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Abstract

Markowitz’s mean-variance portfolio optimizes the trade-off between expected return and
risk, typically measured by variance or volatility. However, quantifying the portfolio risk
with a single number is limiting. A more refined approach is to employ a risk profile that
quantifies the risk contribution of each constituent asset, enabling better control over
portfolio risk diversification, which will be explored in these slides (Palomar 2024, chap.
11).
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Introduction

Markowitz’s mean-variance portfolio optimization:

maximize
w

wTµ− λ
2 wTΣw

subject to w ∈ W

where λ is a risk-aversion hyper-parameter and W is the constraint set, e.g.,
W = {w | 1Tw = 1, w ≥ 0}.

Limitations of variance as risk measure:
Variance wTΣw may not yield best out-of-sample performance.
Alternative risk measures are considered for improvement.

Risk profile characterization:
Beyond a single risk number, assess risk contribution of each asset.
Enables control over portfolio risk diversification.

Risk parity portfolio:
From simple forms with closed solutions to complex nonconvex formulations.
Wide range of numerical algorithms available for implementation.
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From dollar to risk diversification

Risk parity investment approach:
Focuses on equalizing risk contribution from each asset.
Shifts from dollar allocation to risk allocation.

Concept of risk diversification:
Aims for assets to contribute equally to overall portfolio risk.
Enhances out-of-sample risk control and market downturn resistance.

Historical context:
Traditional allocations like 60/40 stock/bond portfolios dominated by equity risk.
Risk parity emerged to address risk concentration issues.

Development and popularity:
“All Weather” fund by Bridgewater Associates in 1996 initiated the practical application.
Term “risk parity” coined by Edward Qian in 2005 (Qian 2005).
Gained popularity post-2008 financial crisis.
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From dollar to risk diversification

Skepticism and debate:
Some managers question its effectiveness across all market conditions.

Academic and practitioner interest:
Significant attention and numerous publications.
Textbooks for both practical (Qian 2016) and mathematical (Roncalli 2013) perspectives.

Illustration of diversification:
1/N portfolio obtain capital allocation diversification, not risk diversification.
Risk parity portfolio aims for balanced risk contribution across assets.
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From dollar to risk diversification
Portfolio allocation and risk allocation for the 1/N portfolio and risk parity portfolio:
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Risk contributions
Risk contribution in risk parity portfolio:

Portfolio risk as sum of individual asset risk contributions:

portfolio risk =
N∑

i=1
RCi ,

RCi : risk contribution of the ith asset.

Alternative risk measures:
Volatility, value-at-risk (VaR), conditional VaR (CVaR) are common risk measures.
For detailed discussion, see (Palomar 2024, chap. 10).

Euler’s homogenous function theorem:
For positively homogeneous functions of degree one:

f (w) =
N∑

i=1
wi

∂f
∂wi

.

Applies to volatility, VaR, CVaR, but not variance.
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Risk contributions

Risk contribution definitions:
Risk Contribution (RC):

RCi = wi
∂f (w)

∂wi
.

Marginal Risk Contribution (MRC):

MRCi = ∂f (w)
∂wi

.

Relative Risk Contribution (RRC):

RRCi = RCi
f (w) ,

with
∑N

i=1 RRCi = 1.
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Volatility risk contributions
Risk contribution for volatility:

Risk Contribution (RC):

RCi = wi(Σw)i√
wTΣw

Marginal Risk Contribution (MRC):

MRCi = (Σw)i√
wTΣw

Relative Risk Contribution (RRC):

RRCi = wi(Σw)i
wTΣw

Portfolio volatility decomposition:
Portfolio volatility, σ(w) =

√
wTΣw , decomposes as:

σ(w) =
N∑

i=1
wi

∂σ

∂wi
=

N∑
i=1

wi(Σw)i√
wTΣw

Portfolio Optimization Risk Parity Portfolios 13 / 65



Outline

1 Introduction

2 From dollar to risk diversification

3 Risk contributions

4 Problem formulation

5 Naive diagonal formulation

6 Vanilla convex formulations

7 General nonconvex formulations

8 Summary



Problem formulation

Risk parity portfolio (RPP) or equal risk portfolio (ERP):
Requires equal risk contributions from all assets:

RRCi = wi(Σw)i
wTΣw = 1

N , i = 1, . . . , N.

Contrasts with the 1/N equally weighted portfolio (EWP) that equalizes dollar allocation.

Optimality under certain conditions:
If assets have similar Sharpe ratios and correlations, RPP can align with Markowitz’s
mean-variance optimization.
RPP is unique and falls between minimum variance and equally weighted portfolios.

Risk budgeting portfolio (RBP):
Allows for a specified risk profile allocation:

RRCi = wi(Σw)i
wTΣw = bi , i = 1, . . . , N,

b = (b1, . . . , bN) represents the desired risk profile, normalized to sum to 1.
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Problem formulation

Formulation of RBP:
Find w ≥ 0, with 1Tw = 1, that satisfies:

wi(Σw)i = bi wTΣw , i = 1, . . . , N.

This is a feasibility problem with constraints but no explicit objective.

Approaches to solving RBP:
Naive diagonal formulation.
Vanilla convex formulation.
General nonconvex formulation.

Practical implementation:
R package riskParityPortfolio
Python package riskparityportfolio
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Formulation with shorting
Typical RPP constraints:

No shorting allowed: w ≥ 0.
Shorting introduces complexity in resolution methods.

Shorting pattern known a priori:
If shorting pattern is predefined, problem simplification is possible.
s = (s1, . . . , sN) indicates long (si = 1) or short (si = −1) positions.

Portfolio relation with shorting pattern:
Actual portfolio w related to a virtual no-shorting portfolio w̃ ≥ 0:

w = s ⊙ w̃

Risk remains equivalent:
wTΣw = w̃TΣ̃w̃ ,

where Σ̃ = Diag(s)ΣDiag(s).
Risk budgeting with shorting:

Risk budgeting equations for virtual portfolio w̃ :

w̃i(Σ̃w̃)i = bi w̃TΣ̃w̃ , i = 1, . . . , N.
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Formulation with group risk parity
Concept of group risk parity:

Risk contributions of assets within the same group (e.g., industry or sector) are
considered collectively.

Group definition:
K groups, G1, . . . ,GK , partition the N assets.
Each group Gk contains assets that are treated as a single entity in terms of risk.

Group risk contribution:
Risk contribution from the kth group:

RCGk =
∑
i∈Gk

wi
∂σ

∂wi
=
∑
i∈Gk

wi(Σw)i√
wTΣw

Risk budgeting for groups:
Risk budgeting equations for groups:∑

i∈Gk

wi(Σw)i = bk wTΣw , k = 1, . . . , K .

bk represents the risk budget for group k.
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Formulation with risk factors
Factor model for returns:

r t = α + Bf t + ϵt ,

f t : K factors (with K ≪ N).
α: “alpha”.
B: matrix of “betas” for different factors.
ϵt : residual.

Risk contribution from factors:
Defined for the kth factor as:

RCk = (BTw)k(B†Σw)k√
wTΣw

,

where B† is the Moore-Penrose pseudo-inverse of B.
Risk budgeting in factor model:

Risk budgeting equations for factors:
(BTw)k(B†Σw)k = bk wTΣw , k = 1, . . . , K .

bk : risk budget for the kth factor.
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Naive diagonal formulation

Risk budgeting equations with diagonal covariance:
For diagonal covariance matrix Σ = Diag(σ2):

w2
i σ2

i = bi

N∑
j=1

w2
j σ2

j , i = 1, . . . , N

Simplifies to:

wi =
√

bi
σi

√√√√ N∑
j=1

w2
j σ2

j , i = 1, . . . , N.

Inverse volatility portfolio (IVolP):
Portfolio weights inversely proportional to asset volatilities.
Lower weights to high-volatility assets, higher weights to low-volatility assets.
Results in equal volatility contribution from each asset for bi = 1/N.
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Naive diagonal formulation

General nondiagonal covariance matrix:
No closed-form solution available; optimization required.
Diagonal solution serves as a “naive” approach.

Portfolio allocation and risk contribution:
The 1/N portfolio allocates capital equally across assets.
However, it results in unequal risk contributions.

Naive risk parity portfolio:
Achieves a more balanced risk contribution among assets.
Not perfectly equalized due to ignoring off-diagonal covariance matrix elements.
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Example: Naive RPP vs. 1/N Portfolio
Portfolio allocation and risk contribution of the 1/N portfolio and naive RPP:
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Vanilla convex formulations

Risk budgeting equations:
Given by:

wi (Σw)i = bi wTΣw , i = 1, . . . , N

With constraints 1Tw = 1 and w ≥ 0.

Change of variable
Define x = w/

√
wTΣw .

Rewrite equations as:
xi (Σx)i = bi

Vector form:
Σx = b/x

Portfolio recovery by normalizing x:

w = x/(1Tx).
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Vanilla convex formulations

Correlation matrix reformulation:
Rewrite in terms of correlation matrix C :

Cx̃ = b/x̃,

C = D−1/2ΣD−1/2, with D = Diag(σ2).
x = x̃/σ.

Numerical benefits:
Normalizing returns with respect to asset volatilities can improve numerical stability.
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Vanilla convex formulations: Direct resolution via root finding

Nonlinear equations system:
System defined by Σx = b/x.
Interpreted as finding roots of F (x) = Σx − b/x.
Goal: Solve F (x) = 0.

Root finding in practice:
Utilize general-purpose nonlinear multivariate root finders.
Available in most programming languages.

Root-finding with budget constraint:
Include budget constraint 1Tw = 1 in function:

F (w , λ) =
[

Σw − λb/w
1Tw − 1

]
.

Programming tools:
R: Use multiroot() from package rootSolve for multivariate root finding.
Matlab: Use fsolve() for solving systems of nonlinear equations.

Portfolio Optimization Risk Parity Portfolios 27 / 65

https://CRAN.R-project.org/package=rootSolve
https://www.mathworks.com/help/optim/ug/fsolve.html


Convex reformulations

Convex optimization for risk budgeting:
Risk budgeting equations can be solved through convex optimization, revealing hidden
convexity.

Spinu’s convex formulation: (Spinu 2013)

minimize
x≥0

1
2xTΣx − bT log(x).

Equivalence to risk budgeting:
Gradient set to zero matches risk budgeting equation:

Σx = b/x.
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Convex reformulations

Roncalli’s convex formulation: (Roncalli 2013)

minimize
x≥0

√
xTΣx − bT log(x).

Gradient zero leads to a form similar to risk budgeting equation after renormalization.

Maillard, Roncalli, and Teiletche’s convex formulation: (Maillard, Roncalli, and
Teiletche 2010)

minimize
x≥0

√
xTΣx, subject to bT log(x) ≥ c.

Minimizes volatility with a diversification constraint.
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Convex reformulations

Kaya and Lee’s convex formulation: (Kaya and Lee 2012)

maximize
x≥0

bT log(x), subject to
√

xTΣx ≤ σ0.

Gradient of Lagrangian matches risk budgeting equation after renormalization.

Solving convex formulations:
General-purpose solvers can be used, available in programming languages like R
(optim()) and Matlab (fmincon()).
Tailored algorithms can offer simple and efficient solutions.

Key Insight:
These convex formulations provide different perspectives on achieving risk parity through
optimization, each with its unique advantages and interpretations.
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Example
Portfolio allocation and risk contribution of the vanilla convex RPP compared to
benchmarks:
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Vanilla convex formulations: Algorithms

Iterative algorithms:
Develop practical algorithms for Spinu’s and Roncalli’s formulations.
Generate a sequence of iterates x0, x1, x2, . . .
Important to have a good initial point x0 that attempts to approximate the solution to
the nonlinear equations Σx = b/x.

Initial point options: Crucial for the convergence and efficiency of the algorithms.
Naive diagonal solution:

x0 =
√

b/σ.

Diagonal row-sum heuristic:
x0 =

√
b/
√

Σ1.
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Vanilla convex formulations: Newton’s method

Newton’s method iteration:

xk+1 = xk − Hf (xk)−1∇f (xk).

Gradient and Hessian for Spinu’s formulation: (f (x) = 1
2xTΣx − bT log(x))

∇f (x) = Σx − b/x
Hf (x) = Σ + Diag(b/x2).

Application to RPP:
Newton’s method can be applied to solve the risk parity portfolio optimization problem.
The method uses the gradient and Hessian of the objective function to iteratively improve
the solution.

Reference for Newton’s method:
Detailed study of Newton’s method for risk parity portfolio in (Spinu 2013).
For a general overview of gradient methods, see (Palomar 2024, Appendix B).
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Vanilla convex formulations: Cyclical coordinate descent algorithm
Algorithm overview:

Minimize function f (x) cyclically for each element xi (not parallel update).
Other elements of x = (x1, . . . , xN) are held fixed during minimization.
Known as block coordinate descent (BCD) (Palomar 2024, Appendix B).

Elementwise minimization for Spinu’s formulation: f (x) = 1
2xTΣx − bT log(x)

minimize
xi ≥0

1
2x2

i Σii + xi(xT
−iΣ−i ,i)− bi log xi

x−i : variable x without ith element.
Σ−i,i : ith column of Σ without ith element.

Closed-form solution:
Solve second order equation for xi :

Σiix2
i + (xT

−iΣ−i,i)xi − bi = 0,

Positive solution:

xi =
−xT

−iΣ−i,i +
√

(xT
−iΣ−i,i)2 + 4Σiibi

2Σii
.
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Vanilla convex formulations: Parallel update via MM

Majorization-minimization (MM) framework overview: (Sun, Babu, and Palomar
2017) (Palomar 2024, Appendix B)

Solves optimization problems by iteratively solving simpler surrogate problems.
Surrogate problems are designed to majorize (upper-bound) the objective function.

Decoupling elements with MM:
The term xTΣx couples all elements of x, complicating parallel updates.
MM framework allows for decoupling by using a particular majorizer for xTΣx.

Majorizer for xTΣx:

1
2xTΣx ≤ 1

2(xk)TΣxk + (Σxk)T(x − xk) + λmax
2 (x − xk)T(x − xk),

where λmax is the largest eigenvalue of Σ.
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Vanilla convex formulations: Parallel update via MM

Majorized problem for Spinu’s formulation:

minimize
x≥0

λmax
2 xTx + xT(Σ− λmaxI)xk − bT log(x),

Solving this majorized problem simplifies the optimization.
Solution to majorized problem:

Second order equation for xi :

λmaxx2
i + ((Σ− λmaxI)xk)ixi − bi = 0

Positive solution:

xi = −((Σ− λmaxI)xk)i +
√

((Σ− λmaxI)xk)2
i + 4λmaxbi

2λmax
.

Advantages of MM:
Allows for parallel updates by decoupling the elements of x.
Simplifies the optimization problem, making it more tractable.
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Vanilla convex formulations: Parallel update via SCA

SCA framework overview: (Scutari et al. 2014) (Palomar 2024, Appendix B)
Solves optimization problems by iteratively solving simpler surrogate problems.
Surrogate problems approximate the original objective function, making optimization
more tractable.

Decoupling elements with SCA:
The term xTΣx couples all elements of x, complicating parallel updates.
SCA allows for decoupling by using a surrogate for xTΣx.

Surrogate for xTΣx:

1
2xTΣx ≈ 1

2(xk)TΣxk + (Σxk)T(x − xk) + 1
2(x − xk)TDiag(Σ)(x − xk)

where Diag(Σ) is a diagonal matrix with the diagonal of Σ.
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Vanilla convex formulations: Parallel update via SCA

Surrogate problem for Spinu’s formulation:

minimize
x≥0

1
2xTDiag(Σ)x + xT(Σ− Diag(Σ))xk − bT log(x),

Solving this surrogate problem simplifies the optimization.
Solution to surrogate problem:

Second order equation for xi :

Σiix2
i + ((Σ− Diag(Σ))xk)ixi − bi = 0

Positive solution:

xi = −((Σ− Diag(Σ))xk)i +
√

((Σ− Diag(Σ))xk)2
i + 4Σiibi

2Σii
.

Advantages of SCA:
Allows for parallel updates by decoupling the elements of x.
Simplifies the optimization problem, making it more tractable.
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Numerical experiments: Effect of initial point
Effect of the initial point in Newton’s method for Spinu’s RPP formulation:
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Numerical experiments: Newton vs cyclical optimization
Difference between Newton and cyclical optimization for Spinu’s and Roncalli’s:
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Numerical experiments: Final comparison
Convergence of different algorithms for the vanilla convex RPP:
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Numerical experiments: Final comparison
Computational cost versus dimension N of different algorithms for the vanilla convex RPP:
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General nonconvex formulations

Risk parity with expected return:
Enhanced risk parity considers expected return within the risk parity framework.
Addresses criticism of risk parity’s focus on risk over performance.

Vanilla formulation:
Vanilla convex formulations focused on basic portfolio constraints.
Convex reformulations optimal for risk budgeting equations:

wi (Σw)i = biwTΣw , i = 1, . . . , N.

Realistic scenarios with additional constraints:
Portfolio managers often have extra constraints (turnover, market-neutral,
maximum-position, etc.).
Additional objectives like maximizing expected return or minimizing variance/volatility.
Convex formulations no longer applicable; nonconvex formulations required.
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General nonconvex formulations
Approximate satisfaction of risk budgeting equations:

wi (Σw)i ≈ biwTΣw , i = 1, . . . , N.

Measures of approximation error:
Sum of squared relative risk-contribution errors:

N∑
i=1

(
wi (Σw)i
wTΣw − bi

)2

Sum of squared risk-contribution errors:
N∑

i=1

(
wi (Σw)i√

wTΣw
− bi
√

wTΣw
)2

Sum of squared volatility-scaled risk-contribution errors:
N∑

i=1

(
wi (Σw)i − biwTΣw

)2
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General nonconvex formulations

Herfindahl index for risk concentration:

h(w) =
N∑

i=1

(
wi

∂f
∂wi

f (w)

)2

Indicates risk diversification, with 1/N ≤ h(w) ≤ 1.
Smaller index implies more diversified risk.

Alternative norms for error measurement:
ℓ1-norm, ℓ∞-norm, Huber’s robust penalty function, etc.
Leads to various portfolio formulations with different convergence behaviors.

Application:
These measures and formulations are used to create portfolios that balance risk
diversification with performance objectives, accommodating a range of constraints and
preferences.
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General nonconvex formulations

Maillard, Roncalli, and Teiletche’s formulation: (Maillard, Roncalli, and Teiletche
2010)

minimize
w

N∑
i ,j=1

(
wi (Σw)i − wj (Σw)j

)2

subject to w ∈ W

Alternative reformulation with dummy variable:

minimize
w ,θ

N∑
i=1

(wi (Σw)i − θ)2

subject to w ∈ W

where the optimal θ is θ = 1
N wTΣw .
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General nonconvex formulations

Bruder and Roncalli’s formulation: (Bruder and Roncalli 2012)

minimize
w

N∑
i=1

(wi (Σw)i
wTΣw − bi

)2

subject to w ∈ W.

Minimization of the Herfindahl index:

minimize
w

N∑
i=1

(wi(Σw)i
wTΣw

)2

subject to w ∈ W,

which can be seen as particular case of Bruder and Roncalli’s formulation with bi = 0.
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Numerical Issues and Recommendations

Maillard et al.’s double-summation formulation:
Can suffer from numerical issues due to very small squared terms.
Covariance matrix Σ may need artificial scaling.

Preferred formulations for numerical stability:
Bruder and Roncalli’s formulation.
Minimization of the Herfindahl index.
Based on normalized terms, offering better numerical stability.

Application:
These formulations are used to create risk parity portfolios that also consider additional
constraints and objectives, such as expected return, while maintaining numerical stability.
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Unified formulation

General Formulation: (Feng and Palomar 2015)

minimize
w

N∑
i=1

gi(w)2 + λF (w)

subject to w ∈ W

Concentration Error Measure (gi(w)):
Represents the deviation of the ith asset’s risk contribution from its target budget bi .
Example:

gi(w) = wi (Σw)i
wTΣw − bi ,

Preference Function (F (w)):
Encapsulates additional objectives, such as maximizing expected return or minimizing
variance.
Example:

F (w) = −wTµ + 1
2wTΣw
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Unified formulation

Trade-off hyper-parameter (λ):
Balances between minimizing concentration errors and optimizing the preference function.

Versatility of the formulation:
Capable of incorporating various risk parity formulations and additional objectives.
Adaptable to different error measures and preference functions.

Challenges in algorithm design:
Nonconvexity of the term

∑N
i=1 gi(w)2 complicates the development of algorithms.

Requires sophisticated optimization techniques to navigate the nonconvex landscape.

Significance:
This unified formulation offers a comprehensive framework for risk parity portfolio
construction.
It allows for the integration of risk management with performance optimization,
accommodating a wide range of portfolio management preferences and constraints.
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Numerical experiments
Portfolio allocation and risk contribution of general nonconvex RPP (with wi ≤ 0.15)
compared to benchmarks (1/N portfolio, naive diagonal RPP, and vanilla convex RPP):
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General nonconvex formulations: Algorithms

Iterative algorithm introduction:
General-purpose solvers can address previous nonconvex formulations.
Iterative algorithms developed for efficiency.
Produce a sequence of iterates: w0, w1, w2, . . .

Choosing an initial point:
Initial point for algorithms can be the solution from vanilla convex formulation.
Must ensure feasibility with all constraints in W.
Alternatively, use the 1/N portfolio as a simpler initial point.
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Algorithms: SCA

SCA Method for Nonconvex Cases:
SCA (Successive Convex Approximation) method is applicable for efficient algorithm
development in nonconvex scenarios.
For SCA details, see (Scutari et al. 2014) (Palomar 2024, Appendix B).

Objective Function Convexification:
Unified formulation objective function:

U(w) =
N∑

i=1
gi(w)2 + λF (w).

Convexification by linearizing gi(w) around wk :

gi(w) ≈ gi(wk) +∇gi(wk)T
(
w −wk) .

Surrogate function:

Ũ(w , wk) =
N∑

i=1

(
gi(wk) +∇gi(wk)T

(
w −wk))2 + λF (w) + τ

2
∥∥w −wk∥∥2

2 .
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Algorithms: SCA

Approximated QP Formulation:

minimize
w

1
2wTQkw + wTqk + λF (w)

subject to w ∈ W,

where
Qk ≜ 2

(
Jk
)T

Jk + τ I,

qk ≜ 2
(
Jk
)T

gk −Qkwk ,

and
gk ≜

[
g1(wk), . . . , gN(wk)

]T
Jk ≜

 ∇g1(wk)T
...

∇gN(wk)T

 .
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Algorithms: SCA

Successive Convex optimization for RIsk Parity portfolio (SCRIP) (Feng and Palomar
2015)
Initialization:

Start with an initial portfolio w0 within the feasible set W.
Define sequence {γk}.

Repeat (kth iteration):
1 Calculate risk concentration terms gk and Jacobian matrix Jk for current point wk .
2 Solve approximated QP problem and keep solution as ŵk+1.
3 Update the portfolio as wk+1 ← wk + γk(ŵk+1 −wk).
4 k ← k + 1.

Until: The solution converges to the optimal portfolio.
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Algorithms: ALM

Alternate linearization method (ALM) overview:
Proposed in (Bai, Scheinberg, and Tütüncü 2016) for solving Maillard’s formulation with
a single summation.
Objective function:

F (w , θ) =
N∑

i=1
(wi (Σw)i − θ)2 =

N∑
i=1

(
wTM iw − θ

)2
,

where M i contains the ith-row of Σ and zeros elsewhere.

ALM strategy:
Introduce variable y , redefine objective as

F (w , y , θ) =
N∑

i=1

(
wTM iy − θ

)2
,

subject to y = w .
Sequentially optimize w , y , and θ using two QP approximations.
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Algorithms: ALM
QP approximations in ALM:

First QP approximation:

Q1(w , yk , θ) = F (w , yk , θ) +∇2F (yk , yk , θ)T(w − yk) + 1
2µ
∥w − yk∥2

2

Second QP approximation:

Q2(wk+1, y , θ) = F (wk+1, y , θ) +∇1F (wk+1, wk+1, θ)T(y −wk+1) + 1
2µ
∥y −wk+1∥2

2

Gradient calculations for ALM:
Gradient with respect to w :

∇1F (w , y , θ) = 2
N∑

i=1

(
wTM iy − θ

)
M iy

Gradient with respect to y :

∇2F (w , y , θ) = 2
N∑

i=1

(
wTM iy − θ

)
MT

i w .
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Numerical experiments
Nonconvex formulation challenges:

Initial nonconvex problem:

minimize
w,θ

N∑
i=1

(wi (Σw)i − θ)2

subject to w ∈ W

Squared terms wi (Σw)i can be numerically unstable when small.
Numerical stability heuristic:

Scale up covariance matrix Σ by a large factor (e.g., 104) to mitigate numerical issues.
Suggested in (Mausser and Romanko 2014).

Preferred formulation for stability:
Use normalized terms for better numerical stability: wi (Σw)i /(wTΣw)

minimize
w

N∑
i=1

(
wi (Σw)i
wTΣw − bi

)2

subject to w ∈ W.
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Numerical experiments
Convergence of algorithms for nonconvex RPP formulation in terms of wi (Σw)i :
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Numerical experiments
Convergence of algorithms for nonconvex RPP formulation in terms of wi (Σw)i /(wTΣw):
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Summary
Diversification is key in portfolio design, as the saying goes, “don’t put all your eggs in one
basket.” Some key points:

The 1/N portfolio effectively diversifies capital allocation, but risk parity portfolios
offer a more advanced strategy by diversifying risk allocation.
Risk parity portfolios express the risk measure (e.g., volatility) as the sum of individual
risk contributions from each asset, providing refined risk control compared to using a
single overall portfolio risk value.
Risk parity formulations have three levels of complexity:

Naive diagonal formulation: assumes a diagonal covariance matrix, simplifying to the
inverse-volatility portfolio (ignoring asset correlations);
Vanilla convex formulations: consider simple long-only portfolios, rewritten in convex
form with efficient algorithms; and
General nonconvex formulations: admit realistic constraints and extended objective
functions, becoming nonconvex problems requiring careful resolution (still with efficient
iterative algorithms).
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