
Portfolio Optimization
Optimization Algorithms

Daniel P. Palomar (2024). Portfolio Optimization: Theory and Application.
Cambridge University Press.

portfoliooptimizationbook.com

Latest update: September 17, 2024

https://portfoliooptimizationbook.com

Outline
1 Solvers

2 Gradient methods

3 Interior-point methods (IPM)

4 Fractional programming (FP) methods

5 BCD

6 MM

7 SCA

8 ADMM

9 Numerical comparison

10 Summary

Abstract

Over the past century, the development of efficient algorithms for solving convex
optimization problems has seen significant advancements. In 1947, Dantzig introduced
the simplex method for linear programming (LP), which, despite its exponential
worst-case complexity, became widely used. In 1984, Karmarkar’s interior-point method
revolutionized LP by offering polynomial time complexity. This innovation spurred further
research, extending interior-point methods to quadratic programming (QP) and linear
complementarity problems. In 1994, Nesterov and Nemirovskii advanced the field with
the theory of self-concordant functions, enabling the application of log-barrier
function-based algorithms to a broader range of convex problems, including semidefinite
programming (SDP) and second-order cone programming (SOCP). Additionally, various
specialized techniques like block-coordinate descent, majorization-minimization, and
successive convex approximation have been developed to create customized algorithms for
specific problems, often enhancing complexity and convergence rates. These slides will
delve into a wide array of such practical algorithms (Palomar 2024, Appendix B).

Portfolio Optimization Optimization Algorithms 3 / 127

Outline
1 Solvers

2 Gradient methods

3 Interior-point methods (IPM)

4 Fractional programming (FP) methods

5 BCD

6 MM

7 SCA

8 ADMM

9 Numerical comparison

10 Summary

Solvers

A solver, or optimizer, is an engine designed to solve specific types of mathematical
problems.

Available in various programming languages: R, Python, Matlab, Julia, Rust, C, C++.

Each solver typically handles specific problem categories: LP, QP, QCQP, SOCP, SDP.

Portfolio Optimization Optimization Algorithms 5 / 127

Popular solvers

GLPK (GNU Linear Programming Kit):
Intended for large-scale LP including mixed-integer variables.
Written in C.

quadprog:
Popular open-source QP solver.
Originally written in Fortran by Berwin Turlach in the late 1980s.
Accessible from most programming languages.

MOSEK:
Proprietary solver for LP, QP, SOCP, SDP including mixed-integer variables.
Established in 1997 by Erling Andersen.
Specialized in large-scale problems; very fast, robust, and reliable.
Free license available for academia.

SeDuMi:
Open-source solver for LP, QP, SOCP, SDP.
Originally developed by Sturm in 1999 for Matlab.

Portfolio Optimization Optimization Algorithms 6 / 127

Popular solvers

SDPT3:
Open-source solver for LP, QP, SOCP, SDP.
Originally developed in 1999 for Matlab.

Gurobi:
Proprietary solver for LP, QP, and SOCP including mixed-integer variables.
Free license available for academia.

Embedded COnic Solver (ECOS):
SOCP solver originally written in C.

CPLEX:
Proprietary solver for LP and QP, also handles mixed-integer variables.
Free license available for academia.

Portfolio Optimization Optimization Algorithms 7 / 127

Complexity of interior-point methods

General complexity:
Complexity for LP, QP, QCQP, SOCP, and SDP is O(n3L).
n: number of variables.
L: number of accuracy digits of the solution.

Specific complexities:
LP: O((m + n)3/2n2L).
QCQP: O(

√
m(m + n)n2L).

SOCP: O(
√

m + 1 n(n2 + m + (m + 1)k2)L) with k the cone dimension.
SDP: O(

√
1 + mk n(n2 + nmk2 + mk3)L), with k × k the matrix dimension.

Example analysis:
For SOCP with m = O(n) and k = O(n), complexity is O(n4.5L).
For SDP with k = O(n), complexity is O(n4).
If m = O(n) for SDP, complexity becomes O(n6L).
Complexity for solving SOCP is higher than LP, QP, and QCQP; even higher for SDP.

Portfolio Optimization Optimization Algorithms 8 / 127

Interface with solvers

Solvers and standard form:
Problems must be expressed in a standard form for solvers.
Transformation to standard form is time-consuming and error-prone.

General norm approximation problem:

minimize
x

∥Ax − b∥

Solution depends on the choice of the norm.
Norm approximation with Euclidean or ℓ2-norm:

minimize
x

∥Ax − b∥2

Least squares (LS) problem with analytic solution: x⋆ = (ATA)−1ATb.

Portfolio Optimization Optimization Algorithms 9 / 127

Interface with solvers
Norm approximation with Chebyshev or ℓ∞-norm:

minimize
x

∥Ax − b∥∞
Rewritten as LP:

minimize
x,t

t
subject to −t1 ≤ Ax − b ≤ t1

Equivalent form:

minimize
x,t

[
0T 1

] [
x
t

]
subject to

[
A −1
−A −1

] [
x
t

]
≤

[
b
−b

]
Matlab code:

xt = linprog([zeros(n,1); 1],
[A,-ones(m,1); -A,-ones(m,1)],
[b; -b])

x = xt(1:n)
Portfolio Optimization Optimization Algorithms 10 / 127

Interface with solvers

Norm approximation problem with Manhattan or ℓ1-norm:

minimize
x

∥Ax − b∥1
Rewritten as LP:

minimize
x,t

1Tt
subject to −t ≤ Ax − b ≤ t

Equivalent form:

minimize
x,t

[
0T 1T] [

x
t

]
subject to

[
A −I
−A −I

] [
x
t

]
≤

[
b
−b

]
Matlab code:

xt = linprog([zeros(n,1); ones(n,1)],
[A,-eye(m,1); -A,-eye(m,1)],
[b; -b])

x = xt(1:n)

Portfolio Optimization Optimization Algorithms 11 / 127

Interface with solvers

Euclidean norm approximation problem with linear constraints:

minimize
x

∥Ax − b∥2
subject to Cx = d

l ≤ x ≤ u.

Equivalent form:
minimize
x,y,t,s l ,su

t
subject to Ax − b = y

Cx = d
x − s l = l
x + su = u
s l , su ≥ 0
∥y∥2 ≤ t

Portfolio Optimization Optimization Algorithms 12 / 127

Interface with solvers
Euclidean norm approximation problem with linear constraints: (cont’d)

Equivalent form:
minimize
x,y,t,s l ,su

t
subject to Ax − b = y

Cx = d
x − s l = l
x + su = u
s l , su ≥ 0
∥y∥2 ≤ t

Equivalent form in matrix notation:
minimize
x,y,t,s l ,su

[
0T 0T 0T 0T 1

]
x̄

subject to


A −I
C
I −I
I I

 x̄ ≤


b
d
l
u


x̄ ∈ Rn × Rn

+ × Rn
+ ×Qm

Portfolio Optimization Optimization Algorithms 13 / 127

Interface with solvers

Euclidean norm approximation problem with linear constraints: (cont’d)
Matlab code:

AA = [A, zeros(m,n), zeros(m,n), -eye(m), 0;
C, zeros(p,n), zeros(p,n), zeros(p,n), 0;
eye(n), -eye(n), zeros(n,n), zeros(n,n), 0;
eye(n), zeros(n,n), eye(n), zeros(n,n), 0]

bb = [b; d; l; u]
cc = [zeros(3*n + m, 1); 1]
K.f = n; K.l = 2*n; K.q = m + 1
xsyz = sedumi(AA, bb, cc, K)
x = xsyz(1:n)

Portfolio Optimization Optimization Algorithms 14 / 127

Modeling frameworks
Modeling framework:

Simplifies the use of solvers by handling solver argument formatting.
Acts as an interface between the user and the solver.
Can interface with various solvers, allowing user choice based on problem type.
Useful for rapid prototyping and avoiding transcription errors.
Direct solver calls may be preferred for high-speed requirements.

Successful examples:
YALMIP: For Matlab (Löfberg 2004).
CVX: Initially released in 2005 for Matlab. Now available in Python, R, and Julia.
(Grant and Boyd 2008, 2014; Fu, Narasimhan, and Boyd 2020).

CVX (Convex Disciplined Programming):
Tool for rapid prototyping of models and algorithms with convex optimization.
Supports integer constraints.
Interfaces with solvers like SeDuMi, SDPT3, Gurobi, and MOSEK.
Recognizes elementary convex and concave functions and composition rules.
Determines problem convexity.
Simple and convenient for prototyping.

Portfolio Optimization Optimization Algorithms 15 / 127

Modeling frameworks

Example: Constrained Euclidean norm approximation in CVX:
Problem statement:

minimize
x

∥Ax − b∥2

subject to Cx = d
l ≤ x ≤ u

Matlab code:
cvx_begin

variable x(n)
minimize(norm(A * x - b, 2))
subject to

C * x == d
l <= x
x <= u

cvx_end

Portfolio Optimization Optimization Algorithms 16 / 127

Modeling frameworks

Example: Constrained Euclidean norm approximation in CVX: (cont’d)
R code:

x <- Variable(n)
prob <- Problem(Minimize(cvxr_norm(A %*% x - b, 2)),

list(C %*% x == d,
l <= x,
x <= u))

solve(prob)

Python code:

x = cvxpy.Variable(n)
prob = cvxpy.Problem(cvxpy.Minimize(cvxpy.norm(A @ x - b, 2)),

[C @ x == d,
l <= x,
x <= u])

prob.solve()

Portfolio Optimization Optimization Algorithms 17 / 127

Outline
1 Solvers

2 Gradient methods

3 Interior-point methods (IPM)

4 Fractional programming (FP) methods

5 BCD

6 MM

7 SCA

8 ADMM

9 Numerical comparison

10 Summary

Gradient methods

Unconstrained optimization problem:

minimize
x

f (x)

where f is the objective function, assumed to be continuously differentiable.
Iterative methods:

Produce a sequence of iterates x0, x1, x2, . . .
Sequence may or may not converge to an optimal solution x⋆.

Ideal case with convex f :
As iterations proceed (k →∞):

Objective function converges to the optimal value:

f
(
xk)
→ p⋆

Gradient tends to zero:
∇f

(
xk)
→ 0

References: (Bertsekas 1999), (S. P. Boyd and Vandenberghe 2004), (Nocedal and
Wright 2006), (Beck 2017).

Portfolio Optimization Optimization Algorithms 19 / 127

Descent methods

Descent methods (gradient methods):
Satisfy the property: f

(
xk+1)

< f
(
xk)

.
Iterates are obtained as:

xk+1 = xk + αkdk ,

d k : search direction.
αk : stepsize at iteration k.

Descent property:
For a sufficiently small step, d must satisfy:

∇f (x)T d < 0

α must be properly chosen (if too large, the descent property may be violated even with a
descent direction).

Portfolio Optimization Optimization Algorithms 20 / 127

Line search

Line search:
Procedure to choose the stepsize α.
Two widely used methods due to good theoretical convergence and practical performance:

Exact line search:
Solves the univariate optimization problem:

α = arg min
α>0

f (x + αd).

Backtracking line search (Armijo rule):
Starting at α = 1, repeat α← βα until:

f (x + αd) < f (x) + σα∇f (x)Td ,

where σ ∈ (0, 1/2) and β ∈ (0, 1) are given parameters.

Portfolio Optimization Optimization Algorithms 21 / 127

Gradient descent method

Gradient descent method (steepest descent method):
A descent method where the search direction is the opposite of the gradient:

d = −∇f (x),

which is a descent direction since ∇f (x)T d < 0.
Gradient descent update:

xk+1 = xk − αk∇f
(
xk

)
.

Stopping criterion:
Common heuristic: ∥∇f (x)∥2 ≤ ϵ.

Convergence:
Often slow, making it rarely used in practice.
Useful in high-dimensional problems or when distributed implementation is required.

Portfolio Optimization Optimization Algorithms 22 / 127

Gradient descent method

Gradient descent method
Initialization:

Choose initial point x0.
Set k ← 0.

Repeat (kth iteration):
1 Compute the negative gradient as descent direction: dk = −∇f

(
xk

)
.

2 Line search: Choose a stepsize αk > 0 via exact or backtracking line search.
3 Obtain next iterate:

xk+1 = xk − αk∇f
(
xk

)
.

4 k ← k + 1
Until: convergence

Portfolio Optimization Optimization Algorithms 23 / 127

Newton’s method

Newton’s method:
A descent method using both the gradient and the Hessian of f .
Search direction:

d = −∇2f (x)−1∇f (x),

Assumes f is convex, twice continuously differentiable, and the Hessian matrix is positive
definite for all x.

Second-order approximation:
x + d minimizes the second-order approximation of f (x) around x:

f̂ (x + v) = f (x) +∇f (x)Tv + 1
2vT∇2f (x)v .

Newton’s method update:

xk+1 = xk − αk∇2f
(
xk

)−1
∇f

(
xk

)
.

Portfolio Optimization Optimization Algorithms 24 / 127

Newton’s method

Newton decrement:
Measures the proximity of x to an optimal point:

λ(x) = (∇f (x)T∇2f (x)−1∇f (x))1/2

Estimates f (x)− p⋆:
f (x)− infy f̂ (y) = 1

2λ(x)2,

Computational cost of the Newton decrement is negligible since λ(x)2 = −∇f (x)Td .
Advantages and limitations:

Fast convergence.
Central to most modern solvers.
Impractical for very large dimensional problems due to computation and storage of the
Hessian.
For large problems, quasi-Newton methods are used (Nocedal and Wright 2006).

Portfolio Optimization Optimization Algorithms 25 / 127

Newton’s method
Newton’s method
Initialization:

Choose initial point x0 and tolerance ϵ > 0. Set k ← 0.
Repeat (kth iteration):

1 Compute Newton direction and decrement:

dk = −∇2f (xk)−1∇f (xk) and λ(xk)2 = −∇f (xk)Tdk .

2 Line search: Choose a stepsize αk > 0 via exact or backtracking line search.
3 Obtain next iterate:

xk+1 = xk − αk∇2f
(
xk

)−1
∇f

(
xk

)
.

4 k ← k + 1
Until: convergence (i.e., λ(xk)2/2 ≤ ϵ)

Portfolio Optimization Optimization Algorithms 26 / 127

Convergence

Convergence of descent methods:
Ideally, the sequence {xk} should converge to a global minimum.
For non-convex f , convergence to a global minimum is unlikely due to local minima.
Descent methods typically converge to a stationary point.
For convex f , a stationary point is a global minimum.

Theoretical convergence:
Descent methods have nice theoretical convergence properties (Bertsekas 1999).
Theorem: Convergence of descent methods

Suppose {xk} is a sequence generated by a descent method (e.g., gradient descent or
Newton’s method).
Stepsize αk chosen by exact line search or backtracking line search.
Every limit point of {xk} is a stationary point of the problem.

Simpler stepsize rules with theoretical convergence (Bertsekas 1999):
Constant stepsize: αk = α for sufficiently small α.
Diminishing stepsize rule: αk → 0 with

∑∞
k=0 αk =∞.

Portfolio Optimization Optimization Algorithms 27 / 127

Convergence

Newton’s method convergence phases:
Damped Newton phase: Slow convergence.
Quadratically convergent phase: Extremely fast convergence.

Practical considerations:
Gradient descent method converges slowly.
Newton’s method converges much faster but requires computing the Hessian.
Newton’s method is preferred if problem dimensionality is manageable.
For extremely large dimensional problems (e.g., deep learning), computing and storing the
Hessian is not feasible.

Portfolio Optimization Optimization Algorithms 28 / 127

Projected gradient methods
Constrained optimization problem:

minimize
x

f (x)
subject to x ∈ X ,

where f is the objective function (continuously differentiable) and X is a convex set.
Descent method:

Iterative update:
xk+1 = xk + αkdk

where dk is a descent direction.
Potential issue: xk+1 may be infeasible.

Projected gradient methods (gradient projection methods):
Address infeasibility by projecting onto the feasible set after taking the step (Bertsekas
1999; Beck 2017):

xk+1 =
[
xk + αkdk

]
X

where [x]X denotes projection onto the set X : miny∥y − x∥ subject to y ∈ X .
Portfolio Optimization Optimization Algorithms 29 / 127

Projected gradient methods

Generalized gradient projection method:
Iterative update:

x̄k =
[
xk + skdk

]
X

xk+1 = xk + αk (
x̄k − xk)

,

d k = x̄k − xk is a feasible direction.
αk is the stepsize.
sk is a positive scalar (Bertsekas 1999).

Special case: αk = 1:
xk+1 =

[
xk + skdk

]
X

sk can be viewed as a stepsize.
If xk + skd k is already feasible, the method reduces to the regular gradient method.

Practical consideration:
Gradient projection method is practical only if the projection is easy to compute.

Portfolio Optimization Optimization Algorithms 30 / 127

Projected gradient descent method

Uses the negative gradient as the search direction.

Iterative update:
x̄k =

[
xk − sk∇f

(
xk

)]
X

xk+1 = xk + αk
(
x̄k − xk

)
,

x̄k : Projection of xk − sk∇f
(
xk)

onto the set X .
αk : Stepsize.
sk : Positive scalar stepsize for the gradient step.

Portfolio Optimization Optimization Algorithms 31 / 127

Constrained Newton’s method
Assumptions:

f is twice continuously differentiable.
The Hessian matrix is positive definite for all x ∈ X .

Constrained Newton’s method:
Iterative update:

x̄k = arg min
x∈X

{
∇f

(
xk)T (

x − xk)
+ 1

2sk
(
x − xk)T∇2f

(
xk) (

x − xk)}
xk+1 = xk + αk (

x̄k − xk)
.

x̄k : Solution to the quadratic subproblem.
αk : Stepsize.
sk : Positive scalar.

Observations:
If sk = 1, the quadratic cost is the second-order Taylor series expansion of f around xk .
The main difficulty is solving the quadratic subproblem to find x̄k .

This may not be simple even when the constraint set X has a simple structure.
The method typically makes practical sense only for problems of small dimension.

Portfolio Optimization Optimization Algorithms 32 / 127

Convergence

Convergence of gradient projection methods:
Detailed in (Bertsekas 1999).
Theorem: Convergence of gradient projection methods

Suppose {xk} is a sequence generated by a gradient projection method (e.g., projected
gradient descent method or constrained Newton’s method).
Stepsize αk chosen by exact line search or backtracking line search.
Every limit point of {xk} is a stationary point of the problem.

Simpler stepsize rules with theoretical convergence:
Constant stepsize: αk = 1 and sk = s for sufficiently small s (Bertsekas 1999).

Portfolio Optimization Optimization Algorithms 33 / 127

Outline
1 Solvers

2 Gradient methods

3 Interior-point methods (IPM)

4 Fractional programming (FP) methods

5 BCD

6 MM

7 SCA

8 ADMM

9 Numerical comparison

10 Summary

Interior-point methods (IPM)
Traditional optimization algorithms:

Based on gradient projection methods.
May suffer from:

Slow convergence.
Sensitivity to algorithm initialization.
Sensitivity to stepsize selection.

Interior-point methods (IPM):
Modern approach for convex problems.
Enjoy excellent convergence properties (polynomial convergence).
Do not suffer from the usual problems of traditional methods.

Convex optimization problem:
minimize

x
f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m
Ax = b

References: (Nesterov and Nemirovskii 1994; Bertsekas 1999; Nemirovski 2001; S. P.
Boyd and Vandenberghe 2004; Nocedal and Wright 2006; Nesterov 2018).

Portfolio Optimization Optimization Algorithms 35 / 127

Eliminating equality constraints
Dealing with equality constraints:

Can be handled via Lagrange duality (S. P. Boyd and Vandenberghe 2004).
Alternatively, can be eliminated in a pre-processing stage.

Representation of solutions to Ax = b:
Solutions can be expressed as:

{x ∈ Rn | Ax = b} = {Fz + x0 | z ∈ Rn−p},
x0 is any particular solution to Ax = b.
F ∈ Rn×(n−p) spans the nullspace of A, i.e., AF = 0.

Reduced or eliminated problem:
Equivalent to the original problem:

minimize
z

f̃0(z) ≜ f0(Fz + x0)
subject to f̃i(z) ≜ fi(Fz + x0) ≤ 0, i = 1, . . . , m,

Gradients and Hessians:
∇f̃i(z) = F T∇fi(x)
∇2 f̃i(z) = F T∇2fi(x)F .

Portfolio Optimization Optimization Algorithms 36 / 127

Indicator function

Reformulation via indicator function:
Equivalent form of the original problem:

minimize
x

f0(x) +
∑m

i=1 I− (fi(x))
subject to Ax = b,

Indicator function definition:

I−(u) =
{

0 if u ≤ 0
∞ otherwise.

Characteristics of the reformulated problem:
Inequality constraints are eliminated.
Indicator function is included in the objective.
Drawbacks:

Indicator function is noncontinuous.
Indicator function is nondifferentiable.
Not practical for optimization.

Portfolio Optimization Optimization Algorithms 37 / 127

Logarithmic barrier

Smooth approximation of the indicator function:
Popular choice: logarithmic barrier:

I−(u) ≈ −1
t log(−u),

Parameter t > 0 controls the approximation.
Approximation improves as t →∞.

Approximate problem using the logarithmic barrier:
Reformulated problem:

minimize
x

f0(x)− 1
t

∑m
i=1 log (−fi(x))

subject to Ax = b.

Portfolio Optimization Optimization Algorithms 38 / 127

Logarithmic barrier
Logarithmic barrier for several values of the parameter t:

−5

0

5

10

−3 −2 −1 0
u

ba
rr

ie
r

indicator

log−barrier (t = 0.5)

log−barrier (t = 1)

log−barrier (t = 2)

Logarithmic barrier

Portfolio Optimization Optimization Algorithms 39 / 127

Logarithmic barrier

Logarithmic barrier function:
Overall barrier function (excluding the 1/t factor):

ϕ(x) = −
m∑

i=1
log (−fi(x)) ,

which is convex (from composition rules).
Gradient and Hessian:

∇ϕ(x) =
m∑

i=1

1
−fi(x)∇fi(x)

∇2ϕ(x) =
m∑

i=1

1
fi(x)2∇fi(x)∇fi(x)T +

m∑
i=1

1
−fi(x)∇

2fi(x).

Portfolio Optimization Optimization Algorithms 40 / 127

Central path

Central path: Defined as the curve {x⋆(t) | t > 0}, where x⋆(t) is the solution to

minimize
x

tf0(x) + ϕ(x)
subject to Ax = b,

which can be solved via Newton’s method.
Solution to the central path problem:

Ignoring equality constraints for simplicity:

t∇f0(x) +
m∑

i=1

1
−fi(x)∇fi(x) = 0.

Define λ⋆
i (t) = 1/(−tfi(x⋆(t))).

x⋆(t) minimizes the Lagrangian:

L(x; λ⋆(t)) = f0(x) +
m∑

i=1
λ⋆

i (t)fi(x).

Portfolio Optimization Optimization Algorithms 41 / 127

Central path
Convergence to optimal value: f0(x⋆(t))→ p⋆ as t →∞.

From Lagrange duality theory:
p⋆ ≥ g (λ⋆(t))

= L (x⋆(t); λ⋆(t))
= f0 (x⋆(t))−m/t.

Connection with KKT conditions:
x⋆(t) and λ⋆(t) satisfy:

fi(x) ≤ 0, i = 1, . . . , m (primal feasibility)
λi ≥ 0, i = 1, . . . , m (dual feasibility)

λi fi(x) = − 1
t , i = 1, . . . , m (approximate complementary slackness)

∇f0(x) +
m∑

i=1
λi∇fi(x) = 0. (zero Lagrangian gradient)

Difference with original KKT conditions:
Complementary slackness is approximately satisfied.
Approximation improves as t →∞.

Portfolio Optimization Optimization Algorithms 42 / 127

Central path
Example of central path of an LP:

x★
x★

x★

(10)

(0)

Portfolio Optimization Optimization Algorithms 43 / 127

Barrier method

Smooth approximation with logarithmic barrier:
Log-barrier problem is a smooth approximation of the original problem.
Approximation improves as t →∞.

Challenges with choosing t:
Large t:

Leads to slow convergence.
Gradients and Hessians vary greatly near the boundary of the feasible set.
Newton’s method fails to reach quadratic convergence.

Small t:
Facilitates better convergence.
Approximation is not close to the original problem.

Adaptive t approach:
Change t over iterations to balance fast convergence and accurate approximation.
At each outer iteration, update t and compute x⋆(t) using Newton’s method.
Interior-point methods (IPM):

Achieve this trade-off.
For each t > 0, x⋆(t) is strictly feasible and lies in the interior of the feasible set.

Portfolio Optimization Optimization Algorithms 44 / 127

Barrier method

Barrier method:
A type of primal-based IPM.
Update rule for t:

tk+1 ← µtk , where µ > 1.
Typically, t0 = 1.

Choice of µ:
Large µ means fewer outer iterations but more inner (Newton) iterations.
Typical values: µ = 10 ∼ 20.

Termination criterion:
m/t < ϵ, guaranteeing f0(x)− p⋆ ≤ ϵ.

Refer to (S. P. Boyd and Vandenberghe 2004) for practical details.

Portfolio Optimization Optimization Algorithms 45 / 127

Barrier method

Barrier method for constrained optimization
Initialization:

Choose initial point x0 ∈ X stricly feasible, t0 > 0, µ > 1, and tolerance ϵ > 0.
Set k ← 0.

Repeat (kth iteration):
1 Centering step: compute next iterate xk+1 by solving the central path problem with

t = tk and initial point xk .
2 Increase t: tk+1 ← µtk .
3 k ← k + 1

Until: convergence (i.e., m/t < ϵ)

Portfolio Optimization Optimization Algorithms 46 / 127

Barrier method

Example: Barrier method for LP:
Consider the LP:

minimize
x

cTx
subject to Ax ≤ b.

Use the barrier method with different µ values.
Convergence analysis:

Case: m = 100 inequalities, n = 50 variables.
ϵ = 10−6 for the duality gap.
Centering problem solved via Newton’s method.

Observation:
Total number of Newton iterations is not very sensitive to µ as long as µ ≥ 10.

Portfolio Optimization Optimization Algorithms 47 / 127

Barrier method
Convergence of barrier method for an LP for different values of µ:

10000

20000

30000

0 50 100 150 200
µ

N
ew

to
n

ite
ra

tio
ns

Number of Newton iterations versus µ

Portfolio Optimization Optimization Algorithms 48 / 127

Convergence

Termination criterion:
Number of outer iterations (centering steps) required:

m
µkt0 ≤ ϵ,

Solving for k: ⌈
log

(
m/

(
ϵt0))

log(µ)

⌉
,

⌈·⌉ is the ceiling operator.
Convergence of centering steps:

Characterized via the convergence for Newton’s method.
Specific updates for µ and good initialization points for each centering step are not
considered in this simple analysis.

References for detailed convergence analysis: (Nesterov and Nemirovskii 1994;
Nemirovski 2001; S. P. Boyd and Vandenberghe 2004; Nocedal and Wright 2006;
Nesterov 2018).

Portfolio Optimization Optimization Algorithms 49 / 127

Feasibility and phase I methods

Barrier method and strictly feasible initial point:
Requires a strictly feasible initial point x0 (such that fi

(
x0)

< 0).
If such a point is not known, a preliminary stage (phase I) is used to find it.
The barrier method itself is then called phase II.

Phase I methods:
Aim to find a feasible point for the original problem by solving the feasibility problem:

find
x

x
subject to fi(x) ≤ 0, i = 1, . . . , m

Ax = b.

Barrier method cannot be used directly for the feasibility problem as it requires a feasible
starting point.

Portfolio Optimization Optimization Algorithms 50 / 127

Feasibility and phase I methods
Formulating Phase I methods:

A simple example involves solving the convex optimization problem:
minimize

x,s
s

subject to fi(x) ≤ s, i = 1, . . . , m
Ax = b.

Constructing a strictly feasible point:
Choose any x that satisfies the equality constraints.
Choose s such that s > fi (x), e.g., s = 1.1×maxi{fi (x)}.
This provides an initial strictly feasible point for the Phase I problem.

Solving the Phase I problem:
Obtain (x⋆, s⋆).
If s⋆ < 0:

x⋆ is a strictly feasible point.
Can be used in the barrier method to solve the original problem.

If s⋆ > 0:
No feasible point exists.
No need to attempt solving original problem as it is infeasible.

Portfolio Optimization Optimization Algorithms 51 / 127

Primal-dual interior-point methods
Primal barrier method:

Requires a strictly feasible initial point.
Involves distinct inner and outer iterations.

Primal-dual IPMs:
More efficient, especially for high accuracy.
Exhibit superlinear asymptotic convergence.
Key features:

Update both primal and dual variables at each iteration.
No distinction between inner and outer iterations.
Can start at infeasible points, eliminating the need for phase I methods.

Advantages:
Efficiency: Better for high accuracy.
Convergence: Superlinear asymptotic convergence.
Initialization: Can start from infeasible points, simplifying the process.

Summary:
Primal-dual IPMs offer significant advantages over the primal barrier method in terms of
efficiency, convergence, and ease of initialization.

Portfolio Optimization Optimization Algorithms 52 / 127

Outline
1 Solvers

2 Gradient methods

3 Interior-point methods (IPM)

4 Fractional programming (FP) methods

5 BCD

6 MM

7 SCA

8 ADMM

9 Numerical comparison

10 Summary

Fractional programming (FP) methods

Concave-convex fractional program (FP):

maximize
x

f (x)
g(x)

subject to x ∈ X ,

Properties:
f (x) is a concave function
g(x) > 0 is a convex function
X is a convex feasible set

Nature of FPs:
Nonconvex problems, generally difficult to solve
Concave-convex FP is a quasiconvex optimization problem, making it more tractable

Methods to solve concave-convex FP:
Iterative bisection method
Dinkelbach method
Schaible transform

Portfolio Optimization Optimization Algorithms 54 / 127

FP: Bisection method

Problem reformulation:
Solve a sequence of convex feasibility problems:

find
x

x
subject to tg(x) ≤ f (x)

x ∈ X

t > 0 is a fixed parameter, not an optimization variable
Goal:

Find the optimal value of t for the original problem
Procedure:

If the feasibility problem is infeasible, t is too large and must be decreased
If feasible, t is too small and can be increased

Portfolio Optimization Optimization Algorithms 55 / 127

FP: Bisection method

Starts with an interval [l , u] known to contain the optimal value p⋆ and sequentially
halves the interval.
The length of the interval after k iterations is 2−k(u − l).
Number of iterations required to achieve a tolerance of ϵ is ⌈log2((u − l)/ϵ)⌉.

Bisection method (aka “sandwich technique”) for concave-convex FP
Initialization:

Initialize l and u such that p⋆ ∈ [l , u].
Repeat while (u − l) > ϵ:

Compute midpoint of interval: t = (l + u)/2.
Solve the convex feasibility problem for t.
If feasible, set u = t; otherwise set l = t.

Portfolio Optimization Optimization Algorithms 56 / 127

FP: Dinkelbach method

Dinkelbach transform:
Objective: Reformulate the original concave-convex FP into a sequence of simpler
convex problems
Reformulated problem:

maximize
x

f (x)− ykg(x)
subject to x ∈ X

Parameter update: yk = f (xk)
g(xk) with k as the iteration index

Convergence:
The Dinkelbach method converges to the global optimum of the original concave-convex
FP
Key properties:

Increasing sequence {y k}
Function F (y) = arg maxx{f (x)− yg(x)}

Portfolio Optimization Optimization Algorithms 57 / 127

FP: Dinkelbach method

Transforms a nonconvex problem into a sequence of convex problems
Ensures global optimality through iterative updates

Dinkelback method for concave-convex FP
Initialization:

Choose initial point x0.
Set k ← 0.

Repeat (kth iteration):
1 Set yk = f (xk)/g(xk).
2 Solve the reformulated convex problem and keep current solution as xk+1.
3 k ← k + 1

Until: convergence

Portfolio Optimization Optimization Algorithms 58 / 127

FP: Charnes-Cooper transform
Linear fractional program (LFP):

minimize
x

cTx + d
eTx + f

subject to Gx ≤ h
Ax = b

with dom f0 =
{

x | eTx + f > 0
}

.

Charnes-Cooper transform: Transforms original LFP into a linear program (LP):
minimize

y ,t
cTy + dt

subject to Gy ≤ ht
Ay = bt
eTy + ft = 1
t ≥ 0

where y = x
eTx+f and t = 1

eTx+f .
Portfolio Optimization Optimization Algorithms 59 / 127

FP: Charnes-Cooper transform

Proof:

Any feasible point x in the original LFP leads to a feasible point (y , t) in the LP with
the same objective value.
Conversely, any feasible point (y , t) in the LP leads to a feasible point x in the original
LFP via x = y/t, also with the same objective value:

cTy + dt
1 = cTy + dt

eTy + ft = cTy/t + d
eTy/t + f = cTx + d

eTx + f .

Portfolio Optimization Optimization Algorithms 60 / 127

FP: Schaible transform

Concave-convex fractional program (FP):

maximize
x

f (x)
g(x)

subject to x ∈ X

Schaible transform: Rewrites the original concave-convex FP into a convex problem:

maximize
y ,t

tf
(y

t

)
subject to tg

(y
t

)
≤ 1

t ≥ 0
y/t ∈ X

where y = x
g(x) and t = 1

g(x) .

Portfolio Optimization Optimization Algorithms 61 / 127

FP: Schaible transform

Proof:

Any feasible point x in the original FP leads to a feasible point (y , t) in the convex
problem with the same objective value.
Conversely, any feasible point (y , t) in the convex problem leads to a feasible point x
in the original FP via x = y/t, also with the same objective value:

tf
(y

t

)
= f (x)

g (x) .

Portfolio Optimization Optimization Algorithms 62 / 127

Outline
1 Solvers

2 Gradient methods

3 Interior-point methods (IPM)

4 Fractional programming (FP) methods

5 BCD

6 MM

7 SCA

8 ADMM

9 Numerical comparison

10 Summary

BCD

Block-coordinate descent (BCD) method:
Also known as: Gauss-Seidel method, alternate minimization method
Objective: Solve a difficult optimization problem by solving a sequence of simpler
subproblems

Problem formulation:
minimize

x
f (x1, . . . , xn)

subject to x i ∈ Xi , i = 1, . . . , n,

where f is the (possibly nonconvex) objective function and each Xi is a convex set.
Partitioning: Variable x is partitioned into n blocks x = (x1, . . . , xn)

Method description:
Iterative process: Produces a sequence of iterates x0, x1, x2, . . . that converge to x⋆

Update rule: Optimize the problem with respect to each block x i sequentially
Inner iterations: At each outer iteration k, execute n inner iterations sequentially:

xk+1
i = arg min

x i ∈Xi

f
(
xk+1

1 , . . . , xk+1
i−1 , x i , xk

i+1, . . . , xk
n
)

, i = 1, . . . , n

Portfolio Optimization Optimization Algorithms 64 / 127

BCD

Utility: Derive simple and practical algorithms.
References: (Bertsekas 1999; Bertsekas and Tsitsiklis 1997; Beck 2017)

BCD for separable problems
Initialization:

Choose initial point x0 =
(
x0

1, . . . , x0
n
)
∈ X1 × · · · × Xn.

Set k ← 0.
Repeat (kth iteration):

1 Execute n inner iterations sequentially:

xk+1
i = arg min

x i ∈Xi

f
(
xk+1

1 , . . . , xk+1
i−1 , x i , xk

i+1, . . . , xk
n

)
, i = 1, . . . , n.

2 k ← k + 1
Until: convergence

Portfolio Optimization Optimization Algorithms 65 / 127

BCD: Convergence

BCD enjoys monotonicity, i.e., f
(
xk+1

)
≤ f

(
xk

)
Assumptions:

f is continuously differentiable over the convex closed set X = X1 × · · · × Xn
f is blockwise strictly convex in each block variable x i

Convergence: Every limit point of the sequence {xk} is a stationary point of the
original problem.

References: (Bertsekas 1999; Bertsekas and Tsitsiklis 1997; Grippo and Sciandrone
2000)

Portfolio Optimization Optimization Algorithms 66 / 127

BCD: Parallel updates

Parallel update (Jacobi method):
Objective: Execute n inner iterations in parallel instead of sequentially
Update rule:

xk+1
i = arg min

x i ∈Xi

f
(
xk

1 , . . . , xk
i−1, x i , xk

i+1, . . . , xk
n
)

, i = 1, . . . , n

Jacobi method:
Description: Parallel update of block variables
Algorithmic attractiveness: Potentially faster due to parallel execution

Convergence properties:
Issue: Jacobi method does not enjoy nice convergence properties
Condition for convergence: Convergence is guaranteed if the mapping defined by
T (x) = x − γ∇f (x) is a contraction for some γ
Reference: (Bertsekas 1999)

Portfolio Optimization Optimization Algorithms 67 / 127

BCD example: Soft-thresholding operator

Univariate convex optimization problem:

minimize
x

1
2∥ax − b∥22 + λ|x |

Solution:
x = 1

∥a∥22
sign

(
aTb

) (
|aTb| − λ

)+

Sign function:

sign(u) =

 +1 u > 0
0 u = 0
−1 u < 0

Positive part function: (·)+ = max(0, ·)

Portfolio Optimization Optimization Algorithms 68 / 127

BCD example: Soft-thresholding operator

Compact form:
x = 1

∥a∥22
Sλ

(
aTb

)
Soft-thresholding operator:

Sλ(u) = sign(u)(|u| − λ)+

−1

0

1

−2 −λ 0 λ 2

u

Portfolio Optimization Optimization Algorithms 69 / 127

BCD example: ℓ2 − ℓ1-norm minimization
Problem formulation:

minimize
x

1
2∥Ax − b∥22 + λ∥x∥1

Solution approach:
Standard method: Can be solved with a QP solver
Iterative algorithm via BCD: via soft-thresholding operator (Zibulevsky and Elad 2010)

BCD method:
Variable partitioning: Divide the variable into each constituent element x = (x1, . . . , xn)
Sequence of problems at each iteration k = 0, 1, 2, . . . for each element i = 1, . . . , n:

minimize
xi

1
2

∥∥∥aixi − b̃k
i

∥∥∥2

2
+ λ|xi |

where b̃k
i ≜ b −

∑
j<i ajxk+1

j −
∑

j>i ajxk
j .

Iterative algorithm: For k = 0, 1, 2, . . .:

xk+1
i = 1

∥ai∥22
Sλ

(
aT

i b̃k
i

)
, i = 1, . . . , n

Portfolio Optimization Optimization Algorithms 70 / 127

BCD example: ℓ2 − ℓ1-norm minimization
Convergence of BCD for the ℓ2 − ℓ1-norm minimization:

10−6

10−4

10−2

100

102

0 10 20 30
k (outer iterations)

ga
p

Optimality gap versus iterations

Portfolio Optimization Optimization Algorithms 71 / 127

Outline
1 Solvers

2 Gradient methods

3 Interior-point methods (IPM)

4 Fractional programming (FP) methods

5 BCD

6 MM

7 SCA

8 ADMM

9 Numerical comparison

10 Summary

MM

Majorization-minimization (MM) method:
Objective: Approximate a difficult optimization problem by a sequence of simpler
problems.
References:

Concise tutorial: (Hunter and Lange 2004)
Long tutorial with applications: (Sun, Babu, and Palomar 2017)
Convergence analysis: (Razaviyayn, Hong, and Luo 2013)

Original problem:
minimize

x
f (x)

subject to x ∈ X

where
f is the (possibly nonconvex) objective function
X is a (possibly nonconvex) set.

Portfolio Optimization Optimization Algorithms 73 / 127

MM

MM method:
Iterative process: Produces a sequence of iterates x0, x1, x2, . . . that converge to x⋆.
Surrogate function: At iteration k, approximate f (x) by a surrogate function u

(
x; xk)

around the current point xk .
Sequence of problems:

xk+1 = arg min
x∈X

u
(
x; xk)

k = 0, 1, 2, . . .

Portfolio Optimization Optimization Algorithms 74 / 127

MM

Illustration of sequence of surrogate problems in MM:

u(;)

x k

x k

x

x

k+1 x k+2

xf()

u(;)x k+1x

Portfolio Optimization Optimization Algorithms 75 / 127

MM: Convergence

Conditions for surrogate function u
(
x; xk

)
:

Upper-bound property: u
(
x; xk)

≥ f (x)
Touching property: u

(
xk ; xk)

= f
(
xk)

Tangent property: u
(
x; xk)

must be differentiable with ∇u
(
x; xk)

= ∇f (x)
Consequences:

Monotonicity: f
(
xk+1)

≤ f
(
xk)

Convergence: If X is convex, every limit point of the sequence {xk} is a stationary
point of the original problem

Majorizer construction:
Objective: Find an appropriate majorizer u

(
x; xk)

that satisfies the technical conditions
and leads to a simpler surrogate problem
Techniques and examples: Refer to (Sun, Babu, and Palomar 2017)

Portfolio Optimization Optimization Algorithms 76 / 127

MM

MM algorithm
Initialization:

Choose initial point x0 ∈ X .
Set k ← 0.

Repeat (kth iteration):
1 Construct majorizer of f (x) around current point xk as u

(
x; xk

)
.

2 Obtain next iterate by solving the majorized problem:

xk+1 = arg min
x∈X

u
(
x; xk

)
.

3 k ← k + 1
Until: convergence

Portfolio Optimization Optimization Algorithms 77 / 127

MM: Convergence

Versatility of MM framework:
Objective: Derive practical algorithms
Theoretical guarantees: Convergence properties are well-established

Assumptions:
Majorizer u

(
x; xk)

satisfies the technical conditions.
Feasible set X is convex.

Convergence: Every limit point of the sequence {xk} is a stationary point of the
original problem
Nonconvex feasible set X :

Convergence must be studied on a case-by-case basis.
Examples: (Song, Babu, and Palomar 2015; Sun, Babu, and Palomar 2017; Kumar et al.
2019, 2020).

Portfolio Optimization Optimization Algorithms 78 / 127

MM: Acceleration techniques

MM convergence speed:
Issue: MM may require many iterations to converge if the surrogate function u

(
x; xk)

is
not tight enough.
Reason: Strict global upper-bound requirement.

Acceleration techniques:
Objective: Improve convergence speed.
Popular technique: SQUAREM (Squared Iterative Methods for Accelerating EM-like
Monotone Algorithms) (Varadhan and Roland 2008).

Portfolio Optimization Optimization Algorithms 79 / 127

MM example: Nonnegative LS

Problem formulation:
minimize

x≥0
1
2 ∥Ax − b∥22

where the parameters are
b ∈ Rm

+ (nonnegative elements)
A ∈ Rm×n

++ (positive elements).
Conventional LS solution:

Not applicable due to nonnegativity constraints: x⋆ = (ATA)−1ATb.
Alternative approach:

Use a QP solver: Standard method.
Develop an iterative algorithm based on MM: More interesting approach.

Portfolio Optimization Optimization Algorithms 80 / 127

MM example: Nonnegative LS

Objective function: f (x) = 1
2 ∥Ax − b∥22

Majorizer:

u
(
x; xk

)
= f

(
xk

)
+∇f

(
xk

)T (
x − xk

)
+ 1

2
(
x − xk

)T
Φ

(
xk

) (
x − xk

)
Gradient: ∇f

(
xk)

= ATAxk − ATb

Matrix Φ: Φ
(
xk)

= Diag
(

[ATAxk]1
xk

1
, . . . ,

[ATAxk]n
xk

n

)
Verification of majorizer properties:

Upper-bound property: u
(
x; xk)

≥ f (x) (proved using Jensen’s inequality)
Touching property: u

(
xk ; xk)

= f
(
xk)

Tangent property: ∇u
(
xk ; xk)

= ∇f
(
xk)

Portfolio Optimization Optimization Algorithms 81 / 127

MM example: Nonnegative LS

Sequence of majorized problems:

minimize
x≥0

∇f
(
xk

)T
x + 1

2

(
x − xk

)T
Φ

(
xk

) (
x − xk

)
Solution: x = xk −Φ

(
xk)−1∇f

(
xk)

Iterative update:
xk+1 = ck ⊙ xk , k = 0, 1, 2, . . .

where ck
i = [ATb]i

[ATAxk]i
and ⊙ denotes elementwise product.

Portfolio Optimization Optimization Algorithms 82 / 127

MM example: Nonnegative LS
Convergence of MM for the nonnegative LS:

10−2

10−1

100

101

102

103

0 50 100 150 200
k

ga
p

Optimality gap vs iterations

Portfolio Optimization Optimization Algorithms 83 / 127

Block MM: Combining BCD and MM

Objective: Address situations where both the original problem and direct application
of MM are too difficult to solve.
Approach: Combine Block-Coordinate Descent (BCD) and Majorization-Minimization
(MM).
Original problem:

minimize
x

f (x1, . . . , xn)
subject to x i ∈ Xi , i = 1, . . . , n

Partitioning: Variables are partitioned into n blocks x = (x1, . . . , xn).
Constraints: Each block x i is separately constrained.

Idea: Solve the problem block by block as in BCD, but majorize each block f (x i) with
a surrogate function u

(
x i ; xk)

.
References: (Razaviyayn, Hong, and Luo 2013) (Sun, Babu, and Palomar 2017).

Portfolio Optimization Optimization Algorithms 84 / 127

Block MM Procedure

1 Initialization: Start with an initial guess x0 = (x0
1, . . . , x0

n)
2 Iterative process: For each outer iteration k = 0, 1, 2, . . .

For each block i = 1, . . . , n:
Majorize: Construct a surrogate function u

(
x i ; xk)

for the block f (x i)
Update: Solve the majorized problem for the block:

xk+1
i = arg min

x i ∈Xi

u
(
x i ; xk)

Update the full variable: xk+1 = (xk+1
1 , . . . , xk+1

n)

Portfolio Optimization Optimization Algorithms 85 / 127

Outline
1 Solvers

2 Gradient methods

3 Interior-point methods (IPM)

4 Fractional programming (FP) methods

5 BCD

6 MM

7 SCA

8 ADMM

9 Numerical comparison

10 Summary

SCA

Successive convex approximation (SCA) method:
Approximates a difficult optimization problem by a sequence of simpler convex problems.
Produces a sequence of iterates x0, x1, x2, . . . that converge to x⋆.

Problem formulation:
minimize

x
f (x)

subject to x ∈ X ,

where
f is a (possibly nonconvex) objective function
X is a convex set (nonconvex sets can be accommodated with more complexity).

Portfolio Optimization Optimization Algorithms 87 / 127

SCA

Iteration process:
At iteration k, approximate f (x) by a surrogate function f̃

(
x; xk)

around xk .
Solve the sequence of simpler problems:

xk+1 = arg min
x∈X

f̃
(
x; xk)

, k = 0, 1, 2, . . .

Introduce a smoothing step to avoid oscillations:

x̂k+1 = arg min
x∈X

f̃
(
x; xk)

xk+1 = xk + γk
(

x̂k+1 − xk
) k = 0, 1, 2, . . . ,

{γk} is a sequence with γk ∈ (0, 1].

Portfolio Optimization Optimization Algorithms 88 / 127

SCA

Illustration of sequence of surrogate problems in SCA:

f(;)

x k

x k

x

x

k+1 x k+2

xf()

~

~
f(;)x k+1x

Portfolio Optimization Optimization Algorithms 89 / 127

SCA: Convergence
Conditions for surrogate function f̃

(
x; xk

)
:

Must be strongly convex on the feasible set X .
Must be differentiable with ∇f̃

(
x; xk)

= ∇f (x).
Stepsize rules for {γk}:

Bounded stepsize: γk values are sufficiently small (difficult to use in practice).
Backtracking line search: Effective in terms of iterations but costly.
Diminishing stepsize: Practical choice satisfying

∑∞
k=1 γk = +∞ and

∑∞
k=1(γk)2 < +∞.

Example 1: γk+1 = γk (
1− ϵγk)

, γ0 < 1/ϵ, ϵ ∈ (0, 1).
Example 2: γk+1 = γk +αk

1+βk , γ0 = 1, αk and βk satisfy 0 ≤ αk ≤ βk and αk/βk → 0.

Examples of αk and βk :
αk = α or αk = log(k)α.
βk = βk or βk = β

√
k.

Constants α ∈ (0, 1), β ∈ (0, 1), and α ≤ β.
Advantages of SCA:

Surrogate function is convex by construction.
Easier to construct a convex surrogate function compared to MM.

Portfolio Optimization Optimization Algorithms 90 / 127

SCA
SCA algorithm
Initialization:

Choose initial point x0 ∈ X , sequence {γk}, and set k ← 0.
Repeat (kth iteration):

1 Construct surrogate of f (x) around current point xk as f̃
(
x; xk

)
.

2 Obtain intermediate point by solving the surrogate convex problem:

x̂k+1 = arg min
x∈X

f̃
(
x; xk

)
.

3 Obtain next iterate by averaging the intermediate point with the previous one:

xk+1 = xk + γk
(
x̂k+1 − xk

)
.

4 k ← k + 1
Until: convergence

Portfolio Optimization Optimization Algorithms 91 / 127

Gradient descent method as SCA
Unconstrained problem:

minimize
x

f (x).
SCA with surrogate function:

Surrogate function:

f̃
(
x; xk)

= f
(
xk)

+∇f
(
xk)T (

x − xk)
+ 1

2αk ∥x − xk∥2

Minimizing the surrogate function:
Set the gradient of f̃

(
x; xk)

to zero:

∇f̃
(
x; xk)

= ∇f
(
xk)

+ 1
αk (x − xk) = 0

Solve for x:
x = xk − αk∇f

(
xk)

Iteration process:
Update rule coincides with the gradient descent method:

xk+1 = xk − αk∇f
(
xk)

, k = 0, 1, 2, . . .
Portfolio Optimization Optimization Algorithms 92 / 127

Newton method as SCA

Including second-order information:
Surrogate function with Hessian:

f̃
(
x; xk)

= f
(
xk)

+∇f
(
xk)T (

x − xk)
+ 1

2αk
(
x − xk)T∇2f

(
xk) (

x − xk)
Minimizing the surrogate function:

Set the gradient of f̃
(
x; xk)

to zero:

∇f̃
(
x; xk)

= ∇f
(
xk)

+ 1
αk∇

2f
(
xk)

(x − xk) = 0

Solve for x:
x = xk − αk∇2f

(
xk)−1∇f

(
xk)

Iteration process:
Update rule coincides with Newton’s method:

xk+1 = xk − αk∇2f
(
xk)−1∇f

(
xk)

, k = 0, 1, 2, . . .

Portfolio Optimization Optimization Algorithms 93 / 127

Parallel SCA
Partitioned variables in SCA:

minimize
x

f (x1, . . . , xn)
subject to x i ∈ Xi , i = 1, . . . , n.

where variables are partitioned into n separate blocks: x = (x1, . . . , xn).
Parallel updates in SCA:

Unlike BCD or MM, SCA updates variables in parallel with surrogate functions f̃i
(
x i ; xk)

.
Update process for each block i :

x̂k+1
i = arg min

x i ∈Xi

f̃i
(
x i ; xk)

xk+1
i = xk

i + γk
(

x̂k+1
i − xk

i

) i = 1, . . . , n, k = 0, 1, 2, . . .

where {γk} is a properly designed sequence with γk ∈ (0, 1].
Advantages of parallel updates:

Efficiently handles large-scale problems by updating multiple variables simultaneously.
Reduces computational time compared to sequential updates in BCD or block MM.

Portfolio Optimization Optimization Algorithms 94 / 127

SCA: Convergence

Technical conditions for surrogate function:
Must be strongly convex on the feasible set X .
Must be differentiable with ∇f̃

(
x; xk)

= ∇f (x).
Stepsize rules for {γk}:

Bounded stepsize: γk values are sufficiently small.
Backtracking line search: Effective but requires multiple evaluations per iteration.
Diminishing stepsize: Practical choice satisfying

∑∞
k=1 γk = +∞ and

∑∞
k=1(γk)2 < +∞.

Theoretical convergence:
SCA enjoys strong theoretical convergence properties.
Convergence results are detailed in (Scutari et al. 2014).

Convergence of SCA:
Suppose the surrogate function f̃

(
x; xk)

(or each f̃i
(
x i ; xk)

in the parallel version)
satisfies the required technical conditions.
If {γk} is chosen according to the bounded stepsize, diminishing rule, or backtracking line
search, then the sequence {xk} converges to a stationary point of the original problem.

Portfolio Optimization Optimization Algorithms 95 / 127

SCA example: ℓ2 − ℓ1-norm minimization
ℓ2 − ℓ1-norm minimization problem:

minimize
x

1
2∥Ax − b∥22 + λ∥x∥1.

Solution methods:
Can be solved via BCD, MM, or a QP solver.
We will develop an iterative algorithm based on SCA.

Parallel SCA for ℓ2 − ℓ1-norm minimization:
Partition variable x into elements (x1, . . . , xn).
Surrogate functions:

f̃
(
x i ; xk)

= 1
2

∥∥∥aixi − b̃k
i

∥∥∥2

2
+ λ|xi |+

τ

2
(
xi − xk

i
)2

,

where b̃k
i = b −

∑
j ̸=i ajxk

j .
Sequence of surrogate problems: For k = 0, 1, 2, . . . and i = 1, . . . , n:

minimize
x

1
2

∥∥∥aixi − b̃k
i

∥∥∥2

2
+ λ|xi |+ τ

(
xi − xk

i

)2

Portfolio Optimization Optimization Algorithms 96 / 127

SCA example: ℓ2 − ℓ1-norm minimization

SCA iterative algorithm:
Update rule:

x̂k+1
i = 1

τ + ∥ai∥2Sλ

(
aT

i b̃k
i + τxk

i

)
xk+1

i = xk
i + γk (

x̂k+1
i − xk

i
) i = 1, . . . , n, k = 0, 1, 2, . . .

Sλ(·) is the soft-thresholding operator:

Sλ(z) = sign(z) max(|z | − λ, 0)

Portfolio Optimization Optimization Algorithms 97 / 127

SCA example: ℓ2 − ℓ1-norm minimization
Convergence of SCA for the ℓ2 − ℓ1-norm minimization:

10−6

10−4

10−2

100

102

0 10 20 30 40 50
k

ga
p

Optimality gap vs iterations

Portfolio Optimization Optimization Algorithms 98 / 127

SCA example: Dictionary learning
Dictionary learning problem:

minimize
D,X

1
2∥Y −DX∥2F + λ∥X∥1

subject to ∥[D]:,i∥ ≤ 1, i = 1, . . . , m.

∥D∥F : Frobenius norm of D
∥X∥1: elementwise ℓ1-norm of X

Matrix definitions:
D: dictionary matrix (fat matrix with columns explaining the columns of Y)
X : sparse matrix selecting a few columns of the dictionary

Bi-convex nature:
Problem is not jointly convex in (D, X), but it is bi-convex.
For fixed D, the problem is convex in X .
For fixed X , the problem is convex in D.

Solution methods:
BCD: updates D and X sequentially.
SCA: allows parallel updates of D and X .

Portfolio Optimization Optimization Algorithms 99 / 127

SCA example: Dictionary learning

SCA approach:
Surrogate functions:

f̃1
(

D; Xk
)

= 1
2∥Y −DXk∥2

F

f̃2
(

X ; Dk
)

= 1
2∥Y −DkX∥2

F

Resulting convex problems:
Normalized least squares (LS) problem:

minimize
D

1
2∥Y −DXk∥2

F

subject to ∥[D]:,i∥ ≤ 1, i = 1, . . . , m

Matrix version of the ℓ2 − ℓ1-norm problem:

minimize
X

1
2∥Y −DkX∥2

F + λ∥X∥1

which can be further decomposed into a set of vectorized ℓ2 − ℓ1-norm problems for each
column of X .

Portfolio Optimization Optimization Algorithms 100 / 127

MM versus SCA

Surrogate function:
MM (Majorization-Minimization):

Requires the surrogate function to be a global upper bound.
The surrogate function need not be convex.
Can be difficult to derive and too restrictive in some cases.

SCA (Successive Convex Approximation):
Relaxes the upper-bound condition.
Requires the surrogate function to be strongly convex.

MM SCA

Portfolio Optimization Optimization Algorithms 101 / 127

MM versus SCA

Constraint set: In principle, both require the feasible set X to be convex.
MM:

Convergence can be extended to nonconvex X on a case-by-case basis.
Examples of nonconvex X handled by MM: (Song, Babu, and Palomar 2015; Sun, Babu,
and Palomar 2017; Kumar et al. 2019, 2020).

SCA:
Cannot directly handle nonconvex X .
Some extensions allow for successive convexification of X , but at the expense of a more
complex algorithm (Scutari and Sun 2018).

Schedule of updates: Both can handle separable variables x = (x1, . . . , xn).
MM:

Requires a sequential update for block variables (Razaviyayn, Hong, and Luo 2013; Sun,
Babu, and Palomar 2017).

SCA:
Naturally implements a parallel update, which is more amenable for distributed
implementations.

Portfolio Optimization Optimization Algorithms 102 / 127

Outline
1 Solvers

2 Gradient methods

3 Interior-point methods (IPM)

4 Fractional programming (FP) methods

5 BCD

6 MM

7 SCA

8 ADMM

9 Numerical comparison

10 Summary

ADMM

Alternating Direction Method of Multipliers (ADMM):
Practical algorithm resembling BCD but can handle coupled block variables in constraints.
Detailed in (S. Boyd et al. 2010) and (Beck 2017).

Convex optimization problem:

minimize
x,z

f (x) + g(z)
subject to Ax + Bz = c,

Observe that the variables x and z are coupled via the constraint Ax + Bz = c.

Portfolio Optimization Optimization Algorithms 104 / 127

First Attempt: Dual ascent method
First attempt to decouple the variables.

Dual ascent method:

Updates dual variable y via gradient method.
Solves Lagrangian for given y :

minimize
x,z

L(x, z; y) ≜ f (x) + g(z) + yT (Ax + Bz − c)

Decouples into two separate problems over x and z:

xk+1 = arg min
x

f (x) + (yk)TAx

zk+1 = arg min
z

g(z) + (yk)TBz

yk+1 = yk + αk
(
Axk+1 + Bzk+1 − c

) k = 0, 1, 2, . . .

Requires many technical assumptions and is often slow.
Portfolio Optimization Optimization Algorithms 105 / 127

Second Attempt: Method of multipliers

Second attempt to decouple the variables.

Method of multipliers:

Uses augmented Lagrangian:

Lρ(x, z; y) ≜ f (x) + g(z) + yT (Ax + Bz − c) + ρ

2∥Ax + Bz − c∥22

Algorithm:(
xk+1, zk+1

)
= arg min

x,z
Lρ(x, z; yk)

yk+1 = yk + ρ
(
Axk+1 + Bzk+1 − c

) k = 0, 1, 2, . . .

Converges under more relaxed conditions but cannot decouple x and z due to
∥Ax + Bz − c∥22 term.

Portfolio Optimization Optimization Algorithms 106 / 127

Third Attempt: ADMM
Third an final attempt to decouple the variables.

ADMM:

Combines features of dual decomposition and method of multipliers.
Minimizes augmented Lagrangian with BCD method:

xk+1 = arg min
x

Lρ(x, zk ; yk)

zk+1 = arg min
z

Lρ(xk+1, z; yk)

yk+1 = yk + ρ
(
Axk+1 + Bzk+1 − c

) k = 0, 1, 2, . . .

Successfully decouples primal variables x and z.
Faster convergence with fewer technical conditions.
Common to express ADMM updates using scaled dual variable uk = yk/ρ as in the
next algorithm.

Portfolio Optimization Optimization Algorithms 107 / 127

ADMM
ADMM algorithm
Initialization:

Choose initial point
(
x0, z0)

, ρ, and set k ← 0.
Repeat (kth iteration):

1 Iterate primal and dual variables:

xk+1 = arg min
x

f (x) + ρ

2

∥∥∥Ax + Bzk − c + uk
∥∥∥2

2

zk+1 = arg min
z

g(z) + ρ

2

∥∥∥Axk+1 + Bz − c + uk
∥∥∥2

2

uk+1 = uk +
(
Axk+1 + Bzk+1 − c

)
;

2 k ← k + 1
Until: convergence

Portfolio Optimization Optimization Algorithms 108 / 127

ADMM: Convergence
Assumptions:

f (x) and g(z) are convex.
Both the x-update and the z-update are solvable.
The Lagrangian has a saddle point.

Convergence of ADMM:
Residual convergence: Axk + Bzk − c → 0 as k →∞

Iterates approach feasibility.
Objective convergence: f (x) + g(z)→ p⋆ as k →∞

Objective function of the iterates approaches the optimal value.
Dual variable convergence: yk → y⋆ as k →∞
Detailed analysis in (S. Boyd et al. 2010) and references therein.

Practical considerations:
{xk} and {zk} need not converge to optimal values without additional assumptions.
ADMM can be slow to converge to high accuracy.
Often converges to modest accuracy within a few tens of iterations, which is sufficient for
many practical applications.
Different from the fast convergence of Newton’s method.

Portfolio Optimization Optimization Algorithms 109 / 127

ADMM example: Constrained convex optimization

Generic convex optimization problem:

minimize
x

f (x)
subject to x ∈ X ,

where f is convex and X is a convex set.
Using ADMM to transform the problem:

Define g as the indicator function of the feasible set X :

g(x) ≜
{

0 x ∈ X
+∞ otherwise,

Formulate the equivalent problem:

minimize
x,z

f (x) + g(z)
subject to x − z = 0.

Portfolio Optimization Optimization Algorithms 110 / 127

ADMM example: Constrained convex optimization

ADMM algorithm for the transformed problem:
Update rules:

xk+1 = arg min
x

f (x) + ρ

2
∥∥x − zk + uk∥∥2

2

zk+1 =
[
xk+1 + uk]

X

uk+1 = uk +
(
xk+1 − zk+1) k = 0, 1, 2, . . .

[·]X denotes projection on the set X .
Explanation of steps:

x-update: Minimize f (x) with a quadratic penalty term.
z-update: Project xk+1 + uk onto the set X .
u-update: Update the scaled dual variable u.

Benefits of this approach:
Transforms a constrained optimization problem into an unconstrained one.
Leverages the efficiency of ADMM for solving the problem.
Allows for the use of projection operations to handle constraints.

Portfolio Optimization Optimization Algorithms 111 / 127

ADMM example: ℓ2 − ℓ1-norm minimization

ℓ2 − ℓ1-norm minimization problem:

minimize
x

1
2∥Ax − b∥22 + λ∥x∥1.

Reformulated problem for ADMM:

minimize
x,z

1
2∥Ax − b∥22 + λ∥z∥1

subject to x − z = 0.

Portfolio Optimization Optimization Algorithms 112 / 127

ADMM example: ℓ2 − ℓ1-norm minimization

ADMM algorithm:
x-update:

Given z and scaled dual variable u, solve:

minimize
x

1
2∥Ax − b∥2

2 + ρ
2 ∥x − z + u∥2

2

Solution:
x =

(
ATA + ρI

)−1 (
ATb + ρ(z − u)

)
z-update:

Given x and u, solve:
minimize

z
ρ
2 ∥x − z + u∥2

2 + λ∥z∥1

Solution using the soft-thresholding operator Sλ/ρ(·):

z = Sλ/ρ (x + u)

u-update:
Update the scaled dual variable:

uk+1 = uk +
(
xk+1 − zk+1)

Portfolio Optimization Optimization Algorithms 113 / 127

ADMM example: ℓ2 − ℓ1-norm minimization

ADMM iterative algorithm:
Update rules:

xk+1 =
(

ATA + ρI
)−1 (

ATb + ρ
(
zk − uk))

zk+1 = Sλ/ρ

(
xk+1 + uk)

uk+1 = uk +
(
xk+1 − zk+1) k = 0, 1, 2, . . .

where Sλ/ρ(z) is the soft-thresholding operator:

Sλ/ρ(z) = sign(z) max(|z | − λ/ρ, 0).

Portfolio Optimization Optimization Algorithms 114 / 127

ADMM example: ℓ2 − ℓ1-norm minimization
Convergence of ADMM for the ℓ2 − ℓ1-norm minimization:

10−3

10−2

10−1

100

101

102

0 25 50 75 100
k

ga
p

Optimality gap vs iterations

Portfolio Optimization Optimization Algorithms 115 / 127

Outline
1 Solvers

2 Gradient methods

3 Interior-point methods (IPM)

4 Fractional programming (FP) methods

5 BCD

6 MM

7 SCA

8 ADMM

9 Numerical comparison

10 Summary

Numerical comparison

ℓ2 − ℓ1-norm minimization problem:

minimize
x

1
2∥Ax − b∥22 + λ∥x∥1.

Iterates of various algorithms:
BCD (Gauss-Seidel) iterates:

xk+1 = S λ

diag(ATA)

xk −
AT (

Ax(k,i) − b
)

diag
(

ATA
)

 , i = 1, . . . , n, k = 0, 1, 2, . . .

x(k,i) ≜
(
x k+1

1 , . . . , x k+1
i−1 , x k

i , . . . , x k
n
)

Parallel BCD (Jacobi) iterates:

xk+1 = S λ

diag(ATA)

xk −
AT (

Axk − b
)

diag
(

ATA
)

 , i = 1, . . . , n, k = 0, 1, 2, . . .

Portfolio Optimization Optimization Algorithms 117 / 127

Numerical comparison

Iterates of various algorithms: (cont’d)
MM iterates:

xk+1 = Sλ
κ

(
xk − 1

κ
AT (

Axk − b
))

, k = 0, 1, 2, . . .

Accelerated MM iterates:

rk = R(xk) ≜ MM(xk)− xk

vk = R(MM(xk))− R(xk)
αk = −max

(
1, ∥rk∥2/∥vk∥2

)
yk = xk − αkrk

xk+1 = MM(yk)

k = 0, 1, 2, . . .

Portfolio Optimization Optimization Algorithms 118 / 127

Numerical comparison

Iterates of various algorithms: (cont’d)
SCA iterates:

x̂k+1 = S λ

τ+diag(ATA)

xk −
AT (

Axk − b
)

τ + diag
(

ATA
)


xk+1 = γk x̂k+1 +

(
1− γk)

xk

k = 0, 1, 2, . . .

ADMM iterates:

xk+1 =
(

ATA + ρI
)−1 (

ATb + ρ
(
zk − uk))

zk+1 = Sλ/ρ

(
xk+1 + uk)

uk+1 = uk +
(
xk+1 − zk+1) k = 0, 1, 2, . . .

Portfolio Optimization Optimization Algorithms 119 / 127

Numerical comparison

Comparison of methods:
BCD:

Updates each element sequentially (n = 100).
High computational cost (CPU time) due to sequential updates.

Jacobi:
Parallel version of BCD.
Not guaranteed to converge.
Similar to SCA but lacks τ and smoothing step.

MM:
Requires computing the largest eigenvalue of ATA.
Conservative upper-bound κ used for all elements.

SCA:
Uses diag

(
ATA

)
instead of a common κ.

Faster convergence due to element-specific updates.
ADMM:

Converges with lower accuracy.
Often sufficient for practical applications.

Portfolio Optimization Optimization Algorithms 120 / 127

Numerical comparison
Comparison of different iterative methods for the ℓ2 − ℓ1-norm minimization:

10−6

10−4

10−2

100

102

104

0 10 20 30 40 50
k

ga
p

Optimality gap versus iterations

10−6

10−4

10−2

100

102

104

4 6 8 10
CPU time [ms]

ga
p

Optimality gap versus CPU time

Method

BCD

MM

Acc−MM

SCA

ADMM

Portfolio Optimization Optimization Algorithms 121 / 127

Outline
1 Solvers

2 Gradient methods

3 Interior-point methods (IPM)

4 Fractional programming (FP) methods

5 BCD

6 MM

7 SCA

8 ADMM

9 Numerical comparison

10 Summary

Summary

Solvers for convex and nonconvex problems are available in all programming
languages, often used via modeling frameworks.
Solvers use methods like gradient descent, Newton’s method, and interior-point
methods, but users typically don’t need to understand these details.
Advanced users may develop custom algorithms for specific problems, requiring more
effort and knowledge, such as the Dinkelbach method or Charnes-Cooper-Schaible
transform for fractional problems.
Iterative algorithmic frameworks break complex problems into easier ones:

Bisection
Block Coordinate Descent (BCD)
Majorization-Minimization (MM)
Successive Convex Approximation (SCA)
Alternating Direction Method of Multipliers (ADMM)

Portfolio Optimization Optimization Algorithms 123 / 127

References I

Beck, A. 2017. First-Order Methods in Optimization. MOS-SIAM Series on Optimization. Society for
Industrial and Applied Mathematics (SIAM).

Bertsekas, D. P. 1999. Nonlinear Programming. Athena Scientific.

Bertsekas, D. P., and J. N. Tsitsiklis. 1997. Parallel and Distributed Computation: Numerical Methods.
Athena Scientific.

Boyd, S. P., and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press.

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2010. Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine
Learning, Now Publishers.

Fu, A., B. Narasimhan, and S. Boyd. 2020. “CVXR: An R Package for Disciplined Convex Optimization.”
Journal of Statistical Software 94 (14): 1–34.

Grant, M., and S. Boyd. 2008. “Graph Implementations for Nonsmooth Convex Programs.” In Recent
Advances in Learning and Control, edited by V. Blondel, S. Boyd, and H. Kimura, 95–110. Lecture
Notes in Control and Information Sciences. Springer-Verlag.

Portfolio Optimization Optimization Algorithms 124 / 127

References II
———. 2014. CVX: Matlab Software for Disciplined Convex Programming. http://cvxr.com/cvx.

Grippo, L., and M. Sciandrone. 2000. “On the Convergence of the Block Nonlinear Gauss–Seidel Method
Under Convex Constraints.” Operations Research Letters 26 (3): 127–36.

Hunter, D. R., and K. Lange. 2004. “A Tutorial on MM Algorithms.” The American Statistician 58: 30–37.

Kumar, S., J. Ying, J. V. M. Cardoso, and D. P. Palomar. 2019. “Structured Graph Learning via Laplacian
Spectral Constraints.” In Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS). Vancouver, Canada.

———. 2020. “A Unified Framework for Structured Graph Learning via Spectral Constraints.” Journal of
Machine Learning Research (JMLR), 1–60.

Löfberg, J. 2004. “YALMIP: A Toolbox for Modeling and Optimization in MATLAB.” In Proceedings of the
CACSD Conference. Taipei, Taiwan.

Nemirovski, A. 2001. “Lectures on Modern Convex Optimization.” In Society for Industrial and Applied
Mathematics (SIAM).

Nesterov, Y. 2018. Lectures on Convex Optimization. 2nd ed. Springer.

Portfolio Optimization Optimization Algorithms 125 / 127

http://cvxr.com/cvx

References III

Nesterov, Y., and A. Nemirovskii. 1994. Interior-Point Polynomial Algorithms in Convex Programming.
Philadelphia, PA: SIAM.

Nocedal, J., and S. J. Wright. 2006. Numerical Optimization. Springer Verlag.

Palomar, D. P. 2024. Portfolio Optimization: Theory and Application. Cambridge University Press.

Razaviyayn, M., M. Hong, and Z. Luo. 2013. “A Unified Convergence Analysis of Block Successive
Minimization Methods for Nonsmooth Optimization.” SIAM Journal on Optimization 23 (2): 1126–53.

Scutari, G., F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang. 2014. “Decomposition by Partial
Linearization: Parallel Optimization of Multi-Agent Systems.” IEEE Transactions on Signal Processing
62 (3): 641–56.

Scutari, G., and Y. Sun. 2018. “Parallel and Distributed Successive Convex Approximation Methods for
Big-Data Optimization.” In Multi-Agent Optimization, edited by F. Facchinei and J. S. Pang, 141–308.
Lecture Notes in Mathematics, Springer.

Song, J., P. Babu, and D. P. Palomar. 2015. “Sparse Generalized Eigenvalue Problem via Smooth
Optimization.” IEEE Transactions on Signal Processing 63 (7): 1627–42.

Portfolio Optimization Optimization Algorithms 126 / 127

References IV

Sun, Y., P. Babu, and D. P. Palomar. 2017. “Majorization-Minimization Algorithms in Signal Processing,
Communications, and Machine Learning.” IEEE Transactions on Signal Processing 65 (3): 794–816.

Varadhan, R., and C. Roland. 2008. “Simple and Globally Convergent Methods for Accelerating the
Convergence of Any EM Algorithm.” Scandinavian Journal of Statistics 35 (2): 335–53.

Zibulevsky, M., and M. Elad. 2010. “L1 - L2 Optimization in Signal and Image Processing.” IEEE Signal
Processing Magazine, May, 76–88.

Portfolio Optimization Optimization Algorithms 127 / 127

	
	Solvers
	Gradient methods
	Interior-point methods (IPM)
	Fractional programming (FP) methods
	BCD
	MM
	SCA
	ADMM
	Numerical comparison
	Summary

