those based on the Kelly criterion and
utility-based portfolios, can be expressed in terms of mean and variance.

However, each formulation results in a different type of optimization problems,
requiring a specific numerical method or solver:

Scalarized MVP: Requires a quadratic programming (QP) solver.
Mean-constrained MVP: Also needs a QP solver.
Variance-constrained MVP: Requires a quadratically constrained QP (QCQP) solver.
MSRP: An FP that can be solved via bisection of SOCPs, Dinkelbach sequence of
SOCPs, or one-shot Schaible transformed QP.
Kelly portfolio: After approximation, it can be solved with a QP solver.
Utility-based portfolios: Can be solved with a QP solver after mean-variance
approximation.
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Universal algorithm for portfolio optimization

Rather than solving each of these portfolios in a different way, what if we could simply
solve the basic mean–variance formulation with a properly chosen value of the
hyper-parameter λ?:

maximize
w

wTµ− λ

2 wTΣw
subject to w ∈ W

The challenge naturally lies in the determination of the appropriate value of the
hyper-parameter λ.

It turns out that it is possible to iteratively adjust the hyper-parameter λk , where k
denotes iterations (Xiu, Wang, and Palomar 2023), (Palomar 2024, chap. 7).
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Universal algorithm for portfolio optimization

Universal framework:

minimize
w

f
(
wTµ, wTΣw

)
subject to g

(
wTµ, wTΣw

)
≤ 0

w ∈ W

The functions f (x , y) and g(x , y) consider a trade-off between mean x and variance y .
The next table summarizes how the functions f (x , y) and g(x , y) particularize to
various mean-variance formulations.
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Universal algorithm for portfolio optimization

Portfolio formulations with the corresponding functions f (x , y) and g(x , y) in the general
mean–variance formulation:

Portfolio f (x , y) g(x , y)

MVP −x + λ
2 y —

mean–volatility portfolio −x + κ
√y —

mean–constrained MVP y β − x
variance-constrained MVP −x y − α

MSRP −x − rf√y —

Kelly portfolio −x + 1
2y —

Kelly portfolio −log(1 + x) + 1
2

y
(1 + x)2 —

expected utility portfolio −U(0)− U ′(0)x − 1
2U ′′(0)(y + x2) —
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Universal algorithm for portfolio optimization

A universal algorithm can be developed for mean-variance portfolio formulations,
offering computational efficiency and code reusability.

This algorithm is based on the successive convex approximation (SCA) method
(Scutari et al. 2014), which iteratively solves a sequence of simpler surrogate problems.

Advantages of the universal algorithm:
1 Computational efficiency: Solving a quadratic program (QP) is generally more efficient

than solving more complex problems like quadratically constrained QP (QCQP) or
second-order cone programs (SOCP).

2 Code reusability: Implementing a solver for one mean-variance problem allows the same
code to be reused for different formulations by adjusting the hyper-parameter λ.

3 Code specialization: Advanced users can create tailored numerical algorithms that
exploit specific features of the portfolio formulation, such as sparsity or other numerical
optimizations.
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Successive Convex Approximation (SCA) method

The SCA method, also known as SQP in this context, solves the universal mean-variance
formulation by approximating it with a sequence of quadratic programs. The surrogate
problems are defined as:

minimize
w

f̃
(
w ; wk

)
+ τk

2 ∥w −wk∥22
subject to w ∈ W,

f̃
(
w ; wk

)
: Quadratic approximation of the original function f around the previous

iterate wk .
τk : Proximal term coefficient, taken as τk = 0 for convergence.
W: Set of constraints for the portfolio.
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Surrogate quadratic function

The surrogate function f̃ is obtained by linearizing the original function f :

f̃
(
w ; wk

)
= −αkwTµ + βk

2 wTΣw ,

where αk and βk are coefficients derived from the partial derivatives of f with respect
to the mean and variance at the current iterate:

αk = −∂f
∂x

(
xk =

(
wk)T

µ, yk =
(
wk)TΣwk

)
βk = 2∂f

∂y
(
xk =

(
wk)T

µ, yk =
(
wk)TΣwk

)
.
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Surrogate mean-variance problems

Summarizing, the surrogate problems become:

maximize
w

wTµk − λk

2 wTΣkw
subject to w ∈ W

with
µk = µ + τk

αk wk

Σk = Σ + τk

βk I

λk = βk

αk .

The next table summarizes the expressions of αk and βk for various portfolio
formulations.
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Universal algorithm for portfolio optimization

Portfolio formulations with the corresponding expressions for αk and βk :

Portfolio f (x , y) ∂f
∂x

∂f
∂y αk βk

MVP −x + λ
2 y −1 λ/2 1 λ

mean–volatility portfolio −x + κ
√y −1 κ

2√y 1 κ√
(wk)TΣwk

MSRP −x − rf√y − 1
√y

x − rf
2y3/2

1√
(wk)TΣwk

(wk)Tµ−rf

((wk)TΣwk)3/2

Kelly portfolio −x + 1
2y −1 1/2 1 1
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Universal algorithm

Universal SQP-MVP algorithm (Xiu, Wang, and Palomar 2023)
Initialization:

Start with an initial portfolio w0 within the feasible set W.
Define sequences {τk} and {γk} for the algorithm.

Repeat (kth iteration):
1 Calculate αk and βk .
2 Calculate µk , Σk , and λk .
3 Solve the QP and denote the solution as wk+1/2.
4 Update the portfolio as wk+1 = wk + γt

(
wk+1/2 −wk

)
.

5 k ← k + 1
Until: The solution converges to the optimal portfolio.
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Convergence of universal algorithm
Convergence of the SQP-MVP algorithm for the MSRP formulation:
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Example: MSRP

MSRP formulation:

maximize
w

wTµ− rf√
wTΣw

subject to 1Tw = 1, w ≥ 0.

Universal algorithm : solve iteratively the mean-variance surrogate problems

maximize
w

wTµ− λk

2 wTΣw
subject to 1Tw = 1, w ≥ 0,

where λk = βk/αk = (wk)Tµ− rf
(wk)TΣwk .
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Example: Mean–volatility portfolio

Mean–volatility formulation:

maximize
w

wTµ− κ
√

wTΣw
subject to 1Tw = 1, w ≥ 0,

Universal algorithm : solve iteratively the mean-variance surrogate problems

maximize
w

wTµ− λk

2 wTΣw
subject to 1Tw = 1, w ≥ 0,

where λk = βk/αk = κ/
√

(wk)TΣwk .
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Drawbacks

Markowitz’s mean–variance portfolio criticisms:
Despite its theoretical appeal, it’s considered risky in practice.
Referred to as “Markowitz optimization enigma” and “error maximizer” due to its
drawbacks.

Some reasons for limited acceptance:
noisy estimation of the expected returns
variance or volatility as measure of risk
single-number measure of risk
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Drawbacks: Sensitivity to estimation errors

Noisy estimation of expected returns:
Sample means are imprecise estimators of the population mean, leading to poor
out-of-sample performance.
Estimation errors in expected returns significantly impact portfolio optimization, more so
than errors in covariance matrix estimation.
Ignoring expected returns when no additional information is available can sometimes yield
better out-of-sample performance.

Pragmatic approaches to portfolio construction:
Risk-based portfolios: Avoid reliance on µ, focusing instead on risk characteristics.
1/N portfolio: Simple equal-weighting scheme that doesn’t require estimation of
expected returns.
Heuristic constraints: Implementing constraints to stabilize the MVP and improve
practical performance.
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Drawbacks: Sensitivity to estimation errors

Strategies to address estimation noise:
Improved estimators: Enhance estimation process using prior information, shrinkage, or
better statistical models.
Robust optimization: Acknowledge parameter noise and use techniques like
bootstrapping or robust optimization methods.

Illustration of MVP instability: The instability of the MVP is highlighted by
showing how portfolio allocations vary significantly under different samples of returns
used for estimating expected returns. This demonstrates the sensitivity of the MVP to
estimation errors, particularly in expected returns.
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Drawbacks
Effect of parameter estimation noise in the MVP allocation:
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Drawbacks: Use of variance as measure of risk

Variance as a measure of risk:
Criticized for penalizing both gains and losses equally.
Does not adequately capture tail risk, which is crucial for understanding potential large
losses.

Alternative Risk Measures: Consider measures that focus on downside risk, such as
semivariance
VaR
CVaR
drawdown
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Drawbacks: Single-number measure of risk

Single-number risk characterization:
A single risk measure may not fully capture the risk contributions from individual assets.
Emphasizes the importance of risk diversification to avoid concentration in a few assets.

Risk diversification and risk parity:
Risk parity portfolio:

Decomposes overall risk into contributions from each asset for balanced risk distribution.
Aims for equal risk contribution from all assets, enhancing diversification.
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Summary

Markowitz’s 1952 paper introduced modern portfolio theory (MPT), focusing on
portfolios designed around expected return and risk variance.
The mean–variance model, a convex problem, creates an efficient frontier of portfolios
with varying risk levels.
Its practical performance is hindered by sensitivity to market parameter errors
(expected returns and covariance) and a simplistic risk measure (variance/volatility).
Practitioners have developed solutions, including heuristic constraints, improved
market parameter estimators (e.g., shrinkage, robust estimators), alternative risk
measures, and refined risk profiles.
The Sharpe ratio-maximizing portfolio on the efficient frontier poses a nonconvex
challenge, yet practical numerical methods can find optimal solutions.
The Kelly criterion and expected utility portfolios extend the trade-off between return
and risk; they can be effectively approximated by the mean–variance model with
efficient algorithms.
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